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Abstract

This paper gives numerical examples showing that non self-similar
collapse can occur in the motion of four point vortices on a sphere. It
is found when the 4-vortex problem is integrable, in which the moment
of vorticity vector is zero. The non self-similar collapse has significant
properties. It is partial in the sense that three of the four point vortices
collapse to one point in finite time and the other one moves to the
antipodal position to the collapse point. Moreover, it is robust with
respect to perturbation of the initial configuration as long as the system
remains integrable. The non self-similar, robust and partial collapse of
point vortices is a new phenomenon that has not yet been reported.

1 Introduction

Interaction between coherent vortex structures plays a significant role in
understanding of inviscid and incompressible flows in two-dimensional Eu-
clidean space as well as on the surface of sphere, since vorticity is an invari-
ant quantity along the path of a fluid particle. As a simple mathematical
treatment to understand the interaction, we assume that the vorticity is
concentrated in Dirac’s δ-functions, which are called point vortices. The
motion of N point vortices is often referred to as the N -vortex problem and
it has been investigated as a model for two-dimensional Euler flows for more
than a century. Owing to its mathematical simplicity, many research papers
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are now available. For a complete list of references on this subject, see the
book of Newton [8].

We here focus on the case when the number of point vortices is small.
Since the motion of the point vortices is formulated as a Hamiltonian dy-
namical system with N degrees of freedom [8], research results are stated
in the framework of the Hamiltonian dynamical systems theory. Regarding
the integrability, the 3-vortex problem in the plane and on the sphere are
both integrable for any strengths of point vortices [1, 5, 10]. Although the 4-
vortex problem is not integrable in general (e.g. [12]), it becomes integrable
with a certain additional constraint condition. Such integrable four-vortex
problems have been studied for the planar case [2, 3] and for the spherical
case [11]. For N ≥ 5, the N -vortex problem is no longer integrable in the
plane as well as on the sphere.

On the other hand, it is known that under some circumstances, during
their motion, point vortices can collapse to a single point. Existence of such a
singular solution is physically important since the point-vortex model fails to
approximate the Euler flow after the critical time. In addition, the singular
solution is of mathematical significance, since its properties provides us with
useful information that would contributes to theoretical research of the Euler
flows. So far, only self-similar collapse, in which all point vortices shrink
to a point self-similarly in finite time without changing ratios between their
relative distances, has been investigated. In the planar N -vortex problem,
Kimura gave a necessary condition on the strengths of the point vortices
for the self-similar collapse, and he also derived algebraic equations for the
ratios [7]. By solving the algebraic equations, he constructed a self-similar
collapse solution of the three point vortices in the plane. Another approach
has been introduced to derive the self-similar collapse of the three point
vortices for the planar case [8] and for the spherical case [6]. However, it
is still unknown whether non self-similar collapse can occur or not. As for
the planar 3-vortex problem, it has been mathematically proven that non
self-similar collapse never occurs [4]. Hence, we need to consider at least the
4-vortex problem in order to obtain non self-similar collapse. Furthermore,
we have not yet known whether or not some of the point vortices collapse to
a point, while the others remain away from the collapse point at the singular
time.

In the present paper, we give numerical evidence that non self-similar
and partial collapse is possible in the integrable 4-vortex problem on the
sphere. In the next section, we review the results of the paper [11] on the
motion of the four point vortices on the sphere. Then, in Section 3, we
show an example of non self-similar collapse on the sphere and describe
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its properties in detail. In Section 4, we give more examples to see what
conditions are required for the existence of non self-similar collapse. The
last section is summary and discussion.

2 Integrable motion of four point vortices on sphere

We summarize some results on the integrable four-vortex motion on the
sphere given in [11], which help us describe the collapse solution in the
following sections. Regarding the detailed derivations of these results, we
would like the readers to refer to the original paper.

Let (θm, φm) and Γm denote the spherical coordinates of the mth point
vortex on the unit sphere and its strength for m = 1, . . . , 4, respectively.
With the Poisson bracket between two functions f and g,

{f, g} =
4∑

m=1

1
Γm

(
∂f

∂φm

∂g

∂ cos θm
− ∂g

∂φm

∂f

∂ cos θm

)
, (1)

the motion of the point vortices is governed by

d cos θm

dt
= {cos θm, H}, dφm

dt
= {φm, H}. (2)

where the Hamiltonian is given by

H = − 1
4π

4∑

j=1

4∑

m>j

ΓmΓj log l2mj , (3)

and
l2mj = 2(1 − cos θm cos θj − sin θm sin θj cos(φm − φj))

is the Euclidean distance between the mth and jth point vortices. Let us
introduce the moment of vorticity vector M = (Q, P, S) by

Q =
4∑

m=1

Γm sin θm cos φm,

P =
4∑

m=1

Γm sin θm sinφm,

S =
4∑

m=1

Γm cos θm.
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It follows from {H, Q} = {H, P} = {H,S} = 0 that each component of
M is invariant in time. Moreover, we have {Q,P} = S, {P, S} = Q and
{S, Q} = P , and thus they are in involution with each other when Q = P =
S = 0 holds at the initial moment. This indicates that the 4-vortex problem
on the sphere is integrable, if the moment of vorticity vector is zero [8].

In what follows, the motion of the four point vortices is described in
terms of their relative distances l2mj . The integrable system has two invariant
quantities, the Hamiltonian H and C,

C = Γ2 =
4∑

j=1

4∑

m>j

ΓmΓjl
2
mj , (4)

where Γ denotes the total circulation, i.e. Γ = Γ1 +Γ2 +Γ3 +Γ4. Due to the
zero moment condition, the 4-vortex problem can be reduced to a 3-vortex
problem with a method used by Rott in the planar 4-vortex problem [9].
Namely, it follows from Q = P = S = 0 that we have the relations between
the distances l2mj for m, j = 1, . . . , 4 as follows.

Γ1Γ4l
2
14 = Γ2Γ3l

2
23 + Γ(Γ1 − Γ2 − Γ3 + Γ4), (5)

Γ2Γ4l
2
24 = Γ3Γ1l

2
31 + Γ(−Γ1 + Γ2 − Γ3 + Γ4), (6)

Γ3Γ4l
2
34 = Γ1Γ2l

2
12 + Γ(−Γ1 − Γ2 + Γ3 + Γ4). (7)

Owing to these relations, the relative position of the fourth point vortex is
determined by the configuration of the vortex triple 123.

In that paper [11], necessary conditions for self-similar collapse were
also shown. It has been proven that there exist no self-similar four-vortex
collapse and no self-similar binary collapse, in which pairs of two point
vortices collapse at two different points simultaneously. However, the self-
similar triple collapse, in which three of four points collapse and the other one
remains away from the collapse point, was not ruled out. For instance, the
self-similar collapse of the vortex triple 234, which we deal with in this paper,
is permitted when the vortex strengths satisfy the following conditions.

Γ1 − Γ2 − Γ3 − Γ4 = 0, (8)
Γ2Γ3 + Γ2Γ4 + Γ3Γ4 = 0. (9)

The first condition comes from (5), (6), (7) and the invariance of C with
the assumptions that l223 = l234 = l224 = 0 and l212, l

2
13, l

2
14 6= 0 at a certain

time. The second one is derived from the invariance of H with the additional
self-similarity assumptions l234 = λ1l

2
23 and l224 = λ2l

2
23 for some constants
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Figure 1: Possible region (11) of (Γ3, Γ4) for given Γ1 and Γ2.

λ1, λ2 ∈ R. These necessary conditions provide us with an additional infor-
mation on the triple collapse. Substituting (8) into (5), (6) and (7) leads
to

l214 =
Γ2Γ3

Γ1Γ4
l223 + 4, l231 =

Γ2Γ4

Γ3Γ1
l224 + 4, l212 =

Γ4Γ4

Γ1Γ2
l234 + 4, (10)

which indicates that if the vortex triple 234 collapses, namely l223 = l224 =
l234 = 0, then the first vortex is located at the antipodal position to the
collapse point.

The strengths of the point vortices are further restricted due to the
boundedness of the relative distances between point vortices on the sphere,
i.e. 0 ≤ l2mj ≤ 4. The existence region of Γ3 and Γ4 for given Γ1 and Γ2 are
called the possible region. For instance, the triple 234 collapse is possible
when Γ1 ≥ Γ2 ≥ Γ3 > 0 > Γ4, for which the possible region is given as
follows [11].

Γ1 < Γ2 + Γ3 − Γ4, −Γ4 < Γ1 + Γ2 + Γ3, Γ1 < 2Γ2. (11)

Figure 1 shows the possible region (11), which is divided into four subregions,
say I to IV , by the lines Γ4 = −Γ3 + Γ1 − Γ2, Γ4 = Γ3 − Γ1 − Γ2 and
Γ4 = −Γ3 − Γ1 + Γ2. Let us note that the first line is equivalent to the
necessary condition (8) for which the triple 234 collapse is admitted.

The dynamics of the integrable system is represented in the trilinear
coordinates, which is a standard and convenient tool for the description of
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the integrable systems [1, 2, 5, 10, 11]. Now we suppose that Γ(Γ−2Γ4) 6= 0.
Then the trilinear coordinates (b1, b2, b3) is defined by

b1 =
3Γ2Γ3l

2
23

Γ(Γ−2Γ4)
, b2 =

3Γ3Γ1l
2
31

Γ(Γ−2Γ4)
, b3 =

3Γ1Γ2l
2
12

Γ(Γ−2Γ4)
. (12)

Since b1 + b2 + b3 = 3 due to (5), (6) and (7), the configuration of the vortex
triple 123 corresponds to a point in the trilinear phase space, in which each
component of the trilinear coordinates represents the distance from one of
the sides of the equilateral triangle with height 3 as shown in Figure 2. In
addition, we use another trilinear coordinates (B1, B2, B3), in which

B1 =
3Γ1Γ4l

2
14

Γ(Γ − 2Γ4)
= b1 +

3
Γ − 2Γ4

(Γ − 2Γ2 − 2Γ3), (13)

B2 =
3Γ2Γ4l

2
24

Γ(Γ − 2Γ4)
= b2 +

3
Γ − 2Γ4

(Γ − 2Γ3 − 2Γ1), (14)

B3 =
3Γ3Γ4l

2
34

Γ(Γ − 2Γ4)
= b3 +

3
Γ − 2Γ4

(Γ − 2Γ1 − 2Γ2). (15)

The equalities on the right hand sides are derived from (5), (6), (7) and
(12). Since we have B1 + B2 + B3 = 6Γ4/(Γ − 2Γ4), each component of
(B1, B2, B3) also represents the distance from one of the sides of another
equilateral triangle with height 6Γ4/(Γ − 2Γ4), which is called the physical
triangle. Let us remark that the collapse of the vortex triple 234 corresponds
to a point at the side of the trilinear triangle b1 = 0 and the vertex of the
physical triangle B2 = B3 = 0.

We need to take into consideration another constraint on the motion of
the four point vortices. Since the vortex triple 123 must form a triangle on
the sphere, their configuration is restricted by the triangle inequality [11],

3Vp − Γ(Γ − 2Γ4)b1b2b3 ≥ 0, (16)

in which

Vp = 2Γ2Γ3b2b3 + 2Γ3Γ1b3b1 + 2Γ1Γ2b1b2 − (Γ1b1)2 − (Γ2b2)2 − (Γ3b3)2.

The region where the condition (16) is satisfied is referred to as the physi-
cal region. The configuration where the three point vortices lie on a great
circle corresponds to a point at the boundary of the physical region. The
solution of the integrable 4-vortex problem evolves along a contour curve of
Hamiltonian,

H = Γ2Γ3 log |b1| + Γ3Γ1 log |b2| + Γ1Γ2 log |b3|
+Γ1Γ4 log |B1| + Γ2Γ4 log |B2| + Γ3Γ4 log |B3|.
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b1

b2

b3

(b1,b2,b3)

Figure 2: Trilinear representation of the configuration of the vortex triple
123.
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Hence, we have only to plot contour lines of the Hamiltonian inside the
physical region in the trilinear phase space to see the evolution of the four
point vortices. The topological structure of contour lines of the Hamiltonian
for the vortex strengths in the subregions I to IV has already been studied
in [11]. On the other hand, less attention was paid to the motion of the
four point vortices when the vortex strengths are chosen from the boundary
lines between the subregions, where the triple 234 collapse is possible. We
consider this case in the next section.

3 Non self-similar partial collapse

We deal with a special case of Γ1 = 3, Γ2 = 2, Γ3 = 2 and Γ4 = −1 that
satisfy the conditions (8), (9) and (11), for which the collapse of the triple
234 is possible. In Figure 3(a), the larger triangle represents the trilinear
triangle and the smaller one is the physical triangle. Inside the physical
triangle, the boundary of the physical region is drawn as a solid closed curve.
Figure 3(b) is a close-up of the physical triangle, in which contour lines of
the Hamiltonian are plotted. The two filled circles at the boundary of the
physical region represent singular configurations corresponding to the triple
234 collapse, b1 = B2 = B3 = 0, and the binary collapse of the vortices 1 and
4, B1 = 0, respectively. The contour lines appear to converge at the point
of the triple 234 collapse, which suggests that the triple collapse occurs.

The above observation is verified by numerical means. Let Θ0 6= 0 be a
parameter. Then we give the initial configuration of the four point vortices
as follows.

θ1 = π − Θ0, θ2 = θ3 = θ4 = Θ0,
φ1 = φ4 = 0, φ2 = −φ3 = 2/3π,

(17)

in which the vortex triple 234 forms an equilateral triangle at the line of
latitude Θ0 and the first point vortex is located at the position symmetric
to the fourth point vortex with respect to the equator as we see in Figure 4.
The trilinear coordinates for this configuration are given by

b1 = 3
4 sin2 Θ0, b2 = b3 = 3

8(4 − sin2 Θ0),
B1 = 3

4(sin2 Θ0 − 1), B2 = B3 = −3
8 sin2 Θ0,

(18)

which means that the initial configuration (17) corresponds to the center
line b2 = b3 and B2 = B3 in the trilinear and the physical phase spaces,
which is drawn as a vertical dashed line in Figure 3(b). It follows from the
triangle inequality (16) and the trilinear coordinates (18) that the parameter
Θ0 varies in the range of (0, π/2). For Θ0 = 0, the initial configuration
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(a) (b)

2-3-4

1-4

2-3-4

1-4

Figure 3: (a) The trilinear triangle (the larger one), the physical triangle
(the smaller one with dashed line) and the physical region (the solid close
curve inside the physical triangle) for Γ1 = 3, Γ2 = 2, Γ3 = 2 and Γ = −1.
The point “2-3-4” denotes the singular configuration where the vortex triple
234 is at the same position, and the point “1-4” corresponds to the singular
configuration where the first and the fourth point vortices are at the same
position. (b) Contour lines of the Hamiltonian inside the physical region,
which is a close-up of the left figure. The vertical dashed line in the center
corresponds to the initial configuration of the point vortices (17).
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θ０

1

2

3
4

θ０

Figure 4: Initial configuration for the four point voritces (17).

corresponds to the collapse of vortex triple 234, while the first point vortex
coincides with the fourth one at the equator for Θ0 = π/2.

Regarding the temporal integration of (2), we use the fourth-order Runge-
Kutta method with time step size ∆t = 10−5 and we stop the numerical
computation when the relative distances between the vortex triple 234 be-
come less than a threshold value 10−5. We verify accuracy of the numerical
computation by checking the values of the Hamiltonian and the moment
of vorticity vector at each time step. In the examples of this paper, these
values remain the same as those for the initial configuration up to 6-digits.
For example, we plot the values of Hamiltonian and the moment of vorticity
vector for the initial configuration (17) with Θ0 = 0.2π in Figure 5. Al-
though the vortex triple 234 collapses for this case as shown later, we hardly
see any variation in these values.

We show the trajectory of the four point vortices for the initial data
(17) with Θ0 = 0.2π in Figure 6, which indicates that the vortex triple
234 collapses to one point at some finite time, say tc, and the first point
vortex stays away from the collapsing point. In order to see the trajectory
quantitatively, we plot the relative distances l2mj in Figure 7. It shows that
the distances between the vortex triple 234 tend to zero, while those between
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Figure 5: Plot of the values of the Hamiltonian H and the moment of
vorticity vector (Q,P, S) for the initial configuration (17) with Θ0 = 0.2π.

the first point vortex and the triple approach four, i.e. l223, l
2
24, l

2
34 → 0

and l212, l
2
13, l

2
14 → 4. Hence, the first vortex is located at the antipodal

position to the collapsing point. Then, we pay attention to the ratios l224/l223
and l234/l223 between the vortex triple 234. If they are constant throughout
the evolution, the collapse is self-similar. However, as we see in Figure 8,
the ratios change and tend to different constants asymptotically as time
approaches the collapse time. This means the collapse of the vortex triple
is non self-similar.

Now we change the parameter Θ0. Figure 9 shows the distances between
the four point vortices and the ratios of the vortex triple 234 for the ini-
tial configuration (17) with Θ0 = 0.3π. This indicates that non self-similar
triple collapse also occurs for this case. We observe the same type of non
self-similar triple 234 collapse for Θ0 ∈ [0.04π, 0.3553π]. Let us note that
it is difficult to compute the triple collapse accurately for Θ0 ≤ 0.04π by
numerical means, since the initial configuration is close to the singular con-
figuration. Then we plot the collapse time tc for various Θ0 in Figure 10.
The collapse time increases rapidly as Θ0 tends to 0.3553π. This implies that
there exists a threshold value Θc, where the collapse time blows up. As a
matter of fact, if we take the parameter Θ0 a little larger, e.g. Θ0 = 0.3554π,
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Figure 6: Collapse of the vortex triple 234 for the initial configuration (17)
with Θ0 = 0.2π. The first point vortex moves towards the antipodal position
of the collapse point when the triple collapse occurs.

the vortex triple never collides and the orbit becomes periodic as in Fig-
ure 11. For 0.3554π ≤ Θ0 < π/2, we confirm that the evolution of the four
point vortices is always periodic.

From the viewpoint of the trilinear representation in Figure 3(b), all
contour lines passing across the vertical center line b2 = b3 for 0 < Θ0 < Θc

represent the orbits that lead to the triple 234 collapse in finite time. Since
we can take any point in these contour lines as an initial configuration of
the four point vortices, the triple collapse is robust under any perturbation
of the initial configuration as long as the moment of vorticity vector remains
zero.

4 Collapse and integrability

In the previous section, we have found the collapse solution in the integrable
4-vortex problem for a special choice of the vortex strengths that satisfy
the necessary conditions (8) and (9) for the self-similar triple 234 collapse,
which gives rise to some questions. The first one is if we can observe non
self-similar collapse for other values of the vortex strengths. The second one
is whether or not it is really necessary to assume the condition (9) for the
vortex strengths. It is a necessary condition for the existence of self-similar
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Figure 7: Evolution of the relative distances l2mj between the four point
vortices for the collapse orbit in Figure 6.

collapse, but the triple 234 collapse we found is non self-similar. The final
one is how the integrability of the system plays an important role in the
triple collapse. These are examined in this section with more examples.

First, we see the other integrable cases when the vortex strengths satisfy
the necessary conditions (8) and (9) as in the previous section. Here, we set
the initial configuration as

θ2 = θ3 = θ4 = Θ0, φ2 = 0, φ3 = 2π/3. (19)

The initial data for θ1, φ1 and φ4 are determined by solving Q = P = S = 0
numerically. The parameter Θ0 is variable in the range of (0, 0.5π). For
(19) with Θ0 = 0, the vortex triple 234 is at the north pole and the first
vortex is at the south pole due to S = 0 and (8). It corresponds to the
singular triple 234 collapse. On the other hand, for Θ0 = 0.5π, all the point
vortices are in the equator and the first and the fourth point vortices are
located at the same position, which corresponds to the singular binary 14
collapse. Figure 12 shows evolutions of the relative distances between the
four point vortices and the ratios between the vortex triple 234 for Γ1 = 4,
Γ2 = 3, Γ3 = 1

2(1 +
√

13) and Γ4 = 1
2(1 −

√
13), which indicates that the
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Figure 8: Plots of l224/l223 and l234/l223, which are ratios of distances between
the vortex triple 234, for the orbit in Figure 6.

non self-similar triple collapse also occurs. We plot contour lines of the
Hamiltonian in the physical triangle in Figure 13(a), and the collapse time
tc of the triple 234 for the initial configuration (19) with Θ0 ∈ [0.05π, 0.364π]
in Figure 13(b). The collapse time tc blows up as Θ0 approaches 0.346π. The
same phenomena are also observed for the other case when Γ1 = 6, Γ2 = 5,
Γ3 = 1

2(1 +
√

21) and Γ4 = 1
2(1 −

√
21), for which contour lines of the

Hamiltonian in the physical triangle and the collapse time tc for the initial
configuration (19) with Θ0 ∈ [0.05π, 0.3776π] are shown in Figure 14(a) and
(b), respectively.

Next, we consider the case when Γ1 = 3, Γ2 = 2, Γ3 = 1.5 and Γ4 =
−0.5 that satisfy (8) but not (9). Figure 15 shows the contour plot of the
Hamiltonian in the physical triangle, which appears that the contour lines
never connect to the point corresponding to the triple 234 collapse. To
confirm this observation, we consider the following initial configuration,

θ2 = θ3 = θ4 = Θ0, φ2 = π/4, φ3 = 3/4π. (20)

The other variables, θ1, φ1 and φ4, are numerically determined by solving
the equations Q = P = S = 0. Note again that the initial configurations
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(20) with Θ0 = 0 and Θ0 = 0.5π correspond to the triple 234 collapse and
the binary 14 collapse, respectively. As we change the parameter Θ0, a point
corresponding to the initial configuration (20) in the trilinear phase space
moves along a continuous curve that connects the two singular points and are
transverse to contour lines of the Hamiltonian in Figure 15. We numerically
confirm that all orbits starting from the configuration (20) become periodic.
Figure 16 shows the period for these periodic orbits for Θ0 ∈ [0.05π, 0.46π].
Hence, the necessary condition (9) for the self-similar triple 234 collapse is
required for the existence of non self-similar collapse.

Finally, we perturb the initial configuration (17) so that it loses its inte-
grability. The initial positions of the second, the third and the fourth point
vortices remain the same as in (17), but the first point vortex is slightly
perturbed as θ1 = π − Θ0 + ε, in which ε = 10−4 and Θ0 = 0.2π. Then the
4-vortex problem is no longer integrable since Q 6= 0 and S 6= 0 at the initial
moment. Figure 17 shows the trajectory of the four point vortices. After
the vortex triple 234 approaches closely, the three point vortices swing-by
and separate away. Evolution of the relative distances l2mj between the four
point vortices are plotted in Figure 18(a), which shows that the motion of
the four point vortices is periodic. Figure 18(b) is a close up of the evolution
around t ≈ 10.5, which shows that they never collapse since the distances are
greater than the threshold value 10−5. This example indicates that the inte-
grability of the system is also necessary for the existence of non self-similar
collapse.

5 Summary and discussion

We have reported some numerical examples showing that non self-similar
triple collapse is possible in the integrable 4-vortex problem on the sphere.
Three point vortices collide at one point in finite time and the other one is
located at the antipodal position to the collision point. The non self-similar
triple collapse has never been reported so far and it is a unique phenomenon
found in the 4-vortex problem on the sphere. It could be interesting to see
if the partial collapse occurs in the planar 4-vortex problem or not. If it
existed, the orbit would correspond to the triple collapse, but the other one
would be going away to infinity.

The singular solution is robust under the perturbation of initial data as
long as the Hamiltonian system remains integrable. This is different from the
self-similar collapse in the 3-vortex problem found in the preceding research,
since choice of the initial configuration for the collapse is strongly restricted,
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i.e. it is non generic. We also see that the integrability of the system is a
necessary condition for existence of non self-similar triple collapse.

Let us finally note that the present paper does not give a rigorous math-
ematical proof for the existence of non self-similar collapse. Although we
have checked the numerical results as carefully as possible, we are unable
to avoid a certain approximation error and the round-off error in numerical
computations. Nevertheless, the examples still give us some useful informa-
tion for the mathematical proof, e.g. the vortex strengths and the initial
configurations. We have tried to describe the singular solution explicitly, but
it is not successful for the time being. A topological regularization method
proposed by Hiraoka [4] for the planar 3-vortex problem could be applied to
prove the existence of non self-similar collapse, but its application to the 4-
vortex problem on the sphere is not straightforward. We need more research
on the topic and will be reported in the near future.
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Figure 9: Evolutions of (a) the relative distances l2mj between the four point
vortices, and (b) the ratios of the relative distances of the vortex triple 234
for the initial configuration (17) with Θ0 = 0.3π.
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Figure 10: Time of the triple 234 collapse tc for various Θ0.
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Figure 11: Evolution of the relative distances l2mj for the initial configuration
(17) with Θ0 = 0.3554π, which shows that the motion of the four vortices is
periodic.
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Figure 12: Evolutions of (a) the relative distances l2mj between the four point
vortices and (b) the ratios of the relative distances between the vortex triple
234 when Γ1 = 4, Γ2 = 3, Γ3 = 1
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Figure 13: (a) Contour lines of the Hamiltonian and (b) collapse time tc
for Θ0 ∈ [0.05π, 0.346π] when Γ1 = 4, Γ2 = 3, Γ3 = 1
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Figure 15: Contour lines of the Hamiltonian for Γ1 = 3, Γ2 = 2, Γ3 = 1.5
and Γ4 = −0.5 that satisfy (8) but not (9).

 0

 4

 8

 12

 0  0.1  0.2  0.3  0.4  0.5

P
er

io
d

Θ0

Figure 16: Period of the periodic orbits for the initial configuration (20)
with various Θ0 for Γ1 = 3, Γ2 = 2, Γ3 = 1.5 and Γ4 = −0.5.
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Figure 17: Trajectory of the four point vortices when the initial configuration
(17) is perturbed as θ1 = Θ0+ε with ε = 10−4 and Θ0 = 0.2π. The strengths
of the point vortices are Γ1 = 3, Γ2 = 2, Γ3 = 2 and Γ4 = −1. The 4-vortex
problem on the sphere is not integrable for this initial configuration.
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Figure 18: Evolutions of (a) the relative distances l2mj between the four point
vortices for the trajectory in Figure 17, and (b) its close-up around t ≈ 10.5.
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