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1 Introduction

Rayleigh waves are elastic surface waves which propagate along the traction-

free surface with the phase velocity in the subsonic range and whose amplitude

decays exponentially with depth below that surface. Such waves serve as a useful

tool in nondestructive characterization of materials. The problem there is what

material information we obtain if we could measure accurately Rayleigh waves

propagating in any direction on the traction-free surface.

For definiteness, we choose a Cartesian coordinate system such that the ma-

terial half-space occupies the region x3 ≤ 0, whereas the 1- and 2-axis are ar-

bitrarily chosen. Then Rayleigh wave considered here can be described as a

time-harmonic solution to the equation of motion with zero body force

ρ
∂2

∂t2
ui =

3∑

j,k,l=1

∂

∂xj

(
Cijkl

∂uk

∂xl

)
in x3 < 0, i = 1, 2, 3 (1)

with the zero-traction boundary condition

3∑

j,k,l=1

Cijkl
∂uk

∂xl

nj

∣∣∣
x3=0

= 0, i = 1, 2, 3. (2)
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Here ρ > 0 is the uniform mass density, t is the time, u = u(x, t) = (u1, u2, u3)

is the displacement at the place x = (x1, x2, x3) at time t, (n1, n2, n3) = (0, 0, 1)

is the outward unit normal to the surface, and C = C(x) =
(
Cijkl

)
i,j,k,l=1,2,3

is

the elasticity tensor, which has the physically natural symmetries

Cijkl = Cjikl = Cklij, i, j, k, l = 1, 2, 3 (3)

and satisfies the strong convexity condition

3∑

i,j,k,l=1

Cijkl εij εkl > 0
(
(εij) : any nonzero 3× 3 real symmetric matrix

)

at each x.

First we consider Rayleigh waves propagating along the traction-free surface

of a homogeneous elastic half-space. For isotropic elasticity, such waves are well

known: Their phase velocity vIso
R is determined from the secular equation, which

is a bi-cubic equation written in terms of the Lamé constants λ and µ (see (6)).

Suppose that the elasticity tensor can be expressed as the sum of its isotropic

and its perturbative part. We consider elastic media for which the perturbative

part of the elasticity tensor is sufficiently small as compared with the isotropic

part. The isotropic part of a given elasticity tensor is itself also an elasticity

tensor, which we interpret as a comparative ‘unperturbed’ isotropic state. The

perturbative part then gives the deviation of the elasticity tensor from the com-

parative isotropic state and represents the anisotropy that the elastic material

carries. Here we do not put any restriction on the material symmetry of the

perturbative part so that it has 21 independent components.

We investigate the perturbation of the phase velocity vR of Rayleigh waves,

i.e., the shift in vR from its comparative isotropic value vIso
R , caused by the per-

turbative part. In Section 2 we present a perturbation formula for the phase

velocity which is correct to within terms linear in the components of the per-

turbative part. This formula shows explicitly how the perturbative part, to first

order of itself, affects the phase velocity of Rayleigh waves. We obtain these

formulas by a consistent method on the basis of the Stroh formalism.

Second, we consider Rayleigh waves propagating along the traction-free sur-

face of a vertically inhomogeneous elastic half-space. Here we assume that the

elastic tensor depends smoothly only on the depth x3. The purpose is to derive

a high-frequency asymptotic formula for the velocity of Rayleigh waves propa-

gating in various directions along the surface. We seek a time-harmonic solution
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to (1) and (2) of the form

u = (u1, u2, u3) = e−
√−1 k(x1η1+x2η2−vt) v(η1, η2, x3, v, k), (4)

where k is a wave number, η = (η1, η2, 0) is the direction of wave propagation,

v is phase velocity and v is a complex vector function which decays exponen-

tially as x3 −→ −∞. In Section 3 we will develop a procedure with which, for

each direction of propagation, we express each term of the asymptotic expan-

sion of Rayleigh-wave velocity vR for large k in terms of Cijkl (1 ≤ i, j, k, l ≤ 3)

at x3 = 0 and their x3−derivatives at x3 = 0. This expresses the frequency-

dependence of the Rayleigh-wave velocity, or the dispersion of the Rayleigh-wave

velocity, caused by vertical inhomogeneity of the elasticity tensor. In nondestruc-

tive characterization of materials, by measuring the dispersion of the Rayleigh-

wave velocity for various propagation directions, we obtain some information on

Cijkl and their x3−derivatives at x3 = 0.

The project in Section 3 is still in progress. As a partial result we give the

first two terms of the asymptotic expansion of Rayleigh-wave velocity for large k

when the material has an orthorhombic symmetry. Future extension is to study

the perturbation of each term of the asymptotic expansion of Rayleigh-wave

velocity caused by the deviation of the elasticity tensor from its comparative

‘unperturbed’ isotropic state.

2 Perturbation of Rayleigh-wave velocity

Suppose that the elasticity tensor C =
(
Cijkl

)
i,j,k,l=1,2,3

is independent of x and

has the form

C = CIso + A, (5)

where CIso is the isotropic part of C,

CIso =
(
CIso

ijkl

)
i,j,k,l=1,2,3

, CIso
ijkl = λ δijδkl + µ(δikδjl + δilδkj)

with the Lamé moduli λ and µ, and A is the perturbative part of C,

A =
(
aijkl

)
i,j,k,l=1,2,3

.

From the symmetries (3) of C it follows that

aijkl = ajikl = aklij, i, j, k, l = 1, 2, 3,

but we do not assume any other symmetry for A. Hence the perturbative part

A is fully anisotropic and has 21 independent components.
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Theorem 1 ([4, 5]) The phase velocity vR of Rayleigh waves which propagate

along the surface of the half-space x3 ≤ 0 in the direction of the 2-axis can be

written, to within terms linear in the perturbative part A =
(
aijkl

)
i,j,k,l=1,2,3

, as

vR = vIso
R − 1

2ρ vIso
R

·
[
γ1(v

Iso
R ) a2222 + γ2(v

Iso
R ) a2233 + γ3(v

Iso
R ) a3333 + γ4(v

Iso
R ) a2323

]
,

where

γ1(v) =
(λ + 2µ)

[
−8µ2(λ + µ) + 2µ(5λ + 6µ)V − (2λ + 3µ)V 2

]

D(v)
,

γ2(v) =
4λ(µ− V )

[
4µ(λ + µ)− (λ + 2µ)V

]

D(v)
,

γ3(v) =
(λ + 2µ− V )

[
−8µ2(λ + µ) + 2µ(5λ + 6µ)V − (2λ + 3µ)V 2

]

D(v)

=
(
1− V

λ + 2µ

)
γ22(v),

γ4(v) =
−8µ(λ + 2µ− V )

[
2µ(λ + µ)− (λ + 2 mu)V

]

D(v)
,

D(v) = (λ + µ)
[
8µ2(3λ + 4µ)− 16µ(λ + 2µ)V + 3(λ + 2µ)V 2

]
,

V = ρ v2,

and vIso
R is the velocity of Rayleigh waves in the comparative isotropic medium

defined by C = CIso and A = O, i.e., V Iso
R = ρ (vIso

R )2 is the unique solution to

the cubic equation

V 3 − 8µV 2 +
8µ2(3λ + 4µ)

λ + 2µ
V − 16µ3(λ + µ)

λ + 2µ
= 0 (6)

in the range 0 < V < µ.

Remarks Only four components a2222, a2323, a2233 and a3333 of the perturbative

part A can influence the first order perturbation of the phase velocity vR. The

perturbation formula above do not agree totally with the result in [1]. In [5],

where the initial stress is also taken into account, an argument is given to support

our present result. According to our first-order formula above and the transfor-

mation formula for fourth-order tensors, we shall see that the anisotropy-induced

velocity shifts of Rayleigh waves, taken in totality of all propagation directions
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on the free surface, carry information only on 13 components of the perturbative

part A of the elasticity tensor [5].

In the homogeneous medium where the elasticity tensor C is independent

of x, the surface-wave solution to (1) in the half-space x3 ≤ 0 which decays

exponentially as x3 −→ −∞ and has direction of propagation η = (η1, η2, 0),

phase velocity v and wave number k can be expressed in the form

u = (u1, u2, u3) =
3∑

α=1

e−
√−1 k(x1η1+x2η2+pαx3−vt) cα aα(η1, η2, v), (7)

where pα (Im pα > 0, α = 1, 2, 3) are Stroh’s eigenvalues, aα (α = 1, 2, 3) are

linearly independent vectors in C3 and cα (α = 1, 2, 3) are arbitrary complex

constants. The boundary traction

t =

(
3∑

j,k,l=1

Cijkl
∂uk

∂xl

nj

)

i↓1,2,3

∣∣∣∣∣
x3=0

(8)

pertaining to the solution (7) can be written in the form

t = −√−1 k
3∑

α=1

e−
√−1 k(x1η1+x2η2−vt) cα lα(η1, η2, v). (9)

It follows that

[
aα

lα

]
∈ C6 (α = 1, 2, 3) are linearly independent eigenvectors of

Stroh’s eigenvalue problem associated with the eigenvalues pα (α = 1, 2, 3) (see,

for example, [4]).∗

The surface impedance matrix Z(v, η), which maps the boundary displace-

ment u|x3=0 linearly to the boundary traction (8) is given by

Z(v, η) = −√−1 [l1, l2, l3] [a1, a2, a3]
−1, (10)

where [l1, l2, l3] and [a1, a2, a3] denote 3×3 matrices which consist of the column

vectors lα and aα respectively. It is proved that Z(v, η) is Hermitian.

From (2) it follows that the phase velocity vR of Rayleigh waves in the ho-

mogeneous medium satisfies

detZ(v, η) = 0 at v = vR. (11)

Applying the implicit function theorem to (11), we obtain Theorem 1.

∗When
[

aα

lα

]
becomes a generalized eigenvector of Stroh’s eigenvalue problem for some

α, the forms (7) and (9) are slightly modified.
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3 Dispersion of Rayleigh-wave velocity

Suppose that the elasticity tensor C =
(
Cijkl

)
i,j,k,l=1,2,3

depends smoothly only

on the depth x3 below the surface x3 = 0. Our procedure will be divided into

three steps.

1. Construct an asymptotic solution to (1) of the form (4) for large k by

using the factorization of the principal symbol pertaining to the differential

operator in x3 which is obtained from substitution of the form (4) into (1).

2. Let Z(v, η, k) be the surface impedance matrix, which maps the boundary

displacement u|x3=0 linearly to the boundary traction

t =

(
3∑

j,k,l=1

Cijkl
∂uk

∂xl

nj

)

i↓1,2,3

∣∣∣∣∣
x3=0

.

Determine 3 × 3 surface impedance matrix Zn(v, η) (n = 0, 1, 2, · · · ) that

appear in the asymptotic formula

Z(v, η, k) = kZ0(v, η) + Z1(v, η) + k−1Z2(v, η) + k−2Z3(v, η) + · · · (12)

for large k.

3. Apply the implicit function theorem to detZ(v, η, k) = 0 to obtain the

asymptotic formula for the phase velocity vR of Rayleigh waves for large k:

vR = vR(η, k) = v0(η) + v1(η) k−1 + v2(η) k−2 + · · · . (13)

Z0(v, η) in (12) is the surface impedance matrix for the homogeneous half-

space defined by (10) with C = C(0). Then v0(η) in (13) is identical to vR in

(11) under C = C(0).

Now we shall give an equation for Z1(v, η) in (12). Define the 3× 3 matrices

R0 = R0(η), T0 by

R0 =

(
2∑

j=1

Cijk3(0) ηj

)

i↓k→1,2,3

, T0 =
(
Ci3k3(0)

)
i↓k→1,2,3

= T0
T

and put

K0 = K0(v, η) = T−1
0

(
RT

0 −
√−1Z0(v, η)

)
.
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Define the 3× 3 matrices Q′
0 = Q′

0(η), R′
0 = R′

0(η), T′
0 by

Q′
0 =

(
2∑

j,l=1

C ′
ijkl(0) ηj ηl

)

i↓k→1,2,3

= Q′
0
T
, R′

0 =

(
2∑

j=1

C ′
ijk3(0) ηj

)

i↓k→1,2,3

,

T′
0 =

(
C ′

i3k3(0)
)

i↓k→1,2,3
= T′

0
T
,

where superimposed primes (′) on Cijkl denote differentiation with respect to x3.

Theorem 2 Hermitian matrix Z1 = Z1(v, η) is the unique solution to the linear

system

(K∗
0)

2 Z1 − 2K∗
0 Z1 K0 + Z1 (K0)

2 = Q′
0 −R′

0 K0 −K∗
0 (R′

0)
T + K∗

0 T′
0 K0, (14)

where K∗
0 is the adjoint matrix of K0.

In what follows we assume that a half-space x3 ≤ 0 is occupied by elas-

tic materials whose elasticity tensor C = C(x3) =
(
Cijkl

)
i,j,k,l=1,2,3

has an or-

thorhombic symmetry at each x3 and that the axes of the orthorhombic sym-

metry of the medium coincide with the 1-, 2-, and 3-axis of the Cartesian

coordinate system. Then possibly non-zero components of C = C(x3) are

C1111, C2222, C3333, C1122, C1133, C2233, C2323, C1313 and C1212 at each x3. Under

the setting above we consider Rayleigh waves which propagate along the sur-

face of the half-space x3 ≤ 0 in the direction of the 2-axis. Henceforth we set

η = (0, 1, 0).

It is well known [3] that v0(η) in (13) is the unique solution to

C3333(0)C2323(0)
(
C2222(0)− V

)
V 2

−
(
C2323(0)− V

)(
C3333(0) (C2222(0)− V )− C2

2233(0)
)2

= 0 (15)

in the subsonic range with V = ρ v0(η)2.†

For v1(η) in (13) we have

Corollary 3

v1(η) = − x22 z33 + x33 z22 − 2z23 x23

∂

∂v
(z22 z33 − z23

2)

∣∣∣∣∣
v=v0(η)

.

†Equation (15) follows also from (11).
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Here z22, z33 and
√−1 z23 are the (2,2), (3,3) and (2,3) components of Z0(v, η),

respectively, which are given by

z22 =

√
C2323(0)

C3333(0)

P1

P1 + P2

√
(P1 + P2)2 − (C2233(0) + C2323(0))2,

z33 =

√
C3333(0)

C2323(0)

P2

P1 + P2

√
(P1 + P2)2 − (C2233(0) + C2323(0))2,

z23 =
−1

P1 + P2

(C2323(0) P1 − C2233(0) P2),

with

P1 =
√

C3333(0)(C2222(0)− V ), P2 =
√

C2323(0)(C2323(0)− V ), V = ρ v2

and x22, x33 and
√−1 x23 are the (2,2), (3,3) and (2,3) components of Z1(v, η),

respectively.

Remarks Writing down equation (14) explicitly, we see that x22, x33 and x23

are all real-valued and depend only on C2222(0), C2233(0), C3333(0), C2323(0) and

the derivatives C ′
2222(0), C ′

2233(0), C ′
3333(0), C ′

2323(0), from which we conclude that

v1(η) depends only on the boundary values of the four components of C and

their derivatives at the boundary. This corollary is an alternative expression of

the result in [2].
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