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It is important for engineers and applied scientists to represent data, such as
signals or images, in the most parsimonious terms. Let us consider a dictionary
D of generating elements {dk}L

k=1, dk ∈ CN with unit length. The dictionary D
can be viewed as a matrix of size N × L. It is known that highly sparse solutions
can be obtained by convex optimization for several interesting dictionaries. More
precisely, for a given signal s ∈ CN , we seek the sparsest coefficient vector r ∈ CL

such that Dr = s. That is, we want to solve the `0 optimization problem:

Minimize ‖r‖0 subject to Dr = s,

where the `0 norm is the number of non-zero elements in r. Under certain suitable
conditions, the minimizing solution to the `1 optimization problem:

Minimize ‖r‖1 subject to Dr = s

is also the minimizing solution to the `0 optimization problem. By this reason,
decoding by linear programming in the `1 norm has become one of the central
problems for sparse representation.

Linear codes of diverse lengths are constructed for decoding transmitted messages
by `1 linear programming. Decoding consists in recovering an input vector x ∈ Rn

from corrupted oversampled measurements y = Ax + w where A ∈ Rm×n is a full
rank matrix with m > n and w ∈ Rm is a sparse vector. Appropriate random
matrices A are empirically constructed by means of singular value decomposition
or QR orthonormalization so that the vector x can be recovered numerically to an
error smaller than 10−5, provided w is sufficiently sparse. Numerical results on
the percentage of zero components in w are obtained for m = 2n, 4n, 6n, 8n. For
comparison, other less effective forms for A will be presented. In the case m = 2n,
the above linear code problem can be effectively reduced to an underdetermined
problem of the form y = Bx and solved by `1 linear programming. Applications to
cryptography are mentioned.
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