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1 Introduction

This is a joint work with Yoshikazu Giga and Noriaki Umeda. We discuss
motion of noncompact hypersurfaces Γt moved by mean curvature flow, whose
initial surface Γ0 is rotationally symmetric to an axis, say the x1-axis, and
is represented by rotating the graph of a positive function u0 around the
axis. Under the symmetric assumption, the mean curvature flow equation is
equivalent with one-dimensional quasilinear parabolic equation

ut =
uxx

1 + (ux)2
− n− 1

u
, x ∈ R, t > 0, (1.1)

with initial data
u(x, 0) = u0(x) > 0, x ∈ R. (1.2)

1.1 Derivation of the equation

The surfaces Γt remain rotationally symmetric to the axis so long as they
exist as is proved in [1, Theorem 4.3a]. Namely, we may assume that the
hypersurfaces are given of the form

Γt = {x = (x1, x2, ..., xn) ∈ Rn| r = u(x1, t)}

with some function u, where r =
( ∑n

j=2 x
2
j

)1/2

denotes the distance from

the x1-axis to Γt. We call these hypersurfaces axisymmetric surfaces.
Although the derivation of equation (1.3) was already done in [10, 2]

by the radial distance u of the surface to its axis of rotation, we introduce
another way to derive the equation based on level set method (c.f.[4]), which
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describes a hypersurface as the zero level set of an auxiliary function. Under
the symmetric assumption, we may take the auxiliary function as

φ(x, t) := −r + u(x1, t),

so that the surfaces are represented as Γt = {x ∈ Rn| φ(x, t) = 0}. Here we
observe that |∇φ| = (1+u2

x1
)1/2 does not vanish on Γt. With this function, a

unit normal vector field n of Γt is given by n = −∇φ/|∇φ|, so that we may
compute V and H respectively as

V =
dx(t)

dt
· n =

φt

|∇φ|
=

ut

(1 + u2
x1

)1/2
,

H = −∇ · n = ∇ ·
( ∇φ
|∇φ|

)
=

ux1x1

(1 + u2
x1

)3/2
− 1

(1 + u2
x1

)1/2

n− 1

r
,

where x(t) is a C1-curve such that φ(x(t), t) = 0. (Here and henceforth we do
not take average of principal curvatures to define mean curvature.) Putting
V = H, we get

ut =
ux1x1

1 + (ux1)
2
− n− 1

u
. (1.3)

Since the spatial independent variable of unknown function u is essentially
one dimension, we may and shall denote x1 by x in the following for simplicity.
We now arrive at the Cauchy problem (1.1)-(1.2).

1.2 Quenching problem

The Cauchy problem (1.1)-(1.2) has a unique positive classical solution u
locally in time, but the solution is forced to reach zero in finite time as
long as bounded initial data are concerned. This fact is readily seen if one
compares u with the explicit solution vM(t) =

√
2(n− 1)(T (M)− t) with

M = supx∈R u0(x) and T (M) = M2/2(n− 1).
Once a solution reaches zero, the equation (1.1) does not make sense and

hence the solution cannot be extended globally in time as a classical solution.
For a given initial datum u0, we set

T (u0) = sup{t > 0; inf
x∈R

u(x, t) > 0} <∞

and call it the quenching time of u. It is immediate that

lim inf
t↗T (u0)

inf
x∈R

u(x, t) = 0.
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A point a ∈ R is said to be a quenching point (or pinching point) of u if
there exists a sequence {(xk, tk)} ⊂ R× (0, T (u0)) such that

xk → a, tk ↗ T (u0) and u(xk, tk) → 0 as k →∞.

In other words, a point a ∈ RN is a quenching point if and only if u is not
bounded away from zero. Quenching points of u correspond to positions of
pinching necks of the surface Γt at t = T (u0).

1.3 Known results

We shall recall several known results on mean curvature flow equations for
compact hypersurfaces.

General surface
1. Huisken [11].
If initial surface is smooth, compact and convex in Rn, n ≥ 3, then the hy-
persurface Γt remains smooth, compact and convex and shrinks to a “round
point” in finite time.

2. Gage and Hamilton [3].
The result of [11] still holds for simple convex curves in R2.

3. Grayson [9].
Even if initial curve is not convex, the solution curve must become convex
before it shrinks to a point.

Axisymmetric surface
4. Grayson [10].
When n ≥ 3, this result of [9] can fail to hold in general. There is an example
of surface whose neck pinches before it shrinks to a point. (A barbell-like
surface: two spherical surfaces connected by a thin “neck”.)

5. Altschuler, Angenent and Giga [1].
There exists a finite sequence 0 = t0 < t1 < ... < t` such that Γt is
smooth for tj−1 < t < tj. The number of components can change only
at t = tj, (j = 1, 2, ..., `).

1.4 Our aim

We would like to show that any noncompact axisymmetric hypersurface such
that the quenching time is “minimal” has no pinching point on the axis of
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rotation at the quenching time no matter how thin necks of the initial
surface are, except for flat surfaces, and to characterize such hypersurfaces
by initial data. We will give the definition that the quenching time is minimal
in the next section.

2 Main results

If the initial data is a positive constant, then the solution of (1.1)-(1.2)
coincides with the solution vm(t) of the corresponding ordinary differential
equation

v′ = −n− 1

v
, t > 0; v(0) = m, (2.1)

that is,

vm(t) =
√

2(n− 1)(T (m)− t) with T (m) =
m2

2(n− 1)
. (2.2)

The function vm provides the vanishing cylinder with diameter vm(t) for each
time t < Tm. In what follows, m is chosen as

m = inf
x∈R

u0(x).

A simple comparison argument shows that any solution u of (1.1)-(1.2) sat-
isfies

u(x, t) ≥ vm(t) in x ∈ R× (0, Tm).

We thus have, in general,
T (u0) ≥ Tm.

Definition.We say that a solution u of the Cauchy problem (1.1)-(1.2) has
a minimal quenching time if

T (u0) = T (m).

Proposition 2.1. Suppose that a solution u of the Cauchy problem (1.1)-
(1.2) quenches at minimal quenching time T (m). Then

lim inf
x→−∞

u(x, t) = vm(t) or lim inf
x→+∞

u(x, t) = vm(t)

for every t ∈ [0, T (m)) and quenching occurs at space infinity in the sense
that there exists a sequence {(xk, tk)} ⊂ R× (0, T (m)) such that

tk ↗ T (m) and u(xk, tk) → 0 as k →∞.
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We are now in the position to state our main results.

Theorem 2.2. Let u be a solution of the Cauchy problem (1.1)-(1.2) having
a minimal quenching time T (m). If u0 6≡ m, then there is no quenching
point of u. Moreover, there exists a function u(·, T (m)) ∈ C∞(R) such that
u(·, t) → u(·, T (m)) in the Frechét space C∞(R) as t ↗ T (m), and it ful-
fills u(x, T (m)) > 0 in the whole R. Furthermore, limx→−∞ u(x, T (m)) = 0
and/or limx→+∞ u(x, T (m)) = 0.

We can actually obtain a necessary and sufficient condition on initial data
for a solution of the Cauchy problem (1.1)-(1.2) to have a minimal quenching
time, making use of the technique developed in [15, 14] for related blow-up
problems. We shall consider the following conditions on initial data:

There exists a sequence {xk} ⊂ R such that xk →∞ and

u0(x+ xk) → m a.e. as k →∞.
(2.3)

There exists a sequence {xk} ⊂ R such that xk → −∞ and

u0(x+ xk) → m a.e. as k →∞.
(2.4)

Theorem 2.3. A solution of the Cauchy problem (1.1)-(1.2) has a minimal
quenching time if and only if u0 satisfies conditions (2.3) or (2.4).

3 Tools

We shall recall some basic tools obtained in [1] in the restricted form con-
venient to our aim. In what follows, the half interval (0,∞) is denoted by R+.

Lemma 3.1.(Altschuler-Angenent-Giga [1]; gradient bound.) Let u be a
solution of (1.1) in (a, b)× (0, T ) for some −∞ < a < b <∞. Then there is
a function σ : R+ ×R+ → R such that

|ux(x, t)| ≤ σ(t, u(x, t)) (3.1)

holds for all a < x < b, 0 < t < T . The function σ has the form σ(t, u) =
exp (ρ(u)/t) with a positive continuous function ρ on R+ and depends only
on supu(x, 0) and b − a. Moreover, if u solves the equation in R × (0, T ),
then (3.1) holds in R× (0, T ) and σ depends only on supu(x, 0).
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Lemma 3.2.(Altschuler-Angenent-Giga [1, Single-Point Pinching Lemma]).
Let u be a solution of (1.1) in (a, b)× (0, T ) for some −∞ < a < b <∞. If
the solution u of (1.1) is monotone increasing (or decreasing) with respect to
x in (a, b), then for any subinterval (c, d) b (a, b), there is a constant δ > 0
such that

u(x, t) ≥ δ in (c, d)× (0, T ).

4 Related studies

Our problem is closely related with a blow-up problem ([7, 8, 16, 15, 14]) for
nonlinear parabolic equation

ut = ∆φ(u) + f(u), x ∈ RN , t > 0, (4.1)

with initial data
u(x, 0) = u0(x), x ∈ RN . (4.2)

Typical nonlinear terms are φ(u) = um and f(u) = up with m > 0, p > 1
being constants. Our results and proofs of the present study are the same
with those of [15, 14] in spirit.

In the semilinear case φ(u) = u, if u0 is not a constant and takes its maxi-
mum at infinity, then the solution of (4.1)-(4.2) blows up only at space infin-
ity: See [12, 5] for one-dimensional problem; [7, 8, 16] for the Cauchy problem
in RN (See also [6].) The notion of “blow-up direction” was originally intro-
duced in [8]. For a solution u of (4.1)-(4.2) blowing up at t = T (u0), we say
that a direction ψ ∈ SN−1 is a blow-up direction if there exists a sequence
{(xn, tn)} ⊂ RN × (0, T (u0)) such that

|xn| → ∞,
xn

|xn|
→ ψ, tn ↗ T (u0), and u(xn, tn) →∞ as n→∞.

It is shown in [8] that the blow-up directions are characterized by initial data.
The authors of [15, 14] generalized the results of [7, 8] to the quasilinear case.
The definition of “minimal blow-up time” (or “the least (possible) blow-up
time”) was originally given in [15]. The notion of minimal quenching time
introduced in the present note is an analogue of this notion. The authors
of [15, 14] obtained a necessary and sufficient condition on initial data for a
solution to have a minimal blow-up time, which is close to Theorem 2.3.
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