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Abstract

Consider a scattering problem for the Dirac equation with a nonlocal term including
the Hartree type. We show the existence of scattering operators for small initial data
in the subcritical and critical Sobolev spaces.

1 Introduction
We consider a scattering problem for the Dirac equation with a nonlocal term
Oh+a -V +ifyY = AV * [YP 1w, (t,7) € R x R™ (1.1)

Herep >3, n>3, 0, =0/0t, V= (01, - ,0,), 0; =0/0xj, j=1,--- ,n, A€ C, a-V =
iajaj, a;’s, j = 1,--- ,n and 3 are 2["+D/2 x 2l +D/2] Hermitian matrices satisfying
é;é usual anticommutation relations *. The unknown function 1 is a 2[(**1/2_spinor field
defined on R x R". The function V' = V(z) satisfies |V (z)| < || with v > 0, and *
denotes the convolution in space.

As a special case of (1.1), the Dirac equation of Hartree type, say p = 3, with the Coulomb
potential V(z) = |x|7! is derived from the Maxwell-Dirac equations with zero magnetic field.

See Chadam and Glassey [2]. As another case, Dias and Figueira [3] proved that there exist

TPartially supported by Grant-in-Aid of formation of COE “Mathematics of Nonlinear Structures via
Singularities”
Yajap + agay = 2851, ajB+ Ba; =0, B2 =1for 1 <j, k<n.
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weak solutions of a special form of the massless Dirac equation with the nonlinear term
e | z| =7 % |¢|P)e. See also [4].

In this paper we study the scattering problem for (1.1) with small initial data. The
scaling argument for the massless Dirac equation, say 9y + a - Vi = NV * [P~ 1)) with
V(z) = |x|~7 gives the value of the critical Sobolev exponent s. = (y—1+4+n(p—3)/2)/(p—1).
Our aim of this paper is to prove the existence of scattering operators for (1.1) with small
initial data in the subcritical Sobolev space H® with s > s. if p > 3 and in the critical
Sobolev space H*¢ if p > 3 under some conditions.

The present paper is organized as follows. In Section 2, we give some notation and
conditions, and then state our main results. In Section 3, we prove the results. Our basic
tool is the Strichartz estimate for the Klein-Gordon equation which was shown by Machihara,
Nakanishi and Ozawa [7]. In Section 4, we state and prove similar results for the critical
case s = s. and p > 3. We use the interpolation inequality shown by Escobedo and Vega [5]

for the proof.

2 Notation and Main Results

We use the standard notation. We denote by H; and B; the usual inhomogeneous
Sobolev and Besov spaces on R", respectively. We write H® = Hj. For the definitions of
these spaces, see, e.g., [1]. For functions defined on space-time, we write L] BS = L{(R; B?).
We use A < B to denote the estimate A < C'B, where C' is a positive constant.

Let p > 3. We assume that (v, s) satisfy the following condition:

( -1 -3
s>sc:7 +n(p ),
p—1 2(p-1)
¥ 1
>— —
(H1) s P +2,
n(p —3) n(p—3)}
max , 2 — <7y <n.
\ {2(]9—2) 2

The set of (v, s) satisfying (H1) is shown in Figure 1. By choosing 0 < # < 1 depending on



O n(p—3) Y
2(p—2)
Figure 1: Domain of (v, s) satisfying (H1)
s, v, p and n, we put
1 1 2 1 n 2 (2.1)
- = - — y g = . .
r 2 (p=—1)Mn-1+0) p—1 (p—1)(n—-1+90)

We determine 6 in Section 3 so that s > o. Note that the pair (r,0) in (2.1) withp=n =3
and 6 = 0 corresponds to the endpoint where the Strichartz estimates fail. See the remark
after Lemma 3.1 below. Thus, in case p = n = 3, we choose 0 < 6 < 1.

For p, r and o above and s > 0, we define X* by
X*=L*®R;H)( L' (R; By ™). (2.2)

We now state our first main result, which is about the Cauchy problem for (1.1) with the
initial data o (z):

Db+ a - Vb + i = A[V = [pP- 1, (t,2) € R x R,
(2.3)

(0, ) = Yo(x) x € R



Theorem 2.1 (1) Let p > 3. Assume (H1) and let s < (p —1)/2 if p is not an odd
integer. Then there exists 0 < 0 <1 (0 <0 <1ifp=mn=3), depending only on s, v, p
and n such that if ||vo|

s 18 sufficiently small, then (2.3) admits a unique global solution
Y € X° with s > o defined in (2.2).

(ii) For the global solution 1 given in (i), there exist unique ¢+ € H*® such that

lim_[[¢(t) — U(t)os s = 0, (2.4)

t—too

where U(t) denotes the Dirac group, which solves the free Dirac equation.

Remark. (i) The set of (v, s) satisfying (H1) and s < (p — 1)/2 is not empty since
p>3and n > 3.
(ii) The condition s < (p — 1)/2 in the theorem is not necessary if p is an odd integer. See

the proof of Theorem 2.1 in Section 3.

We next consider the final value problem for (1.1) with data given at t = —o0:

t

vltr) = Uy (@) + [ V- )P, 25)
where F'() = A[V « [1|P71]p. Note that U(¢)y~ (x) is a solution of the linear Dirac equation
o) + a - Vi + i = 0 with the initial data ¢~ at t = 0.
Theorem 2.2 Let s, v, p and n be as in the preceding theorem. Then there exists
0<0<1(0<0<1ifp=n=3), depending only on s, v, p and n such that if ||}~ || g
is sufficiently small, then the itegral equation (2.5) has a unique solution » € X* with s > o
satisfying
i [[(t) ~ U0 [l = 0, (2.6)
From Theorems 2.1 and 2.2, we can define the scattering operator for small initial data

in the case p > 3 under the assumptions of Theorem 2.1. See, e.g., [8].

3 Proofs of Theorems

To prove Theorem 2.1, we rewrite (2.3) as the following integral equation
t
w(t) = Ultn + [ Ut = O)P(@i)ar, (3.1)
0
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where F(1) = A[V % [P, and U(¢) is the free propagator defined on L2(R™; C2" ")
given by
U(t) = Tcost(l — A2 — (- V +if)(1 — A" Y2sint(1 — A2,

The following lemma is the Strichartz estimates for U(t). See [7].

Lemma 3.1 Let n > 2. Then one has the estimates

U @ull g g S Nl e, (3.2)

/ Ut — ) F(t')dt!

Sl gty

LB,
where 2/q; = (n — 1+ 0)(1/2 —1/rj), 2s; = (n+ 1+ 0)(1/2 —1/r;) for 0 < 6 < 1,
2<ygq, rj <00, (gj,1;) # (2,00), j =1,2,3 whenn =2, 3, and p’ denotes the conjugate

exponent to p, i.e., 1/p+1/p = 1.

Remark. When we apply Lemma 3.1 in the case n = 3 and ¢ = 2, we take 6 > 0 since

(g;,7j) # (2,00) which is called “end point” where the Strichartz estimates fail.

Proof of Theorem 2.1. We first prove Part (i) of Theorem 2.1. For (s, ) satisfying (H1), if

nip—3)/(2(p—2)) <2n/(n—1)—n(p—3)/2, we choose 0 <O <1 (0<f<1if p=n=3)

such that
v—1 n(p-3) 20
s> + + 3.4
p=1 72D p-Dw-1+0) B4
and
n(p —3) 2n n(p —3)
< — . .
2p—2) “n—1+0 o ~T=n (35)

On the other hand, if n(p—3)/(2(p—2)) > 2n/(n—1) —n(p—3)/2, we take § = 0. In either

case, we have by (H1)

2n n(p —3)
n—14+10 2

<7y <n. (3.6)

Using € chosen above, we set (2.1).



Let M > 0. We define the complete metric space X3, by
Xis

4]

{eX® v

[Pl e rs + 1100 o1 o

Xs SM})

Xs

where r and o are defined in (2.1).

Let A be the map defined by

An(t) = U(t)ho + /Ot Ut —tF(p(t))dt  for v € X3, (3.7)

We show that A is a contraction of X3, into itself. From (3.2), (3.3) and (3.7), we have

[AYllxs < ol s + [1F (@) s (3.8)
Take
1 1 1
S (1 _ 1) (3.9)
b2 2 p—1 n
and set
11 1 1 p—2 1
— = — — — and — = — + —. 3.10
Z A 7 72 2 (3.10)
Then (3.9) and (3.10) imply
1 1
—=1i_ 1 (3.11)
n n G

We note that 0 < 1/p; < 1/2 and 1/2 < 1/¢; < 1 since p > 3 and v > n(p — 3)/(2(p — 2))
by assumption.

We estimate the norm of F(v)) = A(V * [¢[P71)¢ in (3.8). The following inequality holds:

IE@ gz S IV [P v g 1801t + 1V 1P gzl e s

= I+, (3.12)

where p; and py are given in (3.9) and (3.10).
We first estimate I;. By (3.10) and (3.11), the Hardy-Littlewood-Sobolev and Hélder

inequalities yield

IV P g, S P s,

(Rl Y

A

Hs, (313)

(=}



where ¢; and g3 are given in (3.9) and (3.10). We note by (2.1), (3.4) and (3.6) that

1 s—o 1 ¥ 1 1 1
- - c——(1-)=— =<2
r n p—1 n P2 G2 T
Using the embedding B5~7 < LP2 and B5~° — L% we obtain
L Sl e 0l e e (3.14)
We next estimate I,. We use the following proposition:
Proposition 3.2 Let p > 3. Let v and s satisfy (H1) and let r and o be given in
(2.1). Then there exists ps > 1 such that
1 — 1
4t <l--
no o Ds r
-2 — 1
Ot L B Y
Ds n n o
1 — 1 1
and — — ST < —.
r n Ps T
Proof. 1t is sufficient to show that
s—o v 1
S S (3.15)
n n o
1
m>—t =41, (3.16)
n o
1 s—-o
>(p—-2)|-— , 3.17
-2 ;- 27) (3.17)
1 — — 1
(p—2)<——8 0><5 7T 24y, (3.18)
r n n n o

where m = min{l — 1/r, (p — 2)/r}. Recall that (3.4) and (3.6) are satisfied. We notice
(3.16) is equivalent to (3.6) when m = (p —2)/r. If m =1 —1/r, (3.16) holds true since
v > 0. We can also easily verify that (3.18) is equivalent to (3.4) by substituting (2.1) into
the both sides of (3.18). Moreover, we see that (3.18) yields (3.15) by v < n.

Finally, we show (3.17) dividing into two cases. If n(p — 3)/(2(p — 2)) < 2n/(n — 1) —

n(p — 3)/2, then m = (p — 2)/r. In fact, from (3.5) we have

p-3p-1 _ 1
4p—2) “n—1+4+6




which yields

(p—3)p—1) 4
n—1+6

We have used p > 3 for the first inequality. Hence, m = (p—2)/r. Clearly, it m = (p—2)/r,
(3.17) holds true since s > o and p > 3.

Ifn(p—3)/(2(p—2)) >2n/(n—1)—n(p—3)/2, recall § = 0. We have only to deal with
the case m = 1 — 1/r since in the other case (3.17) is clearly true as above. From (H1), we

have

-1 2(p-1)
1 (n(p-3) n(p —3)
p—1<2(p—2)_1 NETES)
1 2 n(p—1)

since # = 0. By simple calculation we see that the last inequality is equivalent to (3.17) with

m =1 —1/r. This completes the proof of the proposition. ]

We now return to the proof of Theorem 2.1. Let p5; be as in Proposition 3.2. We set

1 1 1 1 -2
—:1—1———1, and —:——l—p
Dps3 n. pa Y2 r Ds

for p > 3. Then by v < n and Proposition 3.2, we see that 0 < 1/p3, 1/py < 1 and

n
S—0o > —.
Dps3

By the Sobolev and Hardy-Littlewood-Sobolev inequalities, we have

IV [P (@)l S NIV [0 (#)]

e S Ml

HZ;O’ .
By the Holder and Sobolev inequalities and Proposition 3.2, we obtain

p—1
By~

[P~

-2
e S gz 191 S 19|

and hence,

Iy S ||1/J||E}13:_a||¢||L§°HS- (3.19)
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Combining (3.8), (3.12), (3.14) and (3.19) together, we obtain

[AY][xs < Cillvbollms + Coll¥[%s < Chlltollas + CaMP.
Similarly, we have
1F@) = F@o)lleims S (nlli’ + llalf e — wllxs
S My — |,

and hence

Aty — At xs < C3MP™H|oy — 1o

Xs.

Thus, if we choose the |||

ps sufficiently small and M > 0 so that,

M 1 1
o< — and MPl<mind —. —
ol < 57 an —mm{zcg’ 203}’

then we obtain

[ A¢]

Xs S M and ||A¢1 — A?/)2|

X5,

1
xs < 5”@/)1 — 1y

which shows that A is a contraction of X7}, into itself. Therefore, A admits a unique fixed
point ¢ € X*® which satisfies (3.1).

(ii) Using the global solution v given in (i), we define the functions ¥+ by

Yy (x) = Po(x) + /0 h U(—t"YF((t'))dt. (3.20)

Then U(t)1+ are solutions of the linear Dirac equation 0% + o - Vb 4 i8y) = 0. Moreover,

we see that ¥y € H® and (2.4) hold since || F ()]

n+ € L! by (3.12), (3.14) and (3.19).

This completes the proof of Theorem 2.1. [ ]
Proof of Theorem 2.2 We can prove Theorem 2.2 in the same way as the proof of
Theorem 2.1. We omit the details. [ ]

4 Critical Case

In this section, we consider the same problem as in the previous section for the Sobolev

exponent including the critical one. Let p > 3. We make some preparations to state the
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result. We assume that (7, s) satisfy the following conditions:

—1 ~3
6>, = 1 )

p—1 2(p—1)

(H2)

max{n(p—i%) 2n  n(p-3)
2p—2) n—1 2

We define some function spaces. We put

1_1_ 2
o 2 (m—1({p-1)
(4.1)
o n—+1
" ln-1p-1)

Note that 0 < 1/ry < 1/2. For any (v, s) satisfying (H2), we have s > oy, hence we can

choose o; and oy such that
0<o09<o0g<oy<min{(s+1)og/(1+09), (n+1—7)og, (n+1)/(2(n—1))}. (4.2

For each o, j = 1,2, we define ¢; and 7, j = 1,2 by

1 —1)o; —-1/1 1
L _(=Do _n <———>,j—1,2. (4.3)
q; n+1 2 2 1

Then we see that

For p, r;, 05, 1 =0,1,2, q;, 7 = 1,2 above and s > 0, we set
Y= LR H*) (| L (R By, ) (| L% (R: B ™) (| L% (R; By, ™). (4.5)

Theorem 4.1 Let p > 3 and let (v, s) satisfy (H2). Assume that s < (p—1)/2 if p is
not an odd integer. If ||vollms is sufficiently small, then there exists a unique global solution
W of (2.8) such that 1 € Y?® defined in (4.5).

Moreover, for the global solution 1 given in (i), there exist unique ¥+ € H?® satisfying

(24).

Theorem 4.2 Let s, v, p and n be as in the preceding theorem. If ||¢~|

s 18 suffi-

ciently small, then the integral equation (2.5) has a unique solution ¥ € Y* satisfying (2.6).

10



From Theorems 4.1 and 4.2, we can also define the scattering operator for small initial

data in the case p > 3 under the assumptions of Theorem 4.1.
Proof of Theorem 4.1. For M > 0, we define the complete metric space Y}; by
Yy = {veY® : [[¢flys <M},
[Dllys = Wllegrs + 19l p-rpseo + 19l o pomor + 1] g2 ps o

where 7;, 0;, i =0,1,2 and ¢;, j = 1,2 are defined in (4.1)-(4.3).
We proceed in a similar way to the proof of Theorem 2.1 to show that the map A defined

in (3.7) is a contraction of Y} into itself. As before, we have

| A

ve S 4ol

e+ [ F )| Lras- (4.6)

We choose p1, p2, @1 and ¢z as in (3.9) and (3.10). Then we have (3.12). We can estimate [
in the same manner as before. However, as the Sobolev embedding for ||| ;s in (3.13) and
|1%]| 2 in I, we use

B5700 y BSc=00 , [P2 [42
o ro ’

In fact, (3.9) and (4.1) imply

1 Se—oop 1 (1 7)_1_1
70 n  p—1 n

and s > s. by assumption. Thus, we obtain

IS ||¢||Lp . ao||¢||L§°Hs- (4.7)

We next estimate I following Escobedo and Vega [5]. Since ¢; and g2 given in (4.3)

satisfy (4.4), there exists 0 < § < 1 such that
—1 -1
5(1—79 )+(1—5)(1—p )—o. (4.8)
01 a2

IV < 19 g S 190G 91 o2 (4.9)

We show that

where r; and 0;, 7 = 1,2 satisfy (4.2) and (4.3). We use the following lemma:

11



Lemma 4.3 Let 1 <a,b< oo, 0<a, B<nand0 <9 <1 satisfy

1 « I AN
(-2 van(1-2) o a0
l—g#O and 1—észré().
a n b n

Then we have

lullse ey S el lull s

See [5] for its proof.

By (4.2), we have
1
(01 <)oy (— + 1) —1<s,

00
which is equivalent to
p—1
il
since o9 = (n+1)/((n—1)(p—1)) and 1/¢1 = (n — 1)oy/(n + 1) by (4.3). Hence, we can

—1<s—o

take o« > 0 such that

p—1
q1

0<

—1
_1<a<min{s—01,n—|—p —1}. (4.11)
1

We can also take 3 > 0 such that

-1
0<ﬁ<min{s—02,n+p —1} (4.12)
42

by (4.2) and (4.4). Set

1 1 -1 1 1 —1
_:g+_(1_p ) and _:§+_<1_p )
a n n 7 b n n P

We see by (4.11) and (4.12) that 0 < 1/a <1 and 0 < 1/b < 1. Note that (4.10) is satisfied

by (4.8). Applying Lemma 4.3 for u = V x [¢[P~!) we have

IV [P () e SNV [T (0N 1V o+ [P ()] (4.13)

To estimate the H® - norm in (4.13), we write

1 2 1
SR Al Y (4.14)
a n aq a9
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where

a n as N n
with s, = (y — 1+ n(p—3)/2)/(p — 1). We note that

1 1
0<—<—<

In fact, we can verify 0 < 1/a; < 1/ay using (4.15),

1 1 207 n—+1

o 2 n+1’ (n—1)(p—1)

(4.15)

n (4.1)-(4.3). Moreover, we have 1/a; < 1/ay < 1/r1 < 1/2 by (4.11) and (4.15). Note that

s. — o1 > 0 holds by assumption and (4.2).

By (4.14), the Hardy-Littlewood-Sobolev and Hélder inequalities give

IV [P @) g S I ONER 10 (1) |37, -

It follows from (4.15), s > s. and the embedding B ' — L and B 7 — H{ that

(p—1)8

9 0'1
7"1

IV [ )l < Nl0(2)]

Similarly, the H_ - norm in (4.13) is estimated by

IV P (Ol S @ i 1021 ”,

where r9 and oy are given by (4.2) and (4.3) with j = 2. Hence, from (4.13) w.

IV [P Ol S IO VIOl 525",

Thus, we obtain (4.9) by (4.8) and the Hélder inequality. Therefore,

1)(1-6
Iy S 10 oo 11 e e (4.16)
holds. Combining (3.12), (4.6), (4.7) and (4.16) together, we obtain
[AY|lys < Cillvboll s + Coll¥][§« < Chl[dbol| s + C2MP.
Therefore, proceeding as in the proof of Theorem 2.1, we obtain the desired result. [ ]
Proof of Theorem 4.2. The proof is the same as that of Theorem 4.1. We omit the
details. -
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