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CONTACT GEOMETRY OF SECOND ORDER 1

KEIZO YAMAGUCHI

1. INTRODUCTION

In [C1] and [C2], E.Cartan studied involutive systems of second order partial differential
equations for a scalar function with 2 or 3 independent variables, following the tradition
of the geometric theory of partial differential equations developed by Monge, Jacobi, Lie
, Darboux, Goursat and others. In fact he investigated the contact equivalence and the
integration problems of such involutive systems of second order. In this course, he found
out the link between the contact equivalence of involutive systems of second order and
the geometry of differential systems (Pffafian systems ) on five dimensional spaces.

The main purpose of the present paper is to reformulate his study as the Contact
Geometry of Second Order. As is well known, the classical theory of systems of
the first order partial differential equations for a scalar function can be rephrased as the
submanifold theory of contact manifolds. In this spirit, we formulate the submanifold
theory of second order contact manifols as the geometry of PD manifolds of second order
([Y1], [Y6] see §4).

By Bécklund Theorem (see §2.2), the symbols of second order equations become the
first invariants under contact transformations. In fact, in [C2], E.Cartan first classified
involutive symbols algebraically and wrote the structure equations of such involutive sys-
tems of second order with 3 independent variables. To capture good classes of second
order equations , we cannot pursue this line in general (see the discussion in §3.3). Our
guiding principle in this paper is to utilize Parabolic Geometries, directly or combined
with the reduction procedures, to find good classes of PD manifolds of second order. Here
the Parabolic Geometry is a geometry modeled after the homogeneous space G/G,
where G is a (semi-)simple Lie group and G’ is a parabolic subgroup of G (cf. [Bail).
Precisely, in this paper, we mean, by a Parabolic Geometry, the Geometry associated
with the Simple Graded Lie Algebra in the sense of N.Tanaka ([T4]). As for the
reduction procedures, we will establish the First Reduction Theorem for PD manifolds
admitting non-trivial Chauchy characteristic systems in §4 and will treat the second re-
duction procedures (two step reductions) as Part II in the sequel to this paper.

Now let us proceed to describe the contents of each sections. In §2, we will recall
the geometric (Grassmannian) construction of Jet spaces and prepare basics of differ-
ential systems, especially the Tanaka Theory of (linear) differential systems. In §3, we
will discuss the symbols of second order equations as the first invariants in the Contact
Geometry of Second Order. We will formulate the submanifold theory of second order
contact manifols in §4 as the geometry of PD manifolds of second order and establish
the First Reduction Theorem. In §5, we will first prepare the notation for the simple
graded Lie algebras and state the Prolongation Theorem. Then we will exhibit Parabolic
Geometries, which directly correspond to the geometry of PD manifolds of second order.
Finally, in §6, we will discuss one of the Typical classes of involutive systems of second
order as the application of the First Reduction Theorem and will show several examples
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of Parabolic Geometries, which are linked to the geometry of PD manifolds of second
order through the First Reduction Theorem.
This paper constitutes the extended version of our previous paper [Y6].

2. GEOMETRY OF JET SPACES.

We will recall the geometric construction of Jet spaces and fix our notations for the
basic notion for differential systems, following [Y5] and [Y7].

2.1. Spaces of Contact Elements. Let us start with the construction of the space
J(M,n) of contact elements to M: Let M be a (real or complex) manifold of dimension
m + n. Fixing the number n, we consider the space of n-dimensional contact elements
to M, i.e., the Grassmannian bundle over M consisting of all n-dimensional contact
elements to M;
J(Mn)= ] J. = M,
zeM

where J, = Gr(T,(M),n) is the Grassmann manifold of all n-dimensional subspaces of
the tangent space T, (M) to M at x. Each element u € J(M,n) is a linear subspace of
T, (M) of codimension m, where x = 7w(u). Hence we have a differential system C' of
codimension m on J(M,n) by putting:

C(u) =7, (u) C To(J(M,n)) == T,(M).
for each u € J(M,n). C is called the Canonical System on J(M,n). Introducing

the inhomogeneous Grassmann coordinate (x1,- -+ ,xp, 2%, -+, 2™, pi, -+ ,p™) of J(M,n)
around u, € J(M,n), C is defined by;

C={w'=- =" =0},
where

wa:dza—Zp?da:i, (=1,---,m).
i=1

Here (71, ,@n, 2%, -+ ,2™) is a coordinate system of M around z, = 7(u,) such that
dxy A - Ndxy, |,,7# 0. Coordinate functions p* are introduced by

dz" |,= Zp?(u) dx; |y -
i=1

(J(M,n),C) is the (geometric) 1-jet space for n-dimensional submanifolds in M. Let
M, M be manifolds (of dimension m +n) and ¢ : M — M be a diffeomorphism between
them. Then ¢ induces the isomorphism ¢, : (J(M,n),C) — (J(M,n),C), ie., the

differential map ¢, : J(M,n) — J(M,n) is a diffeomorphism sending C' onto C.

2.2. Second Order Contact Manifolds. Let J be a manifold and C' be a (linear)
differential system on J of codimension 1. Namely C'is a subundle of T'(.J) of codimension
1. Thus, locally at each point u of J, there exists a 1-form w defined around w € J such
that

C ={w =0}
Then (J,C) is called a contact manifold if w A (dw)™ forms a volume element of J.
This condition is equivalent to the following conditions (1), (2) or (3);

(1) The restriction dw |¢ of dw to C'(u) is non-degenerate at each point u € J.



(2) There exists a coframe { w,wy,...,wp, 71, ..., T, } defined around u € J such that
the following holds;

do=wi AT+ -+ w, ATy, (mod w)

(3) The Cauchy characteristic system Ch (C') of C' is trivial (see §2.3 below).

By the Darboux Theorem, a contact manifold (J,C) of dimension 2n + 1 can be
regarded locally as a space of 1-jets for one unknown function. Namely, at each point of
(J,C), there exists a canonical coordinate system (z1,...,Zp, 2,p1,-..,pn) such that

C ={dz— sz-dxi =0}.
i=1

Starting from a contact manifold (J,C'), we can construct the geometric second order
jet space (L(J), E) as follows: We consider the Lagrange-Grassmann bundle L(J)
over J consisting of all n-dimensional integral elements of (J,C);

L(J)=|]J L. 5T,
ueJ

where L, is the Grassmann manifolds of all lagrangian (or legendrian) subspaces of the
symplectic vector space (C'(u),dw). Here w is a local contact form on J. Then the
canonical system F on L(J) is defined by

Ew) =7, (v) C T,(L(J)) == T,(J), for ve L(J).

Let us fix a point v, € L(J). Starting from a canonical coordinate system (z1, - - - , zp, 2, P1,
-+, pp) of (J,C) around u, = 7(v,) such that dxy A --- Adx, |,,# 0, we can introduce a
coordinate system (z;, 2, pi, pij) (1 S i < j < n) by defining coordinate functions p;; as
follows;

dpi ="y _ pij(v)dz; |,
=1

Then, since v € C(u), we have dz |,= Y ., pi(u)dz |, and , since dw |,= 0, we get

Pij = Pji-
Thus E is defined on this canonical coordinate system by
E={w=w; =" =w, =0},
where

w:dz—Zpidxi, and w,-:dpi—Zpijdxj for i=1,---,n.

i=1 j=1
Let (J,C), (J,C) be contact manifolds of dimension 2n 41 and ¢ : (J,C) — (J,C) be a
contact diffeomorphism between them. Then ¢ induces an isomorphism ¢, : (L(J), E) —

(L(J), E). Conversely we have (cf. Theorem 3.2 [Y1])

Theorem 2.1. (Bicklund) Let (J,C) and (J,C) be contact manifolds of dimension

A~

on + 1. Then, for an isomorphism ® : (L(J),E) — (L(J), E),there exists a contact
diffeomorphism ¢ : (J,C) — (J,C) such that & = ..



2.3. Derived Systems and Cauchy Characteristic Systems. Now we prepare basic
notions for (linear) differential systems (or Pfaffian systems). By a (linear) differential
system (M, D), we mean a subbundle D of the tangent bundle T'(M) of a manifold M of

dimension d. Locally D is defined by 1-forms wy, ..., wg_, such that wy A--- Awg_, # 0
at each point, where r is the rank of D;
D={w=-=ws,=0}.

For two differential systems (M, D) and (M, D), a diffeomorphism ¢ of M onto M is
called an isomorphism of (M, D) onto (M, D) if the differential map ¢, of ¢ sends D
onto D.

For a non-integrable differential system D, we consider the Derived System 0D of
D, which is defined, in terms of sections, by

0D =D+ [D,D).

where D = I'(D) denotes the space of sections of D.

Furthermore the Cauchy Characteristic System Ch (D) of (M, D) is defined at each
point x € M by

Ch(D)(z)={X € D(z) | X|dw; =0 (mod wy,...,ws) fori=1,..,s},

where | denotes the interior multiplication, i.e., X |dw(Y) = dw(X,Y) and s = d — 7.
When Ch (D) is a differential system (i.e., has constant rank), it is always completely
integrable.

Moreover Higher Derived Systems 9% D are usually defined successively (cf. [BCG3))

by
o*D = 9(0" ' D),

where we put 9°D = D for convention.

On the other hand we define the k-th Weak Derived System 0®)D of D inductively
by

OMD = o VD 1 D, 0%V,

where 0D = D and 0D denotes the space of sections of 9% D.

2.4. Review of Tanaka Theory. A differential system (M, D) is called regular, if
D=+ = 9% D are subbundles of T(M) for every integer k 2> 1. For a regular differential
system (M, D), we have ( [T2], Proposition 1.1)

(S1) There exists a unique integer > 0 such that, for all k 2 p,
—k = —u+1 -2 -1 _
DF=...=D u;D Bt Q;Dtp QD =D,
(S2) [Dr, DI CcDP*?  forall p,q<O.

where DP denotes the space of sections of DP. (S2) implies subbundles DP define a
filtration on M.

Let (M, D) be a regular differential system such that T'(M) = D~*. As a first invariant
for non-integrable differential systems, we now define the symbol algebra m(z) asso-
ciated with a differential system (M, D) at x € M, which was introduced by N. Tanaka
[T2].

We put g_1(x) = D (2), g,(z) = DP(x)/DP*!(z) (p < —1) and

m(x) = @ g,(2).

p=—1
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Let 7, be the projection of DP(x) onto g,(z). Then, for X € g,(z) and Y € g,(x), the
bracket product [X,Y] € g,+,(2) is defined by

[X7 Y] = 7TP+Q([X7 Y/]w)v

where X and Y are any element of D” and D9 respectively such that 7,(X,) = X and
m,(Yy) =Y.

Endowed with this bracket operation, by (S2) above, m(x) becomes a nilpotent graded
Lie algebra such that dimm(xz) = dim M and satisfies

gp(2) = [gp+1(x),8-1(x)]  forp < -1
We call m(z) the Symbol Algebra of (M, D) at x € M.
Furthermore, let m be a FGLA (fundamental graded Lie algebra) of p-th kind, that is,

-
m:@gp

p=—1

is a nilpotent graded Lie algebra such that

Op = [Op+1, 9-1] for p < —1.

Then (M, D) is called of type m if the symbol algebra m(x) is isomorphic to m at each
xe M.

Conversely, given a FGLA m = @;ﬁ 4 9p, We can construct a model differential system
of type m as follows: Let M(m) be the simply connected Lie group with Lie algebra m.
Identifying m with the Lie algebra of left invariant vector fields on M (m), g_; defines
a left invariant subbundle Dy, of T (M (m)). By definition of symbol algebras, it is easy
to see that (M(m), Dy,) is a regular differential system of type m. (M (m), Dy,) is called
the Standard Differential System of Type m. The Lie algebra of all infinitesimal
automorphisms of (M (m), Dy,) can be calculated algebraically as the Prolongation g(m)
of m ([T1], cf. [Y5]).

In fact, let m = @p <0 9p be a fundamental graded Lie algebra of p-th kind defined over
a field K. Here K denotes the field of real numbers R or that of complex numbers C. We
put
g(m) = P gp(m),
PEZ
where g,(m) = g, for p <0, go(m) is the Lie algebra of all (gradation preserving) deriva-
tions of graded Lie algebra m and gi(m) is defined inductively by the following for k = 1;

ge(m) = {ue Py g | w(lY,2) = [ulY), 2] - [u(2),Y]}.

p<0

Thus, as a vector space over K, g.(m) is a linear subspace of End (m,m*) = m* @ m*,
where m* = m@go(m)®---®gr_1(m). The bracket operation of g(m) is given accordingly
(see [T1], [Y5] for detail).

The structure of the Lie algebra A(M(m), Dy,) of all infinitesimal automorphisms of
(M (m), Dyy,) can be described by g(m). Especially A(M(m), Dy,) is isomorphic to g(m),
when g(m) is finite dimensional.

Let go be a subalgebra of go(m). We define a subspace gy, of gi(m) for & = 1 inductively
by

gr ={uegem)|[u, 9] Cge }-
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Then, putting
g(m> 90) =mo @gka
520
we see, with the generating condition of m, that g(m, go) is a graded subalgebra of g(m).
g(m, go) is called the prolongation of (m, go).
We will recall in §5.1 when g(m) or g(m, go) becomes finite dimensional and simple.

2.5. Symbol Algebra of (L(J), E). As an example to calculate symbol algebras, let us
show that (L(J), F) is a regular differential system of type ¢*(n):

A(n) =c_3@c_a Dy,

where ¢ 3 =R, ¢, =V*and ¢ ; =V @ S*(V*). Here V is a vector space of dimension n
and the bracket product of ¢?(n) is defined accordingly through the pairing between V and
V* such that V' and S?(V*) are both abelian subspaces of ¢_;. This fact can be checked
as follows: Let us take a canonical coordinate system (x;,z,p;,pij) (1 £ ¢ < 7 < n) of
(L(J), E). Then we have a coframe {w, w;,dz;,dp;;} (1 < ¢ < j < n) at each point

in this coordinate neiborhood, where @w = dz — Z?lei dx;, w; = dp; — Z?leij dx;

(t=1,---,n). Now take the dual frame {%, 622_, di’ 81?2-]- }, of this coframe, where
d 0 0 - 0
= APt > P
dr; Ox; p 0z ;p] Op;
is the classical notation. Notice that {%, % (1 £i < j < n)forms a free basis of
[ i

['(E). Then we have

9 d , 0 0 d 9 9
{ap“" d%} 7 Opi’ {8]%]" d:L'J " Op; * " Op; o iEy

O d)_go |4 d)_,
api’ d&?j N jaZ’ d%i’ d%j N
It follows that T/(L(J)) = 0@ E and the derived system OF of E satisfies the following :

OF = {w =0} =7.'C, Ch (0OF) = Ker ..

These facts provide the proof of Theorem 1 (cf. Theorem 3.2 [Y1]).

Moreover, in terms of the defining 1-forms of £ and OF around v € L(.J), the structure
of the symbol algebra ¢*(n) can be described by the following Structure Equation of
E.Cartan([C1],[C2]);

dwo =wiAwy + - +w, ANw, (mod w, w; Aw;(l<iZj=n))

doy =wi AT+ - +wp, ATy,
(mod w,w,...,w,)

dw, = Wi ATy + -+ +wp A Ty

A
A
A

where aE:{WZO},E:{w:wlzzwn:O} and {wawiaw%ﬂ-ﬁ'j (1 i

n)} forms a coframe around v € L(J) . Here we understand that m;; = 7j;.

J
Similarly we see that (J(M,n),C) is a regular differential system of type ¢!(n,m):

c'(n,m) =c o, ®cy,

where c_.o =W and ¢c_; =V & W ® V* for vector spaces V and W of dimension n and
m respectively, and the bracket product of ¢!(n,m) is defined accordingly through the
pairing between V' and V* such that V and W ® V* are both abelian subspaces of ¢_;.
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3. SYMBOLS OF SECOND ORDER EQUATIONS.

In view of the Backlund Theorem, we will discuss the symbols of second order equations
as the first invariants in the Contact Geometry of Second Order.

3.1. Symbol Algebras. Let R be a submanifold of L(.J) satisfying the following condi-
tion:
(R.O) p:R— J;submersion,

where p = 7 |g and 7 : L(J) — J is the projection. This condition implies that the system
of equations R of second order contains no equations of first order. We have two differential
systems C' = F and C? = F on L(J). We denote by D! and D? those differential
systems on R obtained by restricting C* and C? to R. Moreover we denote by the same
symbols those 1-forms obtained by restricting the defining 1-forms {w, @y, -+ ,@,} of
the canonical system FE to R, where w = dz — | pidz;, and @; = dp; — >, pijdz;
(1 = 1,...,n). Then it follows from (R.0) that these 1-forms are independent at each
point on R and that

D' = {= =0}, D’={w=w = =w, =0}

Thus D' and D? are subbundles of T'(R) such that 9D? C D'. Hence subbundles D? D!
and T(R) define a filtration on R. Namely, putting D~' = D?, D=2 = D! D? = T(R)
for p £ —3, we have

[DP, DY C DPHI for p,q <0,
where D? = I['(DP).

Now we define the Symbol Algebra s(v) of R at v € R by
5(v) =5_3(v) Bs_o(v) Ds_q1(v),

where s_3(v) = T,(R)/D'(v), s_5(v) = D'(v)/D?*(v) and s_;(v) = D*(v). The bracket
operation in s(v) is defined, similarly as in §2.3, as follows: For X € s,(v) and Y € s,(v),
let us take X € D and Y € D? such that X = m,((X),) and Y = 7,((Y),),where
7, : DP(v) — s,(v) is the projection. Then the bracket product is defined by

[X,Y] = 7Tp+q([)2: Yf]U) € Spyq(V).

The bracket product [X, Y] is well-defined for X € s,(v) and Y € s,(v), i.e., is independent

of the choice of X and Y. In fact, in our case, this can be shown as follows: The defining 1-
forms @, @, ..., @, for D' and D? actually define a basis {A} of s_3(v) and {By, ..., B,}

of 5_5(v) such that w(A) =1, 7_3(A) = A, wi(B;) = &}, m_»(B;) = B; and B; € D'(v).
Then, for X1, X3 € 5_1(v) = D*(v), we calculate

dwi(X1, X5) = Xy (@i(X5)) — Xa(@i(X1)) — wil [ X1, Xa]) = —wi([ X3, Xa)).
Thus, putting §; = —dw;( X7, X3), we get
(X1, Xo] = B1B1+ -+ BBy, € 5_9(v).
For X € s_1(v) and Y € s_5(v), we calculate
dw(X,Y,) = X,(@(Y)) = Yo(w(X)) - @([X,Y],) = —=([X,Y].).

Similarly we have dw(Xy, Xp) = 0 for X, Xy € 5_1(v). Thus dw(X, Y,) depends only on
X €s5_4(v) and Y € s_5(v). Hence, putting o = —dw(X,Y,), we have

(X, Y] =aA €s_3(v).
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Moreover it follows that, for X € s_4(v),
X|dw(Y)=0 for VY € D'(v) if and only if [X,s_5(v)] = 0.
Hence, from Ch (D') = Kerp, C D?, we have, putting f(v) = Ch (D')(v),
f(v) = {X € 84(0) | [X, 5 2(v)] = O}.

f(v) is a subspace of s_;(v) of codimension 7.

By the description of the bracket operation in s(v) above, since w and wy, ..., w, are
the restriction of defining 1-forms of C! = 9F and C* = E on L(J), we immediately
see that w and wy,...,w,, at the same time, define bases of g_3(v) and g_5(v) of the
symbol algebra m(v) = g_3(v) ® g_2(v) ® g_1(v)(= ¢*(n)) of (L(J),E) at v € L(J) so
that s(v) is a graded subalgebra of m(v) satisfying s_5(v) = g_3(v), 5_2(v) = g_2(v) and
f(v) = T,(R) N Ch (C*)(0)

Now we consider the following compatibility condition for R:

() pW: RMY — R s onto.
where R is the first prolongation of R. Namely we assume that there exists an n-
dimensional integral element V' of (R, D?) at each v € R such that

5_1(U) =V& f(U)
V' is an abelian subalgebra in s(v). By fixing a basis of s_3(v), s_3(v) is identified with
R and, through [,] : s_2(v) x 5_1(v) — s_3(v) = R, s_5(v) is identified with V*, since
VNifw) = {0} and f(v) = {X € s_1(v) | [X,5_2(v)] = 0}. Moreover we have a map
w:f(v) — S*(V*) defined by
p(f) (v, v2) = [[f, 0], v € 5_3(v) =R for [ € f(v).

Here p(f)(vi,v2) = u(f)(va, v1) follows from [vy,vs] = 0 and the Jacobi identity of s(v).
We can check the injectivity of p as follows: If u(f) =0, we have [f,v] = 0 for Vv, € V
by s_o(v) = V*. Then we have [f,s_1(v)] = 0, since f(v) is abelian, which implies
f € f(v)NCh(D?)(v). From Ch (D) (v) N Ch (D?)(v) = 0 (see §4.1), we obtain f = 0.

Hence, by fixing a basis of s_3(v) and the brackets in s(v), we obtain

s 3(0) 2R, s,(v) 2V s5.4(v)=Va&flv) and f(v) C S*(V).

Thus f(v) C S*(V*) is the first invariant of R under contact transformation. We will first
examine f(v) C S?(V*) in the case dim V' = 2 in the next section.

3.2. Case n = 2. When dimV = 2, we have dim S*(V*) = 3. Through the natural
pairing of S?(V') and S?(V*) as subspaces of V@ V and V* ® V*, we identify S?(V) with
the dual space of S?(V*). For a basis {e1, e} of V, we have a basis {e; @¢}, 2¢; @€, es©@es }
of S?(V*) and its dual basis {e; ©® e1, €1 © €3, 2 ® €5} of S?(V'), where {e,e3} is the dual
basis of {e.ex} and ¢; ® ¢; = 5(e; ® ¢; + ¢; ® ¢;). For a subspace § of S?(V*), we denote
by §* the annihilator of § in S%(V).
Now let us classify subspaces f of S?(V*) under the action of GL(V).
(1) codim f =1
In this case dim f+ = 1. Hence we can classify a generator f of ' as a quadratic
form and obtain the following classification into three cases, i.e., there exists a
basis of V' such that

({e1 @er}),
fr =9 ({e1 @ea}),
(({e1 @ €1+ €3 ® e2}))
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The third case occurs when we classify over R. Here f is of rank 1, rank 2 (indef-
inite) and rank 2 (definite) respectively.
(2) codim f = 2
In this case dim{ = 1. Hence, similarly as above, we have the following classi-
ficasion into three cases, i.e., there exists a basis of V' such that

{e; @e5}),
f=q{e1@e}),
(({el @i +e3 @e3})),

Thus, dually, we have

({e1 @ e1,e1 @ ea}),
fr= ({e1 @e1,e2 @ea}),
(<{61 © €9, €1 © €1 — €2 © 62}>)

The third case occurs when we classify over R. We note here that, for the prolon-
gation V) = §f®@ V*N S3(V*), we have (V) = ({e, @ e; ®e1,e1 @ €1 ® ey, 61 ®
€2 © €9, 69 @ ey ® ey}) for the second and third cases (see §3.3). Namely f) = {0}
for the second and third cases, whereas the first case is involutive.

We can classify the symbol algebra s(v) of R at v € R according to the above classifi-
cation for f(v) C S?*(V*) under the condition (C). In the case codim R = 1, R is called
parabolic, hyperbolic and elliptic at v according as f is of rank 1, rank 2 (indefinite)
and rank 2 (definite) respectively, where f is a generator of (f(v))* C S%(V) (see §3.3).

Now we assume the regularity for the symbol algebras. Namely assume that symbol
algebras s(v) of R are locally isomorphic to the fixed symbol s = s 3 ® s 5 ® s_; where
s 3=R, 5 o=V*and s_; =V @ f for the fixed f C S?(V*). Then, for example, the
Structure Equation reads as follows:

(i) f* = {{e1 @ e})

dw =wi ANw;+wy Aws  (mod w)
dw1 =wi AT (mod w, W, ’WQ)
dwoy = wo Ao (mod w,wy, ws)

(i1) - = ({e1 @ e1,61 @ e2})
dw =w ANwy; +ws Awe  (mod  w)
dwi= 0 (mod  w, wy, o)

de = Wy N o9 (mod w, Wi, WQ)

(i) - = ({e1 @ 1,62 @ e })
dw =w; ANw; +wy Awy (mod @)
dw, = wy A1y (mod  w,wy, ws)
dwos = wy A T (mod @, wy, ws)
Thus we see, from (77), that R admitts a 1-dimensional Cauchy characteristic system in
case ft = ({e; ®@e1,e1@ey}), i.e, in case R is of codimension 2 and f is involutive. In fact,

in [C1], E.Cartan characterized overdetermined involutive system R by the condition that
R admitts a 1-dimensional Cauchy characteristic system.
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We will discuss the case when R admitts a non-trivial Cauchy characteristic system
in §4.2 in general. We will encounter the case (iii) in §5.3 as an example of Parabolic
Geometry associated with sl (4).

3.3. Involutive Symbols. In general we will consider the case when dimV = n. We
identify S?(V) with the dual space of S?(V*) through the natural pairing of S?(V') and
S2(V*) as subspaces of V @ V and V* @ V*. Then, for a basis {e,...,e,} of V, we
have a basis {e] @ e],...,er @€}, 2e; ®ei(1 <1 < j < n)} of S*(V*) and its dual basis
{ei@e;(1 <0< j=n)}of S3(V), where {ef, ..., e} is the dual basis of V*.

Here we note the adjoint map o*(v) : S¥(V) — S*¥ (V) of the interior multiplication
o(v) : SMHV*) — S*(V*) by a vector v € V 5 a(v)(f) = v] f, i.e., a(v)(f) (v, .., v) =
fv,v1,..., %) for f € SEFL(V*), is given by

c*(v)(a) =v®a  for ac S*V).

Hence , for a subspace f C S?(V*) such that f* = ({f1,..., fs}), the first prolongation
fU =iV NS} (V) isgiven by (V) ={e;@ f; | 1<i<n, 1=Zj<s)).

As in §3.2, we can classify codimension 1 subspace f C S?*(V*) as follows; In this case,
we can classify a generator f of f+ as a quadratic form and obtain

f=e1@e;tea@et---te @6,

for a basis {ej,...,e,} of V, where r is the rank of f and we have a index when we classify
over R. In each case, {e,,...,e1} forms a regular basis for f and the Cartan characters
are given by s;, =n—t+1fore=1,...,n—1and s, = 0. { is always involutive.

For a single equation of second order

R = {F(xla"'7$n727p17"'7pn7p117-"7pnn) = O} - L(J>7

we observe the following: From §2.5, we calculate

[0 (] v

apii, %’
for X =50, U'idixi' Thus % is identified with e} © e} in S?*(V*) and % is identified
with 2ef © ¢} in S*(V*), where {e; = d%(i =1,...,n)} forms a basis of V. Then, from

f(v) = T,(R) N Ch (C?)(v) at v € R and

F
dF = ) a—”dpij (mod @, wy, ... @, dey,. .. de,),

1<igi<n P

we see that (f(v))* is generated by

=Y Luaoe

1<igi<n P

Next we consider the case when codim § = 2. In this case the involutiveness becomes
rather a restrictive condition and, in fact, we have (cf. [C2] and [Y2])

Proposition 3.1. Let f be a subspace of S*(V*) of codimension 2. Then § is involutive if
and only if there exists a basis {ey,...,e,} of V such that the annihilator §+ of f in S*(V)
18 generated by e; © ey and e; © e3 or by e; © e and e; © e,.
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Proof. Fist we observe that S?(V*) is a involutive subspace of V* ® V* with the Cartan
characters 0; =n—i+1fori=1,...,n. Let f be a subspace of S*(V*) of codimension 2
and let sq,...s, be the Cartan characters of f. Then we have s; < o; for i = 1,...,n and

dmf=s1+---+s,=01+---+0, —2.

Since the Cartan characters have the property s; = --- 2 s, if s;, = 0;, — 2 for some
i, € {1,...,n}, it follows s;,, .1 = 05,41 =N — i, > 8;, = 05, — 2 =n — i, — 1, which is
a contradiction. Hence there exist j and k£ (1 < j < k < n) such that s; = 0; — 1 and
S = 0O — 1.

Now assume that f is involutive. Then, from dim f(l) =81+ 289 + - - -+ ns,, we obtain

codimf(l):Zi(ai—si):j+k§(n—1)+n:2n—1.

i=1

This implies that the generator {e; ® f,...,e, ® f,e1® g, ..., e, ® g} of (V) in S3(V)
are linearly dependent, where f and g € S?(V) are the generator of . Namely there
exist v; and vy € V such that

11 @ f—v,©@g=0.

Here v; and v, are linearly independent since f and ¢ are independent. Hence there exists
v € V such that f = v, ®@v and g = v; ® v. In case {vy, vy, v} are independent, there
exists a basis {e1,...,e,} of V such that f = e; ©® e3 and g = e; ® e3. In case {vy, v, v}
are dependent, there exists a basis of V' such that §* is generated by e; © e; and e; ® es.
Consequently, in these cases, we have s; =n—i+1for1 <i<n—-2,s,,=1and
s, = 0. O

In [C2], E.Cartan, in fact, first classified involutive subspaces § C S*(V*) when dim V' =
3 and immediately wrote the Structure Equation for each involutive system in this case.

However we cannot pursue this line in general by the following facts. By counting the
dimensions, we see that the dimension of Gr(S?(V*), r) exceeds the dimension of GL(V)
for n 2 4 and r, s 2 2, where r + s = dim Gr(S?(V*), ). Hence we will have a functional
moduli if we try to classify r dimensional subspaces f in S?(V*) for n = 4 and r,s = 2.
We suspect this phenomena even if we assume the involutiveness of f.

Thus we need other guide lines to proceed. In this paper, after preparing the structure
theory for submanifolds in L(J) in §4, we will utilize Parabolic Geometries to find good
classes of second order equations in §5 and §6.

3.4. Typical Symbols. We exhibit here typical examples of involutive symbols in S?(V*),
which are the only invariants of the correspondig involutive systems of second order, which
were found in [Y4]. Namely we describe here the involutive subspaces f!(r), {(r) and f3(r)
of S%(V*) which have the following property: Let R be an involutive systems of second
order, which is regular of type f, i.e., R satisfies the condition (C') such that the symbol
f(v) at each point v € R is isomorphic to f C S*(V*), where { is one of §!(r), §*(r) or
§3(r). Then, as in the case of the system of first order partial differential equations of
one dependent variable, R can be transformed to the model linear equation by a contact
transformation(cf. [Y4]).

1) fir)cS* (V) 2=2r=n-2) V=V.aV
(f () ={e@eallSisrr+lsasn}) =V, @5V,
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When f = f'(r) (see [Y4] §2), there exists a canonical coordinate system (z;, z, pi, pij)
(1=<4<j<n)of L(J) such that

828; —0 (1<i<rr+1<a<n))h
(2) f(r)cS*(V*) (rz2)
PN ={a@e|1Sisj<r}) =5V,

When § = f2(r) (see [Y4] §3), there exists a canonical coordinate system (z;, 2, pi, pi;)
(1 <4< j<n)of L(J) such that

(3) Fi(r)cS* (V) (r=n-2)

R={

J

0 (1<q

A
A

r)}.

P ={e@ellsisrlsasn}) =V, @5V,
When f = §2(r) (see [Y4] §4), there exists a canonical coordinate system (z;, z, pi, pij)
(1=<i<j<n)of L(J) such that
02z
R = =0 (1
{ 0x,;0x, (
Here {ey,...,e,} isabasis of V, V. = ({e1,...,¢e.}) and Vi = ({e,q1,...,€en}) -
We need Reduction Theorems to explain why second order equations with these symbols
have the property that their symbols are the only invariants under contact transforma-
tions. We will explain this fact for the type f3(r) in §6.1 by utilizing the First Reduction

Theorem in §4. The other cases will be explained by utilizing the two step reduction
procedure in Part II.

4. PD MANIFOLDS OF SECOND ORDER.

We will here formulate the submanifold theory for (L(J), E) as the geometry of PD
manifolds of second order ([Y1]) and discuss the First Reduction Theorem.

4.1. Realization Theorem. Let R be a submanifold of L(J) satisfying the following
condition:
(R.O) p:R— J;submersion,

where p = 7 |g and 7 : L(J) — J is the projection. Let D' and D? be differential systems
on R obtained by restricting C* = OF and C? = E to R. Moreover we denote by the same
symbols those 1-forms obtained by restricting the defining 1-forms {w, @y, - , @, } of the
canonical system F to R. Then it follows from (R.0) that these 1-forms are independent
at each point on R and that

D' = {w =0}, DP={w=w = =w, =0}
In fact (R; D', D?) further satisfies the following conditions:
(R.1) D' and D? are differential systems of codimension 1 and n + 1 respectively.
(R2) 9D cC D
(R.3) Ch(D") is a subbundle of D* of codimension n.
(R.4) Ch (D" (v)NCh(D?*)(v)={0} ateachv € R.

12



Here (R.2) follows from dew = 0 ( mod @, @, ...,@,). (R.3) follows from Ch(D') =
Kerp, ={dz =dxy =--- =dx, =dp, = --- = dp, = 0}. Moreover the last condition
follows easily from the Realization Lemma below.

Conversely these four conditions characterize submanifolds in L(.J) satisfying (R.0). To

see this , we first recall the following Realization Lemma, which characterize subman-
ifolds of (J(M,n),C).

Realization Lemma. Let R and M be manifolds. Assume that the quadruple (R, D, p, M)
satisfies the following conditions :

(1) p is a map of R into M of constant rank.

(2) D is a differential system on R such that F = Ker p, is a subbundle of D of
codimension n.

Then there exists a unique map ¥ of R into J(M,n) satisfying p = 7+ and D = ¢ *(C),
where C' is the canonical differential system on J(M,n) and = : J(M,n) — M is the
projection. Furthermore, let v be any point of R. Then 1 is in fact defined by

»(v) = p.(D(v)) as a point of Gr (Tyw)(M)),
and satisfies
Ker (¢.), = F(v) N Ch(D)(v).
where Ch (D) is the Cauchy Characteristic System of D.
For the proof, see Lemma 1.5 [Y1].

In view of this Lemma, we call the triplet (R; D', D?) of a manifold and two differential
systems on it a PD manifold of secomd order if these satisfy the above four conditions
(R.1) to (R.4). Here we note, by (R.2), subbundles D? D' and T'(R) define a filtration on
R. Hence we can form the symbol algebra s(v) = s_3(v) & s_9(v) D s_1(v) of (R; D, D?)
at v € R as in §3.1.

We have the (local) Realization Theorem for PD manifolds as follows: From conditions
(R.1) and (R.3), it follows that the codimension of the foliation defined by the completely
integrable system Ch (D?') is 2n + 1. Assume that R is regular with respect to Ch (D),
i.e., the space J = R/Ch (D") of leaves of this foliation is a manifold of dimension 2n + 1
such that each fibre of the projection p : R — J = R/Ch (D"') is connected and p is a
submersion. Then D! drops down to .J. Namely there exists a differential system C on J
of codimension 1 such that D' = p;1(C). From Ch (C) = {0}, (J,C) becomes a contact
manifold of dimension 2n + 1. Conditions (R.1) and (R.2) guarantees that the image of
the following map ¢ is a legendrian subspace of (J, C):

Uv) =pu(D*(v)) € Clu),  u=p(v).

Finally the condition (R.4) shows that ¢ : R — L(J) is an immersion by Realization
Lemma for (R, D? p, J). Furthermore we have (Corollary 5.4 [Y1])

Theorem 4.1. Let (R; D', D?) and (R; D', D?) be PD manifolds of second order. As-
sume that R and R are reqular with respect to Ch(D') and Ch (D) respectively. Let (.J,C)
and (J,C) be the associated contact manifolds. Then an isomorphism ® : (R; D', D?) —
(]%; D1, D2) induces a contact diffeomorphism ¢ : (J,C) — (j, C’) such that the following
commutes;

13



R —— L(J)

e

R — L(J).

Proof. Since ® is an isomorphism of (R, D', D?) onto (R, D', D?), we have ®,(D') = D'.
Hence we get ®,(Ch (D)) = Ch (D?'). Therefore, since Ch (D') = Ker p, and each fibre
of p: R — J is connected, ® is fibre-preseving and induces a unique diffeomorphism ¢ of
J onto J such that p- ® = - p. By D! = (p,)"*(C) and D* = (p,)"1(C), ¢ is a contact
diffeomorphism of J onto j, Put 7 = (¢.)~' -7+ ®. Then it is easy to see that z is a map

of R into L(J) satisfying 7 -7 = p and D? = (z,)"*(C?). Therefore by the uniqueness of
the cannonical immersion ¢ of R into L(J), we obtain ¢ =z, i.e., i - ® = ¢, - 1. 0

By this theorem, the submanifold theory for (L(J), F') is reformulated as the geometry
of PD manifolds of second order.

4.2. First Reduction Theorem. When D' = 9D? holds for a PD manifold (R; D', D?)
of second order, the geometry of (R; D', D?) reduces to that of (R, D?) and the Tanaka
theory is directly applicable to this case. We will treat this case as Parabolic Geometries
associated with PD manifolds of second order in §5. Concerning about this situation, we
will show the following proposition under the compatibility condition (C') :

)y pM:RMY — R is onto.
where R( is the first prolongation of (R; D', D?).i.e.,
RW = {n-dim. integral elements of (R, D?), transversal to F' = Kerp,} C J(R,n),

(cf. Proposition 5.11 [Y1]).
Proposition 4.1. Let (R; D', D?) be a PD manifold of second order satisfying the con-
dition (C) above. Then the following equality holds at each point v of R:

dim D'(v) — dim 0D?*(v) = dim Ch(D?)(v).
In particular D' = dD? holds if and only if Ch(D?) = {0}.
Proof. By the conditon (C), there exists an n-dimensional integral element V' of (R, D?)
at v such that

D*(v) =s_1(v) =V @ §(v).

In terms of the symbol algebra s(v) = s_3(v) @ s5_2(v) & s_1(v), we have

Ch(D?)(v) ={X € 5_1(v) | [X,5-4(v)] = 0}
For a vector X = wx + fx € Ch(D?)(v), where wy € V and fx € f(
fx = 0, that is, Ch (D?)(v) C V C s_1(v). We put C(v) = Ch(D?
have

v), [X, V] =0 forces
)(v) € V. Then we
C)y={weV]|w|f=0 forall fef(v)}CV.

Thus C(v) = F is the largest subspace of V such that f(v) C S?(Et). On the other
hand, let us consider the derived system 9D? in terms of the symbol algebra s(v). From

(51(0), 5-1(0)] = [V, ()], putting D(v) = m(@D2(v)), we have
D(v)={z]f|z€V,f€f(v)} C V",

under the identification s_5(v) = V*, where 7y : D'(v) — 5_5(v) is the projection. Thus

w belongs to the annihilator of D(v) iff (w, z| f) =0 for all z € V and all f € f(v), hence
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iff w|f =0 for all f € f(v). This implies D(v) = (C(v))*, which completes the proof of
Proposition. U

When a PD manifold (R; D!, D?) admits a non-trivial Cauchy characteristics, i.e.,when
rank Ch (D?)> 0, the geometry of (R; D', D?) is further reducible to the geometry of
a single differential system. Here we will be concerned with the local equivalence of
(R; D', D?), hence we may assume that R is regular with respect to Ch (D?), i.e., the leaf
space X = R/Ch (D?) is a manifold such that the projection p : R — X is a submersion
and there exists a differential system D on X satisfying D? = p;'(D). Then the local
equivalence of (R; D', D?) is further reducible to that of (X, D) as in the following: We
assume that (R; D', D?) satisfies the condition (C) above and Ch (D?) is a subbundle of
rank r (0 < 7 < n). Then, by Proposition 4.1, 9D? is a subbundle of D' of codimension
T

By the information of the symbol algebra s(v) of (R; D', D?) at v € R, we can find

locally independent 1-forms w, w;,w; (i = 1,...,n) around v such that
D' ={w =0},
D ={w=w = =w,=0}, D’={w=w=--=w, =0}
dw=w ANwy + -+ wy Awp(mod @)
dw; =0 (mod w,w,...,w,) 1=1,...,r
dwe, Z 0 (mod  w,wy,...,w,) a=r+1,...,n
Thus we have
dw = w1 AN Wpg1 + - +wp Ay (mod  w, wy,...,w,)
{dwiEW;"“/\er—i----—l—wf/\wn(mod W, W1, ., W) i=1,...,r

for some 1-foms 7. This shows that the Cartan rank of (X, 9D) (see [BCG3] II §4) equals
tos =n—ratz = p(v) € X, which gives us a necessary condition for a differential system
(X.D) to be obtained from a PD manifold (R; D', D?) as X = R/Ch (D?).

From (X, D), at least locally, we can reconstruct the PD manifold (R; D!, D?) as
follows. First let us consider the collection P(X) of hyperplanes v in each tangent space
T,.(X) at x € X which contains the fibre D(z) of the derived system 9D of D.

P(X)=J P cJ(X,m-1),
zeX
P,={veGr(Ty(X),m—1)|vD0oD(z)} =P(T,(X)/0D(z)) =P",
where m = dim X and r = rank Ch (D?). Moreover DY is the canonical system obtained
by the Grassmaniann construction and D3 is the lift of D. Precisely, D} and D% are
given by
Dx(v) = v, (v) D Dx(v) = v, (D()),
for each v € P(X) and = = v(v), where v : P(X) — X is the projection. Then we have
a map £ of R into P(X) given by
K(v) = pu(D'(v)) C To(X),
for each v € R and = = p(v). By Realization Lemma for (R, D', p, X), k is a map of
constant rank such that

Ker s, = Ch(D")NKerp, = Ch(D')nCh(D?) = {0}.
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Thus « is an immersion and, by a dimension count, in fact, a local diffeomorphism of R
into P(X) such that

k(DY) = D} and ky(D?) = D%.

Namely x : (R,D', D?) — (P(X),D%,D%) is a local isomorphism of PD manifolds
of second order. Thus (R; D', D?) is reconstructed from (X, D), at least locally, as a
part of (P(X); D%, D%). (Precisely, in general, (P(X), D%, D%) becomes a PD manifold
on an open subset. See Proposition 4.2.) By the construction of (P(X); D}, D%), an
isomorphism of (X, D) naturally lifts to an isomorphism of (P(X); D}, D%).

Summarizing the above consideration, we obtain the following First Reduction Theorem
for PD manifolds admitting non-trivial Cauchy characteristics.

Theorem 4.2. Let (R, D', D?) and (R; D', D?) be PD manifolds satisfying the condition
(C) such that Ch(D?) and Ch(D?) are subbundles of rank r (0 < r < n). Assume that
R and R are regular with respect to Ch(D?) and Ch(D?) respectively. Let (X, D) and
(X, D) be the leaf spaces, where X = R/Ch(D?) and X = R/Ch(D?). Let us fir points
vo € R and 9, € R and put z, = p(vy) and T, = p(0,). Then a local isomorphism
¢ . (R;D',D?) — (R;D",D?) such that 1(v,) = ¥, induces a local isomorphism ¢
(X, D) — (X, D) such that o(x,) = &, and . (r(x,)) = i(&,), and vice versa.
4.3. Construction of (R(X); D%, D%). Now we will characterize differential systems
(X, D), which are obtained by the First Reduction Theorem from P D maifolds (R; D', D?)
as X = R/Ch(D?). We already saw that the necessary condition for (X, D) is that 0D
is of Cartan rank s = n —r. We will show that this condition is also sufficient .

Let (X, D) be a differential system satisfying the following conditions;

(X.1) D is a differential system of codimension n + 1 such that Ch(D) is trivial.

(X.2) 0D 1is a differential system of codimension r + 1.

(X.3) 0D is of Cartan rank s =n —r.

Under the conditions (X.1) and (X.2), Cartan rank of 0D is less than or equal to s (see
the proof of Propositon 4.2 below). Thus (X.3) is a nondegeneracy condition for (X, D).

We form the weak symbol algebra t(z) of (X, D) at x € X as follows:Put t_3(z) =
T.(X)/0D(x), t_o(x) = 0D(x)/D(x) and t_1(x) = D(x). The subbundles D, 0D and
T(X) give a filtration on X. Hence as in the symbol algebra of PD manifolds, we can
introduce the Lie brackets in

t(r) = t3(z) © to(a) ® ta(2),

so that t(z) becomes a graded Lie algebra.

Now let us consider the collection P(X) of hyperplanes v in each tangent space T, (X)
at x € X which contains the fibre 9D (x) of the derived system 9D of D.

P(X)=J P cJX,m-1),
reX
P,={veGr(T(X),m—1)|vD0oD(z)} =P(T,(X)/0D(x)) = P",
where m = dim X and r + 1 = codim dD. Moreover DY is the canonical system obtained
by the Grassmaniann construction and D% is the lift of D. In fact, D% and D% are given
by
Dx(v) = v, (v) O Dx(v) = v (D()),

16



for each v € P(X) and x = v(v), where v : P(X) — X is the projection. For a point
v € P(X), we define the symbol subspace f(v) of D(z) by

J(v) = {X € ta(2) | [X, ta(2)] C 0},

where x = v(v) € X, 0 = p_3(v) C t_3(z) and p_3 : T,(X) — t_3 = T,(X)/0D(x) is the
projection. We put

R(X) = {v € P(X) | codim f(v) = s}
(R(X) is an open subset of P(X) under the condition (X.3). See below). We denote the

restrictions of differential systems D} and D% of P(X) to R(X) by the same symbols.
Then we have

Proposition 4.2. (R(X), D, D%) is a PD manifold of second order.

Proof. By (X.1) and the construction of P(X), it follows that D} and D% are differential
systems on P(X) of codimension 1 and n + 1 respectively. Moreover 9D% C D% holds on
P(X) by construction. Since P(X) is a submanifold of J(X,m — 1), Realization Lemma
for (P(X); D%, v, X) implies
Kerz, = Kerv, N Ch (DY) = Ch (Dx) N Ch (D%) = {0},

where ¢ : P(X) — J(X,m — 1) is the inclusion. Thus it remains to show that R(X) is
an open subset of P(X) under the condition (X.3) and Ch (DY) is a subbundle of D% of
codimension n on R(X).

For this purpose, let us take a point v, € P(X). We can find locally independent
1-forms wy, ..., @, T, ..., Ts on a neighborhood U of x, = v(v,) € X such that

0D ={wy = -+ =w, =0}, D={wy=-=w,=m =---=ms =0}
Here we may assume that v, = {wy = 0} C T}, (X). Then we have
dw; =0 (mod wy,..., @, T1,...,Ts) for 1=0,...,r
Hence there exist 1-forms 3 such that
dw; = B A+ -+ 35 A, (mod wy,...,w,) for i=0,...,r.

Thus the Cartan rank of 9D is less than or equal to s.
Now let us consider
w = 1w+ Mwi+ -+ N\,
on U. Namely we consider a point v € P(X) such that v = {w = 0} C T,(X), where
x =v(v) € U. Here (\,...,\,) constitutes an inhomogeneous coordinate of the fibres of
v: P(X) — X. Denoting the pullback on P(X) of 1-forms on X by the same symbol, we
have
DY = {w =0},
and
dw = dwo + Y Ndw; + > d\i A w;.

i=1 i=1
on v 1 (U). From dw; = >, B Ao + Z;Zlﬁ Aw; (mod w)fori=0,...,r, we
calculate

dw = Z(ﬁg‘ + Z N3 AN o + Z(d)\i + 9+ Z/\ﬂ;-) ANw; (mod w).
i=1 i=1 j=1

a=1
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For a vector Y € 0D(x), we have
Y|dw = — iwa(Y)(ﬁg + i \i3Y) (mod @, ..., W, T1,...,Ts).
a=1 i=1
By the definition of brackets in the weak symbol algebra t(z), it follows that
f(v) = {X € D(x) | (85 + i)\zﬁf)(X) =0 for a=1,...,s}.
i=1

Hence we see that codim f(v) = s if and only if {85 4+ S°7_, \i82}5_, are independent
(mod wy,...,w,m,...,7s)at x € X. Thus R(X) is a non-empty open subset of P(X)
under the condition (X.3). Moreover we have , at each v € R(X),

Ch(DY)(v) ={m=ma =0+ > NB =mi=d\+7+ > M1i=0
i=1 j=1
(t=1,...,r, a=1,...,5) }.
Therefore Ch (DY) is a subbundle of D% of codimension n on R(X), which completes the
proof of Proposition. O

4.4. Symbol Subspaces. We will consider the relation between the symbol subspaces
f(v) = Ch(D%)(v) and f(v) € D(x) for a point v € R(X) and z = v(v) € X.
First observe that there exists an integral element V of (R(X), D%) at v such that
s-1(v) =V & f(v)(= Dx(v)),
if and only if there exists an integral element W of (X, D) at x such that
t1(z) = W @ f(v)(= D(x))
In fact W = v, (V) and V = v (W), where v, : D%(v) — D(z) is onto, Kerv, =
Ch (D%)(v) and v, : f(v) — f(v) is a linear isomorphism.
Put t_3(v) = t_s(x)/0, and let us consider

t(v) =t 3(v) @ ta(z) @ty (2).

t(v) is a quotient algebra of t(z) and f(v) = {X € t_y(z) | [X,t_s(z)] = 0} in {(v). Let
us fix a basis of t_3(v). Then, as in the proof of Proposition 4.2, the basis of s_s(v) is
fixed. Hence we have s_3(v) 2 R, s5_5(v) = V* and f(v) C S?*(V*). Moreover we have
t 3(v) 2R, t_o(x) = W* and the map p : f(v) — S?(W*) is defined by

p(f)(wr,ws) = [[f,wi],wo] € R = Hg(v)  for [ € f(v).

Here we note that there exists a unique f € f(v) such that f = v,(f) and we obtain, by
f(v) C S?2(E*) and the definition of the brackets of s(v) and t(v),

[f’ Ul] = I{*(UN" wl]) - V*v

where wy = k(vy), K : W* - V* k =v, : V — W and Kerx = E, s*(W*) = E+.
Moreover we have

[[fsv1], 0] = H]Z, wi], wo] for wy = K(vy).
Namely g is injective and s3(f(v)) = f(v) € S*(E+) C S*(V*) where £} : S2(W*) —
S%(V*) is induced from x* : W* — V*.
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Next we consider the algebraic prolongation §(v)™) C S3(V*) of f(v) C S2(V*),
f)V = fv) @ VN $HV).
Then, since f(v) C S?(E*), we observe f(v)M) € S*(E+). Therefore, for the prolongation
f(0)D = f(v) @ W* N S3(W*) of f(v) € S2(W*), we get
m3(f(0)D) = f(0)V € S*(EY).
where 3 @ S}(W*) — S3(V*) is induced from k* : W* — V*. Repeatedly we obtain
Ko (F(0)®) = §(v)® C S*2(E*) for the higher prolongations.
Moreover, from f(v) C S*(E*), we also observe that, for a regular basis {wy, ..., w,}

of W for §(v) C S%(W*), we obtain the regular basis {vy, ..., Vs, Vss1,...,vn} of V for
f(v) € S*(V*) by taking v; € V such that x(v;) = w; (i = 1,...,s) and adding a basis

{Vss1,-..,0,} of E =Kerk. In fact, in this case, we have
k5(Fe) =f, for k=1,...,s and ff=0 for k=s,...,n.
where f = {f € j(v) [wi]f =+ = wi|f =0} and fr = {f € f(v) |v1|f =+ = 0] f =

0}.

Summarizing the above discussion, we obtain

Proposition 4.3. Notations being as above:
(1) §(v) € SA(V*) is inwolutive if and only if §(v) C S2W*) is involutive.
(2) §(v) C S2(V*) is of finite type if and only if f(v) C S2(W*) is of finite type.

5. PARABOLIC GEOMETRIES ASSOCIATED WITH PD MANIFOLDS OF SECOND ORDER.

We will here exhibit Parabolic Geometries which directly correspond to the geometry
of PD manifolds of second order, following [Y5] and [YY2].

5.1. Differential Systems associated with Simple Graded Lie Algebras (Para-
bolic Geometries). We first recall basic materials for simple graded Lie algebras over
C and state the Prolongation Theorem. We will work mainly over C in this section for
the sake of simplicity.

Let g be a finite dimensional simple Lie algebra over C. Let us fix a Cartan subalgebra
b of g and choose a simple root system A = {ay, ..., a,} of the root system ® of g relative
to h. Then every a € ® is an (all non-negative or all non-positive) integer coefficient linear
combination of elements of A and we have the root space decomposition of g;

g= @ga@h@ @g—aa
acedt acdt

where g, = {X € g | [h, X] = a(h)X for h € b} is (1-dimensional) root space (corre-
sponding to o € @) and @1 denotes the set of positive roots.

Now let us take a nonempty subset A; of A. Then A; defines the partition of ®* as
in the following and induces the gradation of g = ®p€Z gp as follows:

¢
DT = U, P, oy ={a= Zniozi | Z n; = p},
i=1

Ozl'EAl

=Pt so=EPorobtePoa. 9,= P

acdy acd? acdf acdy
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8p: 84 C Gptq for p,q € Z.
Moreover the negative part m = @p <o 9p satisfies the following generating condition :

gp = [@p+1,0-1] for p<—1
We denote the simple graded Lie algebra g = @Z:w g, obtained from A; in this manner

by (X, A1), when g is a simple Lie algebra of type X,. Here X, stands for the Dynkin
diagram of g representing A and A; is a subset of vertices of X,. Moreover we have

p= Y n(0),
Ozl'EAl
where 0 = Zle n;(0) ; is the highest root of ®*.
Conversely we have (Theorem 3.12 [Y5])

Theorem A. Let g = @pEZ g, be a simple graded Lie algebra over C satisfying the
generating condition. Let X, be the Dynkin diagram of g. Then g = @pGZ gp 1S isomor-
phic to a graded Lie algebra (X, Ay) for some Ay C A. Moreover (Xy, A1) and (X,, A})
are isomorphic if and only if there exists a diagram automorphism ¢ of X, such that

¢(A1) = Al

In the real case, we can utilize the Satake diagram of g to describe gradations of g
(Theorem 3.12 [Y5]).

By Theorem A, the classification of the gradation g = @pez g, of g satisfying the
generating condition coincides with that of parabolic subalgebras g’ = @;;20 gp of g.
Accordingly, to each simple graded Lie algebra (X, A), there corresponds a unique R-
space My = G/G’ (compact simply connected homogeneous complex manifold) (see [Y5]
§4.1 for detail). Furthermore, when p = 2, there exists the G-invariant differential system
Dy on Mg, which is induced from g_, and the standard differential system (M (m), Dy,) of
type m becomes an open submanifold of (Mg, Dy). For the Lie algebras of all infinitesimal
automorphisms of (Mg, Dy), hence of (M(m), Dy,), we have the following Prolongation
Theorem (Theorem 5.2 [Y5]).

Prolongation Theorem. Let g= ®pEZ g, be a simple graded Lie algebra over C sat-
isfying the generating condition. Then g = @pGZ g, s the prolongation of m = @p<0 9y
except for the following three cases.

(1) g=9-1D g0 D g1 is of depth 1.

(2) g= EB]QD:_Z g, is a contact gradation.

(3) g= @pez g, is isomorphic to (Ag,{a1,;}) (1 <i <) or (Cp, {aq,a}).

Furthermore g = €D,z 8p is the prolongation of (m,go) except when g = €D, 9p is

isomorphic to (Ag,{a1}) or (Cp,{an}).

Here R-spaces corresponding to the above exceptions (1), (2) and (3) are as follows:
(1) correspond to compact irreducible hermitian symmetric spaces. (2) correspond to
contact manifolds of Boothby type (Standard contact manifolds), which exist uniquely
for each simple Lie algebra other than sl (2, C)(see §5.2 below). In case of (3), (J(P*, ), C)
corresponds to (A, {a1, a;}) and (L(P*71), E) corresponds to (Cy, {ay, ar}) (1 < i < £),
where P! denotes the /-dimensional complex projective space and P*~! is the Standard
contact manifold of type Cy corresponding to (Cy,{a;}). Here we note that R-spaces
corresponding to (2) and (3) are all Jet spaces of the first or second order.
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For the real version of this theorem, we refer the reader to Theorem 5.3 [Y5].

Now the Parabolic Geometry is a geometry modeled after the homogeneous space
G/G’, where G is a (semi-)simple Lie group and G’ is a parabolic subgroup of G (cf. [Bai]).
Precisely, in this paper, we mean, by a Parabolic Geometry, the Geometry associated
with the Simple Graded Lie Algebra in the sense of N.Tanaka ([T4]).

In fact, let g = ®p€Z g, be a simple graded Lie algebra over R satisfying the generating

condition. Let M be a manifold with a Gi-structure of type m in the sense of [T4]
(for the precise definition, see §2 of [T4]). In [T4], under the assumption that g is the
prolongation of (m, go), N. Tanaka constructed the Normal Cartan Connection (P, w)
of Type g over M, which settles the equivalence problem for the Gg—structure of type
m in the following sense: Let M and M be two manifolds with Gg—structures of type m.
Let (P,w) and (P,&) be the normal connections of type g over M and M respectively.
Then a diffeomorphism ¢ of M onto M preserving the Gg—structures lifts uniquely to an
isomorphism ¢* of (P,w) onto (P,&) and vice versa ([T4], Theorem 2.7).

Here we note that, if g is the prolongation of m, a Gg—structure on M is nothing but
a regular differential system of type m (see [T4, §2.2]). Thus a Parabolic Geometry
modeled after G/G’ is the geometry of PD manifold of second order with the symbol
algebras =5 3ds oD s_q, if g is the prolongation of m and m is isomorphic to s.

Hence, among simple graded Lie algebras g = sz L0 = (X¢, Aq), we will seek those
algebras such that m = @p <o 8p 1s isomorphic to the symbol algebra of PD manifolds
of second order. Thus a necessary condition for this is ¢ = 3 and dimg_5 = 1. Then,
by the above construction of (X;, A1), g3 should be the highest root space. This forces
Ay C Ay where (X, Ayg) is the (standard) contact gradation of g (see §5.2 below). These
two conditions confine the possibility of (X,, Ay). In fact, a simple graded Lie algebra
(X¢, A1), which satisfies both = 3 and Ay C A, is one of the following: (Ay, {1, @i, au})
(1 <is [HTl])’ (Bf> {ala a2})7 (Cf> {ala af})’ (va {Qh O'/Q})v (va {O“/Q’ af})v (Eﬁv {ah aQ})
and (E7,{a1,ar}) up to conjugacy.

In fact, as we will see in §5.3 and §5.4, these simple graded Lie algebras (X, A;)
represent the Parabolic Geometries of PD manifolds of second order (of finite type),
except for (Cp,{a1,ar}), which is one of the exception in Prolongation Theorem and
represents the Parabolic Geometry of third order equations of finite type (cf. [YY2] §3
Case (4)).

Furthermore, in §6.2 and §6.3, by utilizing the First Reduction Theorem, we will see
more examples of Parabolic Geometry, which is associated with the geometry of (X, D)
in §4.3.

5.2. Standard Contact Manifolds. Each simple Lie algebra g over C has the highest
root 0. Let Ay denote the subset of A consisting of all vertices which are connected to —6
in the Extended Dynkin diagram of X, (¢ = 2). This subset Ay of A, by the construction
in §5.1, defines a gradation (or a partition of ®*), which distinguishes the highest root
0. Then, this gradation (X, Ay) turns out to be a contact gradation, which is unique
up to conjugacy (Theorem 4.1 [Y5]). Explicitly we have Ay = {ay, oy} for A, type and
Ay = {ap} for other types. Here ay = o, vy, for By, Cy, Dy types respectively and
g = ai, aq, g, o, ag for Eg, E7. Eg, Fy, G5 types respectively.

Moreover we have the adjoint (or equivalently coadjoint) representation, which has 6
as the highest weight. The R-space J; corresponding to (X;, Ag) can be obtained as the
projectiviation of the (co-)adjoint orbit of G passing through the root vector of 6. By
this construction, J; has the natural contact structure Cy induced from the symplectic
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structure as the coadjoint orbit, which corresponds to the contact gradation (X, Ag) (cf.
[Y5], §4). Standard contact manifolds (J4, Cy) were first found by Boothby ([Bo]) as
compact simply connected homogeneous complex contact manifolds.

For the explicit description of the standard contact manifolds of the classical type, we
refer the reader to §4.3 [Y5].

In §5.3 and §5.4, the model equation (Rg,Dg) can be realized as a R-space orbit in
L(Jy).

Extended Dynkin Diagrams with the coefficient of Highest Root (cf. [Bu])

—0 -0
~ 2 2 2
1 1 7 1 1 O —O:>O
....... a2 Qp—1 Oy
a1 Qa2 Qyp_1 Oy a1
Ay (0>1) B, (£ >2)
—0
2 2 1 2 2 v
O—0—+++" —0&—0 ] 0 15 1
—6 (e%1 Qy_1 Oy a2 Qo2
a1 ay
C (0> 1) Dy (£ > 3)

a]  as a4 as Qg O—O0—0—0—=O0
-0 o1 az a3 a4
OzQL
E
6 F4
—0
2 3 4 3 2 1 3 2
c&0—oO0
-0 a1 a3z ay a5 ag  Qr a1 as —0
a2
E7 G2

5.3. Classical Type Examples. We will describe here the symbol algebra m = @p <0 9p
of each (X, A1) of the classical type and give the model equations of second order. We
refer the reader to §3 of [YY2] for the detailed description of the symbol algebras in
matrices form. In this and next subsections, we will discuss in the complex analytic or
the real C* category depending on whether K = C or R.

(1) Case of (As,{a1,aip1,a0}) (1 <i+1= [“71])

We have the following matrix representation of (As, {1, air1, ap}):

sSlU+1,K)=9g 3Bg2Pg 1D gD g1 Dg2®gs.
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where the gradation is given by subdividing matrices as follows;

(

0000
0000 N
8-5=9 o 0 0 0 cek =K
[ \@ 00 0
(/0 0 00
_ 0 0 00 ; i
9—2 — _52 O 0 0 51 S K 52 € K )
L\ 0 %G 00
9_1:V@f,
0 0 00
00 00 o
00 00
00 0 0
i i 0 0 0 i j ~ l—1
V= 00 0 0 r1 €K', ax€eK =K ,
0 0 tzy O
b 0 0 0
0 B 0 0 b,cc K, Begl (i,K), C e gl (j,K),
go = 0 0 C 0 b+c+trB+trC =0
00 0 c

Ok :{tX|X€g—k}7(k:17273)7
where ¢ + j = ¢ — 1. Then we have
m=g 38920 (VoFf

0 000 & L1 -1
. . = ,T = e K,
= _“%2 31 8 8 —a+E+i+A . (52) (2)
a 6 ‘'zy 0 acK, Ae M(j,i)

By calculating [€, #] and [[A, ], &], we have
- t
€, 2] = ("€x), [[A, 2], 2] = (—2'z2 A1), 2wy Axy = (txl’tajZ) (1(31 51) (xl)
)

Thus we have g o X V* and f= ({e; @ e (1S k< ii+1Zasl—1)}) C S3(V*) for

a basis {e1,...,e,_1} of V. This implies that the model equation of the second order is
given by
%z 0z
= =0 for 1Sk 150 di+1Za,650-1,
Ox0x;  O0re0xp or t= =i and i+15a,6%
where z is dependent variable and x4, ..., x,_; are independent variables.

(2) Case of (B, {an, as}) (£23), (Dy, {ar, an}) (£ = 4).
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Similarly in this case, we have dimf =1 and f = ({ef©@¢] +---+ e @€} }) for a basis

{e1,...,e,} of V. Thus we have the following model equation of the second order:
0%z 02z
— =0y for 1=<p,q<n,
Ox,0r, 021 ==
where z is dependent variable and z1,...,z, are independent variables. This equation

is the embedding equation as a hypersurface for the quadric Q™. For the explicit matrix
description of the gradation, we refer the reader to Case (5) in §3 of [YY2].

(3) Case of (Dy, {az, ap}) (€ 2 4).
Similarly in this case, we have dimf = (¢ — 1)(¢ — 2) and

{—1
F={{D amley)” @ ()" | A= (ap) € 0(£ = 1)})

p,q=1
for a basis {e},...,e; ,,e%, ...,e7 ,} of V. Thus we have the following model equation of
the second order:
0?2 02z
Oxidry  Oxi0xy
where z is dependent variable and zi,...,z; ;,23,...,27 , are independent variables.

This equation is the Pliicker embedding equation for the Grassman manifold Gr(¢ + 1, 2)
(see [SYY] §3). For the explicit matrix description of the gradation, we refer the reader
to Case (10) in §3 of [YY2].

5.4. Exceptional Type Examples. We here only describe the model equation (R, Dg)
of second order in the form of the standard differential system of type m. We refer the
reader to §4 of [YY2] for the detailed description of the symbol algebras by the use of the
Chevalley basis of g.
(1) Case of (Eg, {1, as}).
The symbol algebram =g 3@ g o @ g1 is described as follows:
932K, g2V g =Vaof, fcS* V") and dimV =10, dimf=>5.

Here the standard differential system (M (m), Dy,) of type m in this case is given by

Dpn={w=w=wy=-=wy;p=0},
where
w = dz — pidzy — - - - — prodao,
@1 = dp1 + gsdxs + qadxg + g3dg, @y = dpa — gsdxs — qudr7 + g2dx10,
w3 = dps + qsdxs + qudre + q1dyo, @y = dpy + gsdxs — gsdrr — qado,
w5 = dps — qsdrs + q3dre — q1dT, we = dps + qadx3 + qzdrs + gadus,
wr = dp7 — qadxs — qzdzy + qrdus, wg = dpg + qsdxy + qadre + qrdy,
wy = dpy + qudxy — qedxy — q1dxs w10 = dpio + q3dxy + qedrs + qrdrs.
Here (xq,...,T10,2,P1,---,P10, 1, - - »q5) iS a coordinate system of M (m) = K.

(2) Case of (E;, {ay,ar}).
The symbol algebram =g 3@ g o @ g1 is described as follows:

032K, g2V gu=Vaf §fcS (V) and dimV =16, dimf= 10.
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Here the standard differential system (M (m), Dy,) of type m in this case is given by

Dpn={w=w1=ws=-=wis =0},
where
w=dz—p1dry — -+ — p1edTys,
@1 = dp1 + qrodr11 + qodx12 + gsdr14 + qrdxys + gsdase,
@y = dpy — qrodrg — qodT10 — qsdr13 + qedT15 + qadT 16,
w3 = dps + qrodre + qodrs — q7dx13 — qedT14 + q3dT16,
@y = dps — qrodrs — qodx7 — qsdr13 — qudr14 — g3dys,
w5 = dps — qrodry + gsdrs + grdr1o + gedr12 + G2dT 16,
we = dps + qrodrz — qzdry + qsdT10 + qadT12 — G2dTys5,
w7 = dpy — qodxy — qsdre — qrdxe — gedr11 + q1dT 16,
ws = dps + qodxs + gsdrs — ¢sdrg — Qudr1n — q1dxss,
@y = dpyg — qrodxs — qrdx7 — q5dxg + q3dr12 + G2dT14,
@10 = dpio — GodTs + grdzs + qsdre — q3dry + q1dTg,
w11 = dp11 + qrodz1 — gedr7 — qadxg — q3dr19 — Godys,
@12 = dp12 + qodx1 + gedxs + qudre + qzdrg — q1d713,
w13 = dp13 — @gdr2 — q7dr3 — qsdry — G2dr11 — q1dT12,
@14 = dp14 + qsdry — gedrz — qadry + G2dTy + q1dT10,
w15 = dp1s + qrdx + gedze — qzdry — g2dre — qrdus,
w16 = dp1s + ¢sdr1 + qudxs + q3dxs + qadzs + qrdxy.
Here (x1,...,%16,2,P1, - -, P16, 41, - - -, Q10) is a coordinate system of M (m) = K3,

The model linear equations in §5.3 (2), (3) and §5.4 (1) and (2) appeared as the embed-
ding equations of the corresponding symmetric spaces into the projective spaces in [SYY]
and [HY] (see [SYY] §1). Except for §5.3 (2), these equations have rigidity properties. As
is pointed out in §5 of [YY2], by the vanishing of the second cohomology (cf. Theorem 2.7
and 2.9 [T4], Proposition 5.5 [Y5]), we observe that Parabolic Geometries associated with
(Dy,{az, ar}), (Eg, {1, a0}) and (E7, {1, a7}) have no local invariant. Thus the model
second order equations of these cases is solely characterized by their symbols § C S?(V*)
under the condition (C'), as in the case of Typical involutive symbols in §2.4.

6. EXAMPLES OF FIRST REDUCTION THEOREM.

Utilizing the First Reduction Theorem, we will discuss the Typical class of type f3(r)
and exhibit several examples of PD manifolds of second order given through Parabolic
Geometries on (X.D).

6.1. Typical Class of Type §3(r). Let (R; D', D?) be a PD manifold of second order
satisfying the condition (C), which is regular of type f(r) (r £ n—2). Namely (R; D!, D?)
is a PD manifold of second order such that symbol algebra s(v) at each point v € R is
isomorphic to s =s_ 3@ 5_9 B s_1 where

s3=R, s,=V" and s5.,=VaP(Qr).
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Then, by Lemma 1.2 [Y4], there exists a coframe {w, w,, wa, Tap(l £ a < n,r+1 =
a,3 < n)} on a neighborhood U of each point v € R such that D' = {@ = 0}, D? =
{w =w; =+ =w, =0} and that the following equalities hold:

dow =wi Nwy + - +w, A\ @y, (mod w),

dw; = 0 (mod  w,wy,...,w,),

dw, = Wi ATars1 + -+ Wy ATan (mod @, w1, ..., w@,).

forl<i<randr+1=< a<nand T, = Tg,. Thus we see that Ch (D?) is a subbundle
of D? of rankr. A coframe {@, @,, w,, Tap(l1 Sa < n,r+1 =<, S n)} on U satisfying
D'={w =0} and D* = {w =@, = --- = w, = 0} is called adapted if it satisfies the
above structure equations. Then we have (Lemma 4.1 [Y4])

Lemma A. Let (R; D', D?) be as above and r < n — 2. Then there exists an adapted
coframe on U such that the following equalities hold:

dw; =0 (mod wy,...,w,) for i=1,...,r.
By this lemma, for 9D? = {w = @ = --- = @, = 0}, we have
do =w,r i AN@py1 + - +wp Ay, (mod w,wy,...,w,),
{dwl-z 0 (mod w,wy,...,w,).
Hence 0°D? = 0P D? = {w, = --- = w, = 0} and B = 9>D? is completely integrable.

Now we assume that R is regular with respect to Ch(D?), i.e., the leaf space X =
R/Ch (D?) is a manifold such that the projection p : R — X is a submersion and
there exists differential system D on X satisfying D? = p;'(D). Then, from the above

information, we see that there exists a coframe {w, @y, ..., @y, Wri1,s .., Wy Tap(r +1 =
a = = n)} on a neighborhood of each € X such that
D={w=wy = =w,=0},0D={w=w; = =w, =0},
’D =09D ={w = =w, =0},

and that

do;= 0 (mod wy,...,w,)

dwo = w1 NWey1 + - +wp A @y, (mod  w,wy,...,w,),

dwy = W1 A Taps1 + -+ W Ao (mod @, w01, ...,w0,).

forl<i<randr+1=a=nand T, =T, Thus B =39?D is completely integrable.
Let py,...,p. be the independent first integral of B around = € X. Then we obtain

D={w=w==w,=dp = =dp, =0},

dw =wr1 ANwpy + - +wp Aw,,  (mod  w,dpy, ..., dp,),
dwaEwr+1/\7rar+l+"'+wn/\7rom (mOd wvwr—l—ly"-aw’mdplu"‘7dp7‘)'

forr+1<a<n.

Namely (X, D) is a parametrized second order contact manifold. Hence, by the
Darboux theorem, we obtain a coordinate system (x4, 2, Di, Pa, Pap) (1 S 4 S ryr+1 =
a, S f < n)around x € X such that (see [Y4] §4.2 and [Y7] §1.4)

D:{’@:@Tdrl:..-:@n:dplz...:dp,r:o}’
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where

w=dz — Z PaldXy, TWa = dp, — Z Dapdzs.
a=r+1 B=r+1
We refer the reader to §4.2 [Y4] for the detail to obtain a canonical coordinate system of
(R; D', D?).
Moreover we observe that (X, D) satisfies three conditions in §4.3,

R(X)={veP(X)|vpd*D)|z=rv{)}

and f(v) = Ch (OD)(x)(2 S2((V,)*)) C D(z) for v € R(X). Thus, by Proposition 4, R is
involutive , because S?((V;)*) is involutive.

6.2. Go-Geometry. Let (X,,Ay) be the (standard) contact gradation. Then we have
Ay = {ap} except for Ay type (see §5.2). As we observed in §6.3 in [Y6], for the exceptional
simple Lie algebras, there exists, without exception, a unique simple root ag next to ay
such that the coefficient of ag in the highest root is 3. We will consider simple graded
Lie algebras (X, {aq}) of depth 3 and will show that regular differential systems of these
types satisfy the conditions (X.1) to (X.3) in §4.3.

Explicitly we will here consider the following simple graded Lie algebras of depth 3:
<G2> {051})7 <F4> {a2}>7 <E67 {044}), (E77 {053}), (E87 {a7})7 (va {alv a3}> (ﬁ = 3)? (Df7 {ala a3}>
(¢ 2 5) and (Dy, {a1, a3, as}). These graded Lie algebras have the common feature with
(Go,{a1}) as follows: In these cases, m = g_3 @ g_o @ g_; satisfies dimg_3 = 2 and
dimg_; = 2dimg_». Moreover, in the description of the gradation in terms of the root
space decomposition in §5.1, we have @5 = {,0 — ay} such that the coefficient of ay in
each § € ®F is 1 and ®] consists of roots § — 3, § — oy — 3 for each 3 € ®F. Hence,
ignoring the bracket product in g_;, we can describe the bracket products of other part
of m, in terms of paring, by

g3 = I/V, g9 = \% and g1 = W ® V*,

where dim W = 2.

Thus let (X, D) be a regular differential system of type m, where m is the negative part
of one of the above graded Lie algebras. Then (X,0D) is a regular differential system
of type ¢!(s,2). Namely, there exists a coframe {wy, @y, T1, ..., Ts, M1, ..., T}, Taye o, TS5}
around xz € X such that

oD = {wl = Wy = O},

and
{dwlzﬂ/\mjL---%—ﬂf/\ﬂs (mod @y, ws9)

doy=my AT+ -+ 75 AT, (mod @y, wy)

Thus (X, D) satisfies the conditions (X.1) to (X.3) in §4.3.

Now, putting w = A\jww; + \yws, we consider a point v € P(X) such that v = {w =
0} C T.(X), where x = v(v). Then, for (A, \2) # (0,0), {\7l + Xoms(i =1,...,s)} are
linearly independent (mod @y, @y, w1, ..., 7). Thus f(v) C D(z) is of codimension s at
each v € P(X) (see the proof of Proposition 3). Hence we obtain R(X) = P(X) in this
case, i.e., R(X) is a P-bundle over X.

In fact, when (X, D) is the model space (Mg, Dy) of type (Xo,{ac}), R(X) can be
identified with the model space (R, Ey) of type (X, {ag, ag}) as follows (here, we un-
derstand a denotes two simple roots oy and ag in case of BD, types and three simple
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roots aq,c3 and oy in case of Dy): Let (Jg, Cy) be the standard contact manifold of type

(X¢,{a}). Then we have the double fibration;

RgL}Jg

Tg

M,

Here (X, {ag, ac}) is a graded Lie algebra of depth 5 and satisfies the following: dimg_5 =
dimg_ 4 =1,dimg_3 = dimg , = s and dimg_; = s+ 1. In fact, comparing with the
gradation of (Xy, {ag}), we have ®F = {0}, &F = {0 — ap}, T = ®F, & consists of
roots 0 — 3 for each 3 € @; and <:D1+ consists of roots ay and 0 — oy — 3 for each 3 € @;
Thus we see that 0¥ E, = (7.)1(Cy), 0P E, = (7,);1(0D,) and OE, = (m,);1(D,). We
put D! = 9B E, and D? = 9E,. Then (Ry; D', D?) is a PD manifold of second order. In
fact, we have an isomorphism of (Rg; D', D?) onto (R(Mg); Dy, D3;,) by the Realization
Lemma for (Ry, D', 7,, My) and an embedding of R, into L(.J;) by the Realization Lemma
for (Ry, D* ., Jy). Thus Ry is identified with a R-space orbit in L(.Jy).

Now we will calculate the symbol of (R(X); D%, D%) by utilizing the model PD mani-
fold (Ry; D', D?) of second order, especially when (X, {ap, ag}) is of BD, types. Let us
describe the gradation of (BDy, {a1,as, az}) or (D4, {aq, ag, g, g }) in matrices form as
follows: First we describe

ok+6)={X gl (k+6K)|'XJ+JX =0},

where

egl(k+6K), I= (5@‘) € gl (k,K).

<

|
—o o oo o3
[ R e I e B e B e B e
cCoR OO OO
cooSN oo o
cCoo0oOoO OO
cCooocOo R~ O
(=N =NoN ool

Here I), € gl (k,K) is the unit matrix and the gradation is given again by subdividing
matrices as follows;

’ y7§0€K

DO OO OO
SO OO o oo

SO Oo O oo
SO OoODOoO O oo
SO OoOD OO oo
SO OO O oo
OO O OO oo
OO O OO oo
OO OO O oo
OO OO O oo
OO O OO oo

coococooo
[c=Td
L
Il
cobhL ocoocoo

[c=d
&
I
o OO o O

|
Iy
o
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00 0 0 000 )
00 0 0 000
00 0 0 000
g5 = 0 0 0 000|]|cekr, geK 3,
0& 0 0 000
00 =& 0 000
00 0 —% 000 )
(/0 00 O 0 00 )
000 O 0 00
z1 00 0 0 00
g0 = 00 0 0 00|=t+d]|2ecKF 5K},
000 0O 0 00
0 00 <2 0 00
L\0 00 0 —z; 00 )
(/0 0 0 0O O 0 O )
e, 00 0 0 0 O
0 20 0 0 0 0 0 20,01 € K,
g1 = 0 0a 0 0 0 O0|l=iy+a1+a ,
0 00 ~ta 0 0 0 a €K
0 00 0 —z 0 0
L\0O 0 0 0 0 —a O )
(/b 00O 0O 0 0 0
0c0O0O 0 0 0
00e 0O 0 0 0
do = 000B 0 0 0]|bcecK, Beo(k)
0000 — 0 0
0000 0 —c 0
L \0 00O 0O 0 0 —b )

g ={'X|Xeg,},l=1,273475),
Then, for X =2 + 21 + Tg and A = a + a; , we calculate
A, X], X] = (2:1tax — artzz) € §s
Thus we obtain
f={2e]@c5 . 2e] @y, @ s+ + ey @efyy) C SH(ET),

where {eg,e1,...,ex41} is a basis of V and E = ({ep}) is the Cauchy characteristic
direction. In case k = 1, f = ({2} ® e}, €5 ® e5}) is an involutive subspace of S?(E").
Hence (Ry; D', D?) is involutive when g = P, ., 9, is of type (B3, {a1, @z, a3}). In case
k > 1, we have

fL: ({e1@e1,e,0e;(22i<jSk+1),
s © €y — €ry1 @ €pt1,...,6L @€ — €x11 @ekJrl}) C 52(W),

where W = ({e1,...,exs1}). Then we see that (V)L contains every e; ® ¢; ® e; for
t = 1,...,k + 1, which implies f{ is of finite type. We can also check that exceptional
cases other than Gy are of finite type by utilizing R-space orbit (R4 D', D?), whereas
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f = S%(W*) is involutive in case of Gy, where dim W = 1. We will discuss these cases in
a uniform way in other occasion.

6.3. Other Examples. We exhibit here two other examples of simple graded Lie algebras
g= @pez g, of depth 3, such that regular differential systems (X, D) of type m satisfy
the conditions (X.1) to (X.3) in §4.3, where m =P, _; 9,
The first example is of type (Cy, {a2, a¢}). Here we have dimg_3 = 3, dimg_» = 2(¢/—2)
1
and dimg_; = 2(¢ — 2) + 5(6 — 2)(¢ —1). Utilizing the calculation in Case (3) of §3 in

[YY?2], we have the following description of the standard differential system (My,, Dy,) of
type m in this case:

Dm:{wozwl:wQZﬂ'i:---:71'{_2:7'('%:---:71’5_2:0}7
where
( ) 0—2
wo=dyo— »_ &Fdag — > &dat,
a=1 a=1
-2 -2
m =dyy -2 &day, wmy=dy -2 &das,
a=1 a=1
-2
n0 = dgS =Y aapdr)  (p=1,2 a=1,...,(-2),
\ p=1

Here we put y12 = Yo, Y11 = Y1, Ya2 = Y2 and aap = agy for 1 < o, < 0 —2 . Let
(X, D) be a regular differential system of type m. Then we have the structure equation
of (X,0D) as follows;

dog=wy At 4+ WS 2AT 2 ol Amg 4+ -+ w2 A2
doy =2 wi A+ -+ 2w 2 Arl? (mod @y, wy, w2)
doy=2wy Ay + - +2wh 2 AT 2

Now, putting w = Aoy + A\ + Aewe, we consider a point v € P(X) such that
v={w =0} C T,(X), where = v(v). Then, from

=2 -2
dw = Z(Aowé’ +2 Mwi) AT+ Z()\owf‘ +2 wd) Ars,  (mod wy, wy, @s),
a=1 a=1

and
(Aows 42 Mw) A (Aws + 2 Aaws) = (4A1 A — A2)w A WS,
we see that (X, D) satifies the condition (X.1) to (X.3) in §4.3 and we obtain
R(X) = {0 € P(X) | 4\ — X2 £0},
where (Ag, A1, A2) is the homogeneous coordinate of the fibre v : P(X) — X.
1 5);} t§he; cgal;:j;clioar:ﬁin: Cazje( 1(?% (;f’ ngirz [_Y;;'Qs](,) gleaglave Ypg = 2 23_52:1 aapryal for
-2

XoYo + Ay1 + Aoy = 2 Z ap(NoaSxh + Maa? + Noxal).
a,B=1
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Hence, from

(-2 (-2
Z (Mo 4+ Masal + Nxgal) Zaaa Xozizy + Mt + dexsxd)
a,B=1 a=1
+ Zaag No(xah + 27 29) + 2 \aal + 2 halah),
a<fB
we have

i(0) = ({ho(e]) @ (¢5)" + M(ef)” @ ()7 + Aa(e§)" @ (e5)" (1 S @ é t—2),
Mo((€3)" @ (e9)" + (¢)7 @ (€5)7) + 2 M (ef)" @ (¢)" + 2 Xa(e5)” @ (e5)"
(Isa<B=-2)}) CS*(W),

where W = ({eb,...,ef72 e}, ... e52}). Thus, assuming \g # 0, we get

)" = ({0e2 @ € — 2 X162 ©® €2, Moel ® e — 2Xge? @ eS(1 S o S £ — 2),

e @el —e ®eS, Ned @€ —2X1e¥ ® el \geS @ € — 2 el © €b
(1<a<fsi-2)}) cSW),

Then, from the first two generator of ]E(U)J_, we see that f(l)(v)L contains e ® e ® e and
ef @ e @ e§. Moreover it follows that f(lz(v)L contains every ef © ef @ ef and e§ © e§ © 3
for « = 1,...,¢ — 2, which implies that f(v) is of finite type.

Now let us construct the model equation of second order from the coordinate description
of the standard differential system (My, Dy). We calculate

w = Wy + )\1’@1 + )\QWQ

{—2 0—2
= dyo + Mdys + dadys — Y (65 +2ME0)daf — Y (€ + 2068 da
a=1 a=1

= d(yo + My1 + Aay2) — y1dA — yadAs
-2

-2
—Z & +20E0) dat = ) (€8 + 2 Mol5) dag
a=1

Thus we put
Z=yo+ My + Ny, 2V =X, 23=Xo, PV =uy1, P =,
=& H2MEY, Py =0 +208 (a=1,...,0-2).

Then we have o o
Py — 2x5p7 g0 — Py — 2fr1p§“

&= 1—42%9 " 21— 42929
and
02 02
@=dz— > pde — 3 pdas,
a=0 a=0
02 -2
mo=dpl =2y daf,  m=dpy—2 ) €daf,
a=1 a=1
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=2

=2

= dp — 2&8da) — 2 Z Aaggdr? — Z aagdxg,

p=1
=

p=1
-2

g = dp§ —2£5dal — Y anpday — 2 Naagpday,
/=1

B=1

where 70 = @y, 1) = @y, 1 = @Y + 2\ @ and 7Y = @ + 2 \ywy. Hence we obtain
the following model equation of second order :

Pz P Pz 0 O’z Pz 0
0902 029023 02902y 020075 0a%9re
Putors ~ 1= aa0ag g~ 2 T2ge) (5260

0%z 2 0z 0 Oz
0290xy 1 — 4292 (8I§‘ 11 0x§‘) (=2£),

0%z 0 0%z 922 . 92
P = x1—37 A oA =2xy—3,
dryOry O30y Ox§ 0, 05 0]

2 2
- g (= aap) (I=a=p=(-2).

D5 0x? N Db oxy

Our second example is of type (E7, {ag, a7}). Here we have dimg_3 = 10, dimg_» = 16
and dimg_; = 16 + 1. Utilizing the calculation in Case (4) of §4 in [YY2], we have the
following description of the standard differential system (My,, Dy,) of type m in this case:

Dp={w =-=wyy=m=--=mg = 0},
where

w1 = dy1 — pudry + pedxy — pedrs + psdry + padrs — pa3dre + padryg — prdayy,

@y = dyz — p13dx1 + p1odxe — psdrz + prdry + padrr — p3drs + padrig — p1dr3,

w3 = dy3 — p14dxy + p12dxe — psdxs + prdre + pedrr — psdrs + padriz — prdryy,

@y = dys — pi5dxy + pradrz — prodrs + podry + prdrg — psdrig + p3driz — prdas,

w5 = dys — p15drs + pradrz — p13drs + prdrr + prdryy — psdrz + p3dryy — padrys,

we = dys — p16dr1 + p1adry — prodxe + podrs + psdrg — pedr1g + padriz — prdase,

@y = dyr — p16dz + p14dry — p13dre + pr1das + psdrir — pedriz + padriy — padrss,

ws = dys — p16drs + p15drs — p13dTg + p11dT10 + Prodr1r — pedri3 + padris — p3drs,
wy = dyy — p16dxs + p15dre — p1adry + p12dr1y + p11dris — podryy + pedrys — psdrs,
@10 = dy10 — p16dxr7 + p15drs — pradrio + p13dria + p1adziz — p1odTi4 + psdris — prdrss,

mzdp,—adxl (Z:1,2,,16)
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Let (X, D) be a regular differential system of type m. Then we have the structure

equation of (X, dD) as follows;
dwoy
dtos
dwos
dwoy
dwos
dwog
dwoy
dwog
dwog
dwyg

(I'IlOd wl,...,wlo).

Ewl/\ﬂ'll—WQ/\7T9+W3/\7T6—W4A7T5—W5/\7T4+w6/\7'('3—WQ/\7T2+LU11/\7T1,
Ewl/\ﬂ'lg—u)z/\ﬂ'lo—f-w:g/\ﬂ'g—u}4/\7T7—u)7/\7T4—|—w8/\7Tg—W10A7T2+u)13/\71'1,
=W ATy —wor ANTg +ws ATg —wg A Tp —wy A\ Tg + wg A5 — wio A T + wig A 7T,
Ewl/\mg,—wg/\7r12+w5/\7r10—w7/\7r9—wg/\7r7+w10/\7r5—w12A7r3+w15/\7r1,
=W AT —w3 ATy +ws Az — wr AT —win AT + wig A s — wig A T3 + wis A o,
Ewl/\mﬁ—w4/\7T12—|—w6/\7r10—wg/\7r9—wg/\7r8+w10/\7r6—wu/\m—i—ww/\m,
Ewg/\ﬂm—w4/\7T14+w6/\7T13—w8/\7r11—w11A7r8+w13/\7r6—w14/\774+w16/\7r2,
Ewg/\mﬁ—w4/\7rl5+wg/\7r13—w10/\7r11—wll/\7r10+w13/\7r9—w15/\7r4—|—w16/\7r3,
=ws AT — wWe A5 +wWo A Tig — win ATz — Wiz A1+ wig A Tg — wis A T + wie A Ts,

=wyr AT — Wy A5 + wip A Ta — wia A T3 — wig A T + wig A T — wis A g + wig A 77,

Now, putting @ = w, + 312, \;w;, we consider a point v € P(X) such that v = {w =

0} C T,(X), where x = v(v). Then we have
doo =Wy AT+ -+ Wig A Tg

where

W1 = wi1 + Aawiz + Agwia + Aawis + Aswis,

W3 = we + Aows — Aawia — Aswia + Agwie,

@5 = —wy + )\3(,08 + /\4&)10 + /\5W13 + )\9w167
W7 = —Aawy — A3wg — Aqwg — Aswi1 + A1owie,
Wg = —Wa — MWy — AeWws + Agwiz + Agwia,

W11 = W1 — Aswr — Arwg — Agwiop — Agwi2,
W13 = Aow1 + Asws + Arws + Agwy — Ajgwie,
Wis = Awq + Aswa — Agwy — Agws — Ajows,

We calculate

(mod  wy,...,w0),

@2 = —Wg — /\2&)10 — )\3&)12 + )\50.)15 + )\7W167
Wy = —Wws — )\Qw7 — )\Gwlg — )\7(4}14 - )\8w157
W = W3 — Azwr + Agwio + Arwis — Agwis,

Wg = )\2&)3 —+ )\3(.4)5 - )\60)9 - )\7(4)11 - )\10W15,
W0 = —Aws + Agws + Asws — Agwir + Aowia,
Wiz = —A3wz — Aqws — Agwy — Agwi1 — Ajowis,

W14 = A3w1 — Asw3 — Arwy + Agwy + Ajgwio,
Wie = Aew1 + Arwa + Agws + Agws + Ajowr.

Wy = =AW + Ao — A3wWs + Aoy + Awig, Ws = — AWy + Aga — A3y + Ao — Awss,
W1 = —AgW1 + AgW3 — Ay + Aoy + Awig, W12 = —Agwq + AgWs — AW + A3wg — Awns,
W13 = —AgWsy + A7W3 — A5y + A1 — Awia, Wiy = — AWy + A5 — AsWg + A3wWi1 + Awig,
Wis = —AgW3 + AgWs — A5y + g1 — Aws,  Wig = —Agwy + AgWg — Ary + Agwi1 + Awr,

where A = Ajg — Ao dg + A3 As — Ay A7 + A5 A6. Thus we see that (X, D) satifies the condition

(X.1) to (X.3) in §4.3 and we obtain

R(X) ={ve P(X)|A#0},

where (A, ..
we have

., A\10) 1 the inhomogeneous coordinate of the fibre v : P(X) — X. Moreover

f(v) = {X € g_1(z) | [X,g_a(2)] = 0} for each v € R(X),z = v(v).
and dim f(v) = 1. Utilizing the calculation in Case (4) of §4 in [YY2], we have

f=
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+As(e] @€l — e @€, +es @eg—eg @ er) + Aafe] @ ej; — €3 @ €l +e5 @ ey — €7 © ey)
+X5(es@el; —e; @€l +er @€l —er@el;) + Ag(e] @elg —e) @ e, + g @ el — €5 © e)

+ Ar(e3 @ €]g — €5 @ €1, + €5 © €13 — €3 © ey) + Ag(ez © €] — €} © €]5 + €5 © €13 — ejy @ €])

+ Ao(ez @ €75 — €5 © €15 + €5 © €1y — €17 @ €],) + Aio(e7 © €1 — €5 © ej5 + €]y @ €], — €], © €]3)

for the generator f of f(v). Then we calculate

f:a1©a11—a2©a9+a3@a6—a4©a5
* * * * * * * *
+)‘(€7@€16_68@615+€10@614_612@613)7

where A = )\10 — )\2)\9 + )‘3/\8 - /\4)\7 + )‘5)\6 and

ay = €]y + Aaels + Asely + Agels + Agelg, o = —eg — Aaely — Azely + Asels + A€l
g = 6; + >\2€§ — )\46?2 — )\56>{4 + )\86;6, ay = —62 — )\26; — /\6€>{2 — /\7€>{4 — /\861157
a5 = —e; + Azeg + Agejy + Asels + Aoelg, 6 = €5 — Aser + Agely + Arels — Agels,
g = —e5 — A\ger — Ngeg + Agels + Aoely, Qi1 = €] — Aser — Areg — Agelp — Ao€las

Thus f is a non-degenarate quadratic form in S?(W*), where W = ({ey, ..., e1s}). Hence
f(v) is of finite type (see Case (5) of §3 in [YY?2]).

Now let us construct the model equation of second order from the coordinate description
of the standard differential system (My, D). We calculate

w:w1+)\2wQ+---+)\10w10

= dyy + Aodys + -+ - + Aodyio — prdxy — - -+ — Piedrie
=d(y1 + Aay2 + -+ + AoY10) — Y2dAe2 — - -+ — Y1od A1 — Prdxy — - - - — Prdase,
=dz — prdxy — -+ — predxis — PrrdTi7 — - - - — Pasdas,

where we put

z =1y + Aay2 + - + AoYio,
P1 = P11+ Aap1z + Aspa + Aapis + Aepis, P2 = —Py — AaP1o — AsP12 + Aspis + Arpies
P3 = pe + Aabg — Aap12 — Aspra + Aspis, Pa = —Ps5 — AapP7 — AeP12 — A7P1a — Aspis,
Ps = —pa + A3ps + Aapio + Aspis + Agpie, P6 = P3 — A3pr + AeP1o + A7p1z — Aopis,
Pr = —Xapa — A3ps — AaP9 — Asp11 + A1oPies  Ps = A2p3 + Asps — Aepo — Arp11 — A1oPis,
Po = —P2 — Map7 — AePs + AsP13 + Aogpia, P10 = —A2p2 + Aaps + Asps — Aspi1 + Aiopia,

P11 = Pp1 — Aspr — Arps — AsPio — AoPi2; P12 = —A3p2 — \ap3 — AePa — Aop11 — A1opis,
P13 = Aap1 + Asps + Arps + Aspo — A1opi2, P1a = A3p1 — Aspz — A7pa + Agpo + A1opio,
P15 = Aap1 + Asp2 — AsPa — Agpe — A1ops, P16 = AeP1 + Arp2 + Asps + Aops + Awopr,
P17 = Y2, s Dat15 = Ya, - - - » P25 = Y10, T17 = A2y -+ Tat15s = Aas - - -, Tas = Aio-

Then we have, for (R(Mw); Dy, , D3, ),
Dy ={w=0}, D} ={m=m=0 (1=k=<10,1<:=16)},

where we denote the pullback on R(M,,) of 1-forms on M, by the same symbol. By taking
the exterior derivatives of both sides of the above defining equations for p; (i = 1,...,16),
we put

711 = dpr — a(dri + x17dx1s + T18d214 + T19dT15 + To1dxeg)
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— p13dx17 — p1adx1s — p15sdT19 — predrai,
7o = dpy — a(—dxg — x17dx19 — T18dT12 + T20dX15 + Togdr1g)
+ p1odzi7 + p12dris — p15dTe — predraz,
3 = dps — a(dxg + r17dxg — v19d219 — To0dT 14 + To3dT16)
— psdx17 + p1adig + pradrag — predras,
7y = dps — a(—dx5 — T17dT7 — To1dT 12 — ToodT1y — !E23d$15)
+ prdxi7 + prada + p1adzas + pi5dras,
75 = dps — a(—dxy + x15drs + T19dx10 + T20dT13 + T24dT16)
— psdrig — prodrig — p13drag — pr6dTas,
e = dp — a(drs — T18dx7 + To1dx 19 + To2dx 13 — To0dxy5)
+ prdzis — prodrar — p13dTas + pisdras,
7 = dpr — a(—x17dry — 218d26 — T19dT9 — TodT11 + To5dT16)
+ padz17 + pedri1s + podr1g + p11drag — predras,
g = dpg — a(x17dx3 + 218drs — To1dTg — TodT1y — $25d$15)
— pad17 — psdx1g + pedTor + p11dxay + p15dras,
Tg = dpg — a(—dxe — T19dx7 — To1dry + To3dT13 + Togdr14)
+ prdrig + psdro — p13draz — pradray,
10 = dp1o — a(—17dwy + T19dTs + T21dT6 — T23dT11 + To5dT14)
+ padry7 — psdrig — pedrar + pr1dTas — pradias,
711 = dp1y — a(dﬂl?l — ZToodT7 — Toadxg — To3dTyg — $24d$12)
+ prdzao + psdxag + prodras + pr2dray,
T2 = dp1a — a(—$18d$2 — T19dx3 — To1dTy — Tgdwyy — $25d$13)
+ padx1g + p3drig + padror + pr1dray + pradrss,
13 = dp13 — a(x17dzy + Togds + Toadre + wo3drg — To5drs)
— p1dx17 — psdTog — pedTag — podraz + pr2dTas,
1y = dp1a — a(z18dry — Toodrs — Tondxy + To4dxg + To5dT10)
— p1drig + p3dTon + padray — podray — prodras,
15 = dp1s — G(ivlgd% + To0dry — To3dry — Togdxe — $25dI8)
— p1dx19 — p2dxag + padras + pedras + psdras,
716 = dp1s — a(T21dx) + Toadxo + To3dxs 4 Togdws + wo5da7)

— p1dxay — paday — p3draz — psdros — prdxas.

Then we see that {7y, ..., 76} can be written as the linear combinations of {7y, ..., 7}
with the same coefficients (in \’s) such that {p,..., P16} are written as the liear combi-
nation of {pi,...,p1s} as in the above equations. Hence we have

D]lwm :{’WZO}, D]2\/[m :{w:frl:--~:7?16:7?17:---:7?25:O},

where 15,4 = @, (2 < a £ 10) are written as follows:

M7 = dpi7 — pi3dxy + piodxe — psdws + prdxy + padxr — p3drs + padxig — prdess,
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g = dp1g — pradey + p1adxe — psdas + prdre + pedar — psdrs + padris — prdayy,

19 = dp1g — p15dx1 + pradxs — prods + pedrr + prdxg — psdxig + padria — p1dass,

To0 = dp2o — P15dx2 + pradrs — p13das + pridry + prdry — psdris + p3driy — padass,
o1 = dpa1 — pr6dry + p1adxy — p1odre + podas + psdrg — pedr1o + padris — prdase,

o = dpaa — p16dra + pradxy — p13dre + pr1drs + psdriy — pedri1z + padriy — p2drig,
Tro3 = dpa3 — predxs + p15dry — p13dxg + pr1dx1o + prodriy — ped1z + padris — psdiss,
To4 = dp2y — P16dxs + p15dxre — Pradxg + pradryy + pr1dria — pediy + pedris — psdise,
Tros = dpas — p16dTy + p15drs — p1adrio + p13driz2 + pr2dr1z — prodris + psdris — prdase.

Moreover we calculate

Ap16
Ap1s =
AP14
Api3 =
Ap12 =
Ap11
AP1o
Apyg =
Aps =
Ap7
Aps =
Aps =
Apy =

Apg =
Apy =

= TooP1 — T19P2 + T18P3 — T17Ps + D7,

—T99P1 + T21P2 — T18Pa + T17D6 — Ps,

= TogP1 — T21P3 + T19P4 — T17P9 + D10,

—X24P1 + T21P5 — T19P6 + T18P9 — D12,

—X93P2 + TooP3 — TooPs + T17P11 — P13,

= TosP1 — T21P7 + T19Ps — T18P10 + T17P12,

= To4P2 — TooP5 + TooPe — T18P11 + P14,

—XTo5P2 + TooD7 — TP + T18P13 — T17D14,

—To4P3 + TazDs — TaoPg + T19P11 — Dis,

= T94P4 — T23Pe + T22P9 — T21P11 1 P16

TosP3 — T23P7 + T20P10 — T19P13 + T17P15,
—T95P4 + Ta3zPg — L2210 + T21P13 — T17P165

—To5P5 + To4D7 — T2oP12 + T19P14 — T18D15,

= To5P6 — T24Ps + TooP12 — T21P14 + T18P165

—T25P9 + Ta4P10 — T23P12 + T21P15 — T19P16,

To5P11 — T24D13 + T23P14 — T22D15 + T20D165

where A = xo5 — X17T24 + T18%23 — T19T22 + Toox21. Thus we obtain the following model
equation of second order :

0%z 0%z 0%z 0%z
0x1011; B _&vg@xg - 01301 B _83348935 (=a)

9’z 9’z Pz Pz 0%z
0110713  Or9071  Ox3018  OTi0T7 a Ox101;
Pz 9z Pz O’z 0%z
8:)318:7014 N _(91,‘281'12 N (911)581’8 N _61‘681}7 - s 81'161’11
9%z Pz Pz Pz 0%z
0r10x15 _8x36’x12 © Oxsdriy _8x78x9 - 0x10x11
Pz oz Pz Pz 0%z
69528:7515 N _81‘381'14 N 81‘581'13 N _61’781'11 - o 81‘181‘11
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Pz Pz Pz Pz 0%z
0r10x16 _8m48x12 © Oxgdriy _8x88x9 e 010211
oz 9z Pz Pz 0%z
89328:1516 N _81‘481‘14 N 81‘681‘13 _6$88$11 B 81‘181‘11
Pz Pz Pz Pz 0%z
030115 O1a0mys  Oredris  Owmwday 2 0110w
9z 9z Pz Pz 0%z
89:58:1516 N _81‘681‘15 N 81‘981‘14 _6$118$12 B 6(E18$11
Pz 0z Pz Pz 0%z
0r70x16 _8x83x15 © 0r100T14 _8$128x13 - 0x10x11
0%z 0%z 0%z 0%z
65513833’17 - 6.2?148.%18 - 8;U158$19 - 8.171682321 (: pl)
= A5 0 —124£ + Ta3 0 — T2 0 + 205 0 ),
O0z11 013 0714 015 016
0%z 0%z 0%z 0%z
0x100217 h 01120713 B _(9331539520 B _51’163-7322 - _p2)
= /\_1(35252 — T 0z + To3 0z — T 0 + 95— 0z ),
Oxg 0z10 0x12 0x15 0x16
0z 02z 0z 02z
0x30117 - _81;128:619 - 0x140%20 - 01160223 (=ps)
=\ (9U25% — Toam— 0= Lo 0= — T 0= + 718 0 )
O0xg 01y 0T 19 0T 14 0x15"
0%z 0 02z 0%z
0x70x17 - 02120291 - 02140799 - 01150293 (= —p4)
=\ ($25% — Tog7— 0 + Too 73— 0z — T19 0 + 218 0 )
Oxs Oz 0x12 0214 Oxy5”
oz Pz Pz Pz B
0rs0x1s  0T100T19  OT130T90  OT160T24 (=ps)
= _1(—$252+$23 0 — T2 02 + x91 0 — Tt — 0 ),
65134 85138 8.2710 89313 61716
Pz Pz 0Pz 0%z B
_8x78x18 © 0x100T91  O0T130T9s  OT150To (=po)
= )\_1(93252 - 93232 + 20 0z _ T1g 0 + x17 0 )
Oxs 0x7 0x10 0x13 0xy5”’
0%z 0%z 0%z 0%z 0%z
_890489517 - 0160113 B _8x98x19 - _8x118x20 B 01160225 =)
= A" (3324% — T35 0 T2 0 ) 0 0
0z, Oxg Oxg 0x11  Oxig
0%z 0%z 0%z 0%z 0%z
_8:70389017 - 0r50213 B 0190x91 B 01110T99 - 0115095 (= —ps)
_ - (x24£ S 0z a0 % 0z N 0z 0z
Ors oxs 0z Ory Oz’



0%z 0%z 922 92
- - (= —po)

81’781}19 a 81’881’21 _a$13ax23 _8$148I24
= /\—1(%5% _ xmﬁ +x20% s 0z i 0z )
Oz Oz dus Ox3 Or1y”’
0%z B 822 B 922 B 922 B 2% B
Qw9017 0150119 O30Ty 01110793 Ox140Tos (= p10)
- )‘_1(93242 - x22£ 3720% — I3 0z + 0 )
Oxo Oxs 0xg Ory,  Oxyg’
02z 0%z 922 92
_8:10789520 - _85(7861,’22 N _a$103$23 - _3I128x24 (: pll)
= Ail(x%% - x21£ + x19£ — 18 02 + 217 0z )
Oy Oz Oxg O 10 %19’
0?2 B 0%z B 922 B 922 B 92 B
0190118 N 0x30%19 N 0140791 o 01110794 - O 130%5 (— _p12)
= )‘71(95232 - 55222 + 1'202 — xnﬁ 02
Oxy Oxs Oxy Or1yy 013"
0%z 0%z 0%z 0%z 0%z
_8113181'17 - _8:1058:1320 - _81‘68$22 - _8$98x23 = 8$128:L‘25 (: _p13)
- )\*1(;(;24% — xm% + xlgﬁ o xlsﬁ + 82 )
Oy 0xs O Org = O119’
822 822 822 822 822
0x10x18 - _81‘381'20 - _a$48;1;22 - 0290Tay - 07100To5 (Z p14)
= )\—1(3323% _ xﬂﬁ 4 3719% B $172 0z
Oy 0x3 0y dr9 = Ox1o’
0z 0%z 02z 02z 02z
_81’18$19 - _(91‘281‘20 - 024093 - 0x60% o4 - 01805 (: _p15)
= )‘_1(95222 - 95212 + xﬁg% — xnz %
0z 0o 0xy Org = Oxg’’
2 0%z 0%z 0%z 0%z
0x10x9; B 0x20%99 - O0x50x93 - 015079, - 927025 (= p16)
= /\—1(1‘20% — $19% —+ 1'18% _ 1'17% + %)
Oxy 01y 0rs Oxrs Ox7”’
2
82 82:(:]- =0 otherwise.

One can check that, among simple graded Lie algebras (of depth 3) of class (D) in §5 of
[YY?2], regular differential systems (X, D) of type m satisfy the condition (X.1) to (X.3)
in §4.3 when m is the negative part of one of the simple graded Lie algebras (Cy, {cy, ar})
fori=2,...,0—1, (Dg,{ay,a}) (2 <i < €—1), wheniiseven, or (Er, {ag.ar}), whereas
the condition (X.3) is not satisfied by the other cases.
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