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We describe a Brownian ratchet scheme which we use to calculate relative equilibrium
configurations of N point vortices of mixed strength on the surface of a unit sphere.
We formulate it as a linear algebra problem A~Γ = 0 where A is a N × N(N − 1)/2
non-normal configuration matrix obtained by requiring that all inter-vortical distances
on the sphere remain constant, and ~Γ ∈ RN is the (unit) vector of vortex strengths
which must lie in the nullspace of A. Existence of an equilibrium is expressed by the
condition det(AT A) = 0, while uniqueness follows if Rank(A) = N−1. The singular value
decomposition of A is used to calculate an optimal basis set for the nullspace, yielding all
values of the vortex strengths for which the configuration is an equilibrium. To home in
on an equilibrium, we allow the point vortices to undergo a random walk on the sphere
and after each random step we compute the smallest singular value of the configuration
matrix, keeping the new arrangement only if it decreases. When the singular value drops
below a predetermined convergence threshold, an equilibrium configuration is achieved
and we find a basis set for the nullspace of A by calculating the right singular vectors
corresponding to the singular values that are zero. For each N = 4 → 10, we generate an
ensemble of 1000 equilibrium configurations which we then use to calculate statistically
averaged singular value distributions in order to obtain the averaged Shannon entropy
and Frobenius norm of the collection. We show that the statistically averaged singular
values produce an average Shannon entropy that closely follows a power-law scaling of
the form < S >∼ αNβ , where β ≈ 2/3. We also show that the length of the conserved
center-of-vorticity vector clusters at a value of one and the total vortex strength of the
configurations cluster at the two extreme values ±1, indicating that the ensemble average
produces a single vortex of unit strength which necessarily sits at the tip of the center-of-
vorticity vector. The Hamiltonian energy averages to zero reflecting a relatively uniform
distribution of points around the sphere, with vortex strengths of mixed sign.
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1. Introduction

We study statistical properties of collections of relative equilibrium configurations of
N -point vortices on the surface of the unit sphere. The method used to produce an
equilibrium is based on using the k smallest singular values of the configuration matrix
(obtained by requiring that all inter-vortical distances remain fixed) as a ‘ratchet’, which
we drive to zero by a random walk algorithm. The number of singular values that are
zero correspond to the dimension of the nullspace (degree of heterogeneity) and thus the
number of basis vectors needed to span the subspace of RN in which the vortex strength
vector lies. The decomposition method based on the nullspace of the configuration ma-
trix was introduced in Jamaloodeen & Newton (2006) and used to determine all vortex
strengths for which the Platonic solid configurations with a point vortex at each vertex
form an equilibrium. Subsequently, the Brownian ratchet scheme coupled with the use of
the singular value decomposition of the configuration matrix was developed by Newton
& Chamoun (2007a) and used to study equilibrium configurations in the planar N -vortex
problem. The singular value decomposition gives rise to the ‘optimal’ basis set in which
to represent the vortex strength vector and also produces a characteristic ‘distribution’
of singular values that allows us to calculate other important quantities, such as the
Shannon entropy and the size of the configuration, based on the Frobenius norm. Here,
we use the method to produce an unbiased ensemble of 1000 equilibrium configurations
on the unit sphere for each value of N ranging from N = 4− 10 which we use to study
their statistical properties. These equilibria all have configuration matrices with one-
dimensional nullspaces and hence a unique vector of vortex strengths and typically, they
have no discernible symmetries. Previous results on relative equilibria of point vortices on
the sphere, such as that of Lim, Montaldi, and Roberts (2001) or Newton & Shokraneh
(2006), assume the vortex strengths to be equal (hence without loss of generality unity),
or occurring in equal and opposite pairs in the case where N is even, hence the set of
equilibria was much more restrictive. By allowing the vortex strengths to take on any
value, we show that the set of relative equilibrium configurations is far richer and can
form the basis for a meaningful statistical study via appropriate ensemble averaging.

Statistical properties of point vortex flows have been studied before, typically with the
goal of making predictions on features of two-dimensional turbulence (see, for example
Kraichnan & Montgomery (1980)) based on statistically averaged properties of large
collections (i.e. N → ∞) of equal strength vortices, or a truncated system of Fourier
modes to represent the velocity field. This approach, pioneered by Onsager (1949) and
used subsequently by Joyce & Montgomery (1973), Montgomery & Joyce (1974), Pointin
& Lundgren (1976), Robert (1991), Robert & Sommeria (1991), Miller, Weichman and
Cross (1992), Eyink & Spohn (1993), Chavanis, Sommeria & Robert (1996), Lions &
Majda (2000), Bühler (2002), and most recently by Lim et. al. (2003a,b) and Lim &
Nebus (2006) for the spherical problem, seeks to identify (among other things) the partial
differential equation which governs the probability distribution function associated with
quantities such as the averaged vorticity or velocity fields. This mean-field equation,
which is typically a nonlinear elliptic equation, can then be compared with simulations
done with finite values of N , and in practice, it is often pointed out that the number of
point vortices need not be so large in order for the approach to be reasonably accurate,
say N ∼ 100. However for values of N much smaller than that, a mean-field approach
is certainly not useful. Nonetheless, for fixed values of N > 4 (the cases N = 2, 3 are
completely understood – see Kidambi & Newton (1998), Borisov & Pavlov (1998), Borisov
& Lebedev (1998), Sakajo (1999), and Newton (2001), as is the integrable case for N = 4
(Sakajo (2007)), if no restrictions are imposed on the vortex strengths, it is now known
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that there are large numbers of distinct relative equilibria (see Newton & Chamoun
(2007b) for discussions of this), and one can ask about the averaged properties of an
ensemble of these equilibria for each fixed N , as well as the behavior of these averages
as a function of N . Since we examine these vorticity distributions on the sphere, we
expect the methods to be applicable to large scale atmospheric vortices, such as Jupiter’s
Great Red Spot (see Marcus (1988, 1993)), particularly when statistical conclusions are
called for regarding equilibrium distributions (Miller, Weichman and Cross (1992)). A
comprehensive discussion of these methods applied to geophysical flows can be found in
Majda & Wang (2006). To obtain results that are meaningful, it is important that each
realization of such an ensemble be generated in an unbiased way, hence the ensemble
averages should represent ‘typical’ characteristics of each member, and thus we refer to
the ensemble averaged configuration as the ‘typical’ equilibrium, even though it does
not actually correspond exactly to any one of the individual equilibria making up the
ensemble. A crucial step in such an approach is the development of an efficient and
unbiased random walk scheme on the surface of a sphere which we implement using a
diffusion process in the plane mapped to the sphere. Hence, in this paper our goal is
to use the large families of relative equilibrium configurations of mixed strength point
vortices (microscopic states) to extract macroscopic properties based on their ensemble
averages.

Our paper is organized as follows. In §2 we describe the basic tool we use to construct
the large families of relative equilibria on the sphere, namely the singular value decom-
position of the configuration matrix associated with each equilibrium. The distribution
of these singular values (properly normalized) gives rise to a scalar quantity which char-
acterizes the equilibria — the Shannon entropy of the configuration matrix. In §3 we
describe the Brownian ratchet algorithm which we use to calculate the collection of equi-
libria for each N . In particular, we describe our random walk algorithm on the sphere
and how it is used to home in on configurations of particles that produce a configuration
matrix with a non-trivial nullspace. We show examples of typical relative equilibria for
N = 4, 6, 8, 10 along with the vortex strength vectors obtained by calculating a basis set
for the nullspace of the configuration matrix. We also detail the convergence properties of
the Brownian ratchet scheme. In §4 we define the ensemble averages which we use for the
various quantities of interest and then we describe the statistical properties associated
with the collections of equilibria. Our focus is on the ensemble averaged singular value
distributions of the collection, along with the corresponding averaged Shannon entropy
and Frobenius norm characterizing the ‘size’. §5 contains a discussion of our key findings.

2. Decomposing the pattern
The evolution equations for N -point vortices moving on the surface of the unit sphere,

written in cartesian coordinates, are given by:

ẋα =
1
4π

N∑
β=1

′Γβ
xβ × xα

(1− xα · xβ)
(α = 1, ..., N) xα ∈ R3, ‖xα‖ = 1. (2.1)

xα denotes the position of the αth vortex whose strength is given by Γα ∈ R. The prime
on the summation indicates that the singular term β = α is omitted and initially, the
vortices are located at the given positions xα(0) ∈ R3, (α = 1, ..., N). The denominator in
(2.1) is the intervortical distance, lαβ , between vortex Γα and Γβ since l2αβ ≡ ‖xα−xβ‖2 =
2(1−xα ·xβ). As described in Newton & Shokraneh (2006), eqns (2.1) have two conserved
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quantities associated with them, the Hamiltonian energy:

H = − 1
4π

N∑
α<β

ΓαΓβ log ‖xα − xβ‖ (2.2)

and the center-of-vorticity vector

J =
N∑

α=1

Γαxα =

(
N∑

α=1

Γαxα,
N∑

α=1

Γαyα,
N∑

α=1

Γαzα

)
= (Jx, Jy, Jz) (2.3)

The evolution equations for the relative distances are:

π
d(l2αβ)

dt
=

N∑
γ=1

′′Γγ

[
xβ · xγ × xα

l2βγ

− xβ · xγ × xα

l2αγ

]
=

N∑
γ=1

′′ΓγVαβγdαβγ , (2.4)

where dαβγ ≡
[

1
l2βγ

− 1
l2αγ

]
. Here the ′′ means the summation excludes γ = α and γ = β.

Vαβγ is the volume of the parallelepiped formed by the vectors xα,xβ ,xγ :

Vαβγ = xα · (xβ × xγ) ≡ xβ · (xγ × xα) ≡ xγ · (xα × xβ).

Notice that the sign of Vαβγ can be positive or negative depending on whether the vectors
form a right- or left-handed coordinate system. The relative equations of motion yield
necessary and sufficient conditions for relative equilibria,

dl2αβ

dt
= 0, ∀α, β = 1 · · ·N, α 6= β. (2.5)

2.1. The configuration matrix approach
Using condition (2.5) in (2.4) gives the equation for the relative equilibria:

N∑
γ=1

′′ΓγVαβγdαβγ = 0 (2.6)

for each value of α, β = 1, ...., N . Based on the fact that (2.6) is linear in the vortex
strengths, we write it as a linear matrix system

A~Γ = 0, (2.7)

where ~Γ = (Γ1,Γ2, ...,ΓN ) ∈ RN is the vector of vortex strengths, and A is the N ×
N(N − 1)/2 configuration matrix whose entries, given by the terms Vαβγdαβγ , encode
the geometry of the configuration. Without loss of generality, we normalize the vector of
vortex strengths to have unit length, hence

N∑
α=1

Γ2
α = 1. (2.8)

Thus, we seek configurations so that

det (AT A) = 0 (2.9)

in which case A is rank-deficient, and has a nontrivial nullspace. We seek a basis set
for this subspace of RN . In all cases considered in this paper, Rank(A) = N − 1, hence
the vortex strength vector is unique up to ± sign. For each equilibrium, we include in
the ensemble both the case +~Γ and −~Γ, which effectively doubles our sample size from
M = 1000 to M = 2000.
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2.2. Singular value decomposition

The optimal basis set for the nullspace of A is obtained by using the singular value
decomposition of the matrix. We obtain the N singular values σi and corresponding left
and right singular vectors ~ui ∈ RN(N−1)/2, ~vi ∈ RN by solving the coupled linear system

A~vi = σi~ui; AT ~ui = σi~vi (2.10)

where σmax ≡ σ1 > σ2 > · · · > σmin ≡ σN > 0. The left and right singular vectors are
used as columns to construct the orthogonal matrices U and V :

U = (~u1 ~u2 · · · ~uN ); V = (~v1 ~v2 · · · ~vN ), (2.11)

which produces the singular value decomposition of A:

A = UΣV T =
N∑

i=1

σi~ui~v
T
i . (2.12)

Σ is the diagonal matrix with singular values down the diagonal, ordered from largest
(top left) to smallest (bottom right):

Σ =



σmax 0 · · · 0 0
0 σ2 · · · 0 0
...

...
. . .

...
...

0 · · · · · · σN−1 0
0 · · · · · · 0 σmin

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0


. (2.13)

Equivalently, multiplying the first eqn in (2.10) by AT , the second by A, and uncoupling
the two, we obtain

AT A~vi = (σi)2~vi; AAT ~ui = (σi)2~ui, (2.14)

which expresses the fact that the singular values squared are the eigenvalues of the
square covariance matrices AT A, AAT . We write these eigenvalues as λi ≡ (σi)2. The
decomposition (2.12) expresses A as a linear superposition of the rank-one matrices ~ui~v

T
i ,

(i = 1, ..., N) with weighting determined by the singular values σi. Its optimality is seen
by the fact that the mth partial sum, defined as

Am =
m∑

i=1

σi~ui~v
T
i , (m 6 N) (2.15)

provides the best rank-m approximation to A, as measured by the Frobenius norm. In
other words, any rank-m matrix B 6= Am has the property that ‖A−B‖F > ‖A−Am‖F ,
where ‖ · ‖F denotes the Frobenius norm defined as ‖A‖F =

∑N
i=1 σi.

2.3. Shannon entropy

To understand how the rank-one modes are distributed, it is useful to normalize each of
the eigenvalues of the covariance matrices so that they lie in the range from zero to one
and can be interpreted either as probabilities, or as the percentage of energy contained
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Figure 1. (a) Convergence of the smallest singular value squared (log plot) as a function of the
random walk step for N = 6, 8, 10; (b) Convergence of one of the point vortices making up the
relative equilibrium configuration to its final position (marked ‘+’) on the sphere.

in each mode. Hence the normalized eigenvalues are given by

λ̂i = λi/
k∑

i=1

λi. (2.16)

The Shannon entropy, S, of the configuration matrix is obtained by using the k non-zero
normalized eigenvalues λ̂i:

S = −
k∑

i=1

λ̂i log λ̂i, (2.17)

where k is the rank of A, which in this paper is N − 1. As discussed in Newton &
Chamoun (2007b), (2.17) provides a measure of how the rank-one matrices in (2.12) are
distributed in forming the configuration matrix, and thus can be thought of as a measure
of ‘disorder’ of the pattern. In particular, if all of the weighting is in a single rank-one
matrix, then A has rank-one and the Shannon entropy is minimized – its value is zero.
On the other hand, if each mode has equal weighting in reconstituting the matrix, the
entropy is maximum – its value is ln(k). We also note that low entropy distributions are
less robust to perturbations than high entropy ones since generic perturbations will tend
to increase the entropy of a base configuration, i.e. spread out the distribution among
the modes. If the distribution is already spread out in the base state, the perturbation
has a smaller effect than if the energy is clustered in one or a few modes.

3. The Brownian ratchet idea
Our method of obtaining relative equilibria is based on a Brownian ‘ratchet’ scheme

which we implement by a diffusion process in the plane which we then map to the
unit sphere. The terminology we use is borrowed from the biological literature in which
molecular motors are known to extract energy from their surrounding ‘heat bath’ and
rectify it via a ratchet mechanism. See Reimann (2002) for a comprehensive recent review.
For us, the ratchet is the smallest singular value of the configuration matrix which we
drive to zero. The random walk problem on the sphere is interesting in its own right, and
has been studied in the past by Brillinger (1997) who considered the motion of a particle
on the unit sphere heading toward a specific destination but subject to random deviations,
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Figure 2. Schematic diagram depicting one random step based on an arbitrary ‘seed’ particle
at (θ0, φ0) on the unit sphere. See text for details. (a) Step 1: A particle, initially at the origin
in the plane, is diffused to a random location (r, ϕ) via a Gaussian process ; (b) Step 2: The
point is then mapped to (θε, φε) on the unit sphere, with the origin of the plane corresponding
to the North Pole; (c) Step 3: The North Pole is rotated so that it is centered at the arbitrary
‘seed’ location (θ0, φ0) giving rise to the diffused point (θ1, φ1) based on that ‘seed’. The process
is then repeated using (θ1, φ1) as the new seed.

which he modeled as a diffusion process with drift. His motivation was to model the
trajectories of certain marine mammals, and in so doing he obtained quantitative formulas
for expected travel times to a spherical cap, as well as forms for limiting distributions.
Indeed before this work, Kendall (1974) was interested in modeling the navigation of birds
and used a pole-seeking Brownian motion model to partially explain their behavior. An
early and quite general work on random walk models on the sphere and on more general
Riemannian manifolds in that of Roberts & Ursell (1960).

3.1. The ratchet scheme
For each N , we seek configurations of particles on the unit sphere for which (2.9) is
satisfied, hence Rank(A) < N . Once such a configuration is obtained, we calculate a
basis set for the nullspace of A, and hence all ~Γ satisfying (2.7) by obtaining the right
singular vectors ~vi defined by (2.10) corresponding to the singular values that are zero.
The ‘ratchet’ algorithm follows the following sequence of steps:

(a) First, we distribute N points randomly on the surface of the unit sphere and
calculate the configuration matrix A, finding its smallest singular value, σmin;

(b) We then allow each particle to execute one random step on the sphere in order to
produce a new configuration matrix Ã, along with its smallest singular value, σ̃min;

(c) If σ̃min 6 σmin, we keep the new configuration, otherwise we discard it;
(d) The process is repeated until σ̃min drops below a certain pre-determined threshold,

which we typically choose to be O(10−10). This ‘converged’ configuration is what we call
a relative equilibrium;

(e) We then compute a basis set for the nullspace in order to find the corresponding
vortex strengths.
Typical convergence plots are shown in figure 1. Figure 1(a) shows the decay of the
smallest singular value (squared) as a function of the step number for N = 6, 8, 10,
plotted on a log-log scale. In most cases, convergence is rapid. Figure 1(b) shows the
actual path of one of the point vortices making up the configuration from its initial point
to its final (converged) point (marked by a cross) on the sphere. Note that the vortex
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Figure 3. Panel depicting the random walk of collections of particles on the sphere initially
clustered in spherical caps around the two poles. ‘o’ are clustered at the North Pole, while ‘+’
are clustered at the South Pole. After sufficiently many steps, the particles distribute themselves
about the surface of the sphere in such a way that there no longer appears to be any prefer-
ence for either type of particle to be in either hemisphere. Shown are (non-dimensional) time
T = 0− 20000.

meanders initially before it homes in rather directly to its final location, which need not
be nearby the initial location. As a general remark, we note that the singular values of
a matrix are relatively insensitive to perturbations of the matrix (see Trefethen & Bau
(1997)), hence we expect that the converged positions of the vortices are not far from
the exact equilibrium positions when the smallest singular value is below O(10−10).

The engine which drives the process is a random walk scheme on the sphere which we
implement as follows. As shown schematically in figure 2, we start with an initial ‘seed’
point (θ0, φ0) on the sphere. From this point, the random walk is computed in three
simple steps:
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(a) First, we obtain a sample point in the plane from the two-dimensional Gaussian
distribution, for which we compute the polar coordinate representation, (r, ϕ);

(b) Next with a scale factor ε (typically taken as ε = 0.01), we rescale the point as
(εr, ϕ) and then map it to a corresponding point on the surface of the unit sphere centered
around the North Pole so that the point is represented by (θε, φε) = (εr, ϕ) in spherical
coordinates;

(c) Finally, we rotate the point so that the North Pole maps to the original point
(θ0, φ0), while (θε, φε) maps to the new ‘diffused’ point (θ1, φ1).
The process is then iterated to obtain each subsequent point (θn+1, φn+1) starting with
(θn, φn) as a ‘seed’. Here, the procedure is implemented for a collection of particles
initially clustered around the North Pole (those marked ‘o’), and South Pole (those
marked ‘+’), shown in figure 3. As the particles evolve, they gradually diffuse over the
surface of the sphere, eventually giving equal probability of finding a ‘o’ particle or a ‘+’
particle in any fixed two-dimensional spherical sector.

3.2. Relative equilibria
Typical examples of relative equilibria found this way are shown in the panels of figure 4
for N = 4, figure 5 for N = 6, figure 6 for N = 8, figure 7 for N = 10. In each figure, we
present a panel of ten distinct relative equilibrium configurations showing both the vortex
positions in the Northern and Southern hemispheres as well as the corresponding vector
of vortex strengths ~Γ. In each case, the intersection of the center-of-vorticity vector, J (as
defined in (2.3)) with the unit sphere is marked with an ‘X’. All of the cases treated in
this paper have one-dimensional nullspaces, hence unique vortex strength vectors which
we normalize to unity. Note that all of the configurations are manifestly asymmetric, a
topic discussed in Newton & Chamoun (2007b). Examples of asymmetric equilibria are
indeed rare, the first discussion of this can be found in Aref & Vainchtein (1998).

In figure 8 we show histograms of the length of the J vector for the cases N = 4, 6, 8, 10.
In all cases, the peak is near the unit value, indicating that most of the states making up
the ensemble can be described as not too different from single dominant vortex of near
unit strength resting near the tip of the center-of-vorticity vector, with the remaining
N − 1 weaker vortices distributed asymmetrically around the surface of the sphere. In
all cases, the N vortices have mixed signs and the spread around the most likely state
tightens as N increases, indicating that the limiting configuration (constrained to have
Rank = N−1) is a single vortex of unit strength resting at the tip of the center-of-vorticity
vector.

Likewise, histograms of the Hamiltonian energy (2.2) are shown in figure 9, and in each
case the peak value is zero with a spread that tightens with increasing N . This limiting
configuration suggests a relatively uniform distribution of points around the sphere with
vortex strengths of mixed sign.

4. Statistical properties
4.1. Ensemble averages

The statistical properties of relative equilibria are studied by obtaining ensemble averages
of collections of equilibrium configurations. For each value of N = 4 → 10, we generate an
ensemble of equilibrium configuration matrices, denoting each member of the ensemble
A(j), with corresponding right nullvector ~Γ(j). The initial sample size for each case is
nominally M = 1000 which we double to M = 2000 by including both ±~Γ(j). The
singular values for the jth realization are denoted by σ

(j)
max ≡ σ

(j)
1 > σ

(j)
2 > ... > σ

(j)
min ≡
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N=4 (01)(01)(01)(01)

(02)(02)(02)(02)

(03)(03)(03)(03)

(04)(04)(04)(04)
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(09)(09)(09)(09)

(10)(10)(10)(10)

Figure 4. N = 4: Panel of ten different converged equilibrium configurations each
with one-dimensional nullspaces. Shown are the Northern and Southern hemisphere
projections, with ‘X’ marking the intersection of J with the unit sphere. Starting at
the top left and proceeding down the left column, the vortex strengths are given by
(8.22e−02, 9.32e−02,−5.26e−01, 8.41e−01); (−9.54e−02, 1.27e−02,−9.67e−03,−9.95e−01);
(−2.73e−02,−2.87e−02,−9.99e−01, 1.42e−02); (−6.03e−04,−5.01e−03,−9.97e−01, 7.46e−02);
(−9.69e−01,−2.29e−01, 4.99e−02, 7.54e−02); (−1.60e−01, 1.75e−01,−9.19e−01,−3.14e−01);
(9.51e−01, 6.15e−03,−3.07e−01,−2.90e−02); (−5.04e−01,−2.23e−01,−1.89e−01, 8.13e−01);
(9.24e−02, 6.72e−02,−9.80e−01, 1.64e−01); (−1.79e−02,−8.13e−02, 2.33e−01, 9.69e−01).

σ
(j)
N > 0 and their corresponding left and right singular vectors are denoted by ~u

(j)
i

and ~v
(j)
i (i = 1, ..., N) respectively. We define the ensemble average of the collection of

configuration matrices

< A >M=
1
M

M∑
j=1

A(j); < A >∞= lim
M→∞

< A >M (4.1)
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N=6 (01)(01)(01)(01)(01)(01)

(02)(02)(02)(02)(02)(02)

(03)(03)(03)(03)(03)(03)

(04)(04)(04)(04)(04)(04)

(05)(05)(05)(05)(05)(05)

(06)(06)(06)(06)(06)(06)

(07)(07)(07)(07)(07)(07)

(08)(08)(08)(08)(08)(08)

(09)(09)(09)(09)(09)(09)

(10)(10)(10)(10)(10)(10)

Figure 5. N = 6: Panel of ten different converged equilibrium configurations each
with one-dimensional nullspaces. Shown are the Northern and Southern hemisphere
projections, with ‘X’ marking the intersection of J with the unit sphere. Start-
ing at the top left and proceeding down the left column, the vortex strengths are
given by (9.99e − 01, 1.21e − 03,−1.33e − 03, 8.55e − 04, 6.86e − 03,−1.87e − 03);
(−1.54e − 03,−9.28e − 03,−4.92e − 03,−2.30e − 03,−4.36e − 03, 9.99e − 01);
(1.15e − 03, 2.46e − 03, 9.98e − 01, 4.47e − 02,−4.36e − 03,−3.73e − 03);
(1.24e − 02,−1.51e − 02, 8.53e − 05,−9.99e − 01,−5.77e − 03,−1.20e − 02);
(2.51e − 01, 5.25e − 03, 2.65e − 01, 8.99e − 01, 1.73e − 01,−1.71e − 01);
(2.35e − 04, 1.03e − 05, 3.80e − 04,−1.39e − 04,−4.22e − 04, 9.99e − 01);
(1.38e − 03, 3.32e − 04, 1.68e − 05,−7.09e − 04,−1.83e − 05,−9.99e − 01);
(−5.01e − 03,−3.10e − 04, 7.89e − 04, 4.57e − 04,−2.88e − 04, 9.99e − 01);
(2.47e − 04,−4.90e − 06,−1.92e − 03,−2.18e − 03, 9.99e − 01, 6.28e − 04);
(−1.45e− 03, 6.92e− 03,−1.94e− 02, 1.65e− 03,−8.50e− 03)− 9.99e− 01);.
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N=8 (01)(01)(01)(01)(01)(01)(01)(01)

(02)(02)(02)(02)(02)(02)(02)(02)

(03)(03)(03)(03)(03)(03)(03)(03)

(04)(04)(04)(04)(04)(04)(04)(04)

(05)(05)(05)(05)(05)(05)(05)(05)

(06)(06)(06)(06)(06)(06)(06)(06)

(07)(07)(07)(07)(07)(07)(07)(07)

(08)(08)(08)(08)(08)(08)(08)(08)

(09)(09)(09)(09)(09)(09)(09)(09)

(10)(10)(10)(10)(10)(10)(10)(10)

Figure 6. N = 8: Panel of ten different converged equilibrium configurations each
with one-dimensional nullspaces. Shown are the Northern and Southern hemisphere pro-
jections, with ‘X’ marking the intersection of J with the unit sphere. Starting at
the top left and proceeding down the left column, the vortex strengths are given by
(1.23e−04,−6.62e−05, 3.76e−05, 1.01e−05,−2.96e−04,−2.80e−03, 9.99e−01,−7.44e−05);
(−8.70e−03, 1.15e−03,−1.00e−03, 9.99e−01,−8.58e−04,−1.28e−03, 5.99e−04,−8.68e−04);
(1.61e− 03, 8.76e− 04, 9.99e− 01, 1.88e− 03,−2.67e− 03,−8.81e− 04,−5.10e− 04, 8.66e− 04);
(6.41e− 04, 6.88e− 04,−4.76e− 04,−2.49e− 04,−9.15e− 04, 9.97e− 04, 9.99e− 01, 6.67e− 04);
(−1.02e−03,−9.99e−01,−1.72e−03,−5.12e−04,−3.59e−04,−3.65e−04, 1.51e−03, 2.31e−03);
(2.58e−04,−5.37e−05, 9.99e−01, 2.90e−04,−1.40e−03,−6.43e−04,−1.69e−04, 5.52e−04);
(9.13e− 04,−1.53e− 03, 9.73e− 05, 9.99e− 01, 1.11e− 03, 9.08e− 05, 2.80e− 04,−1.53e− 03);
(7.74e− 03,−9.99e− 01,−6.24e− 04,−8.47e− 04, 2.83e− 03, 3.64e− 02, 3.83e− 03, 1.03e− 03);
(4.03e− 03,−9.99e− 01, 1.17e− 03, 1.17e− 04, 9.41e− 04,−7.53e− 05, 4.45e− 02,−1.00e− 04);
(−9.99e− 01, 9.12e− 04,−4.47e− 04, 1.26e− 03, 1.33e− 03, 1.47e− 03,−1.69e− 04, 6.57e− 04);.
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N=10 (01)(01)(01)(01)(01)(01)(01)(01)(01)(01)

(02)(02)(02)(02)(02)(02)(02)(02)(02)(02)

(03)(03)(03)(03)(03)(03)(03)(03)(03)(03)

(04)(04)(04)(04)(04)(04)(04)(04)(04)(04)

(05)(05)(05)(05)(05)(05)(05)(05)(05)(05)

(06)(06)(06)(06)(06)(06)(06)(06)(06)(06)

(07)(07)(07)(07)(07)(07)(07)(07)(07)(07)

(08)(08)(08)(08)(08)(08)(08)(08)(08)(08)

(09)(09)(09)(09)(09)(09)(09)(09)(09)(09)

(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)

Figure 7. N = 10: Panel of ten different converged equilibrium configurations each
with one-dimensional nullspaces. Shown are the Northern and Southern hemisphere
projections, with ‘X’ marking the intersection of J with the unit sphere. Starting at
the top left and proceeding down the left column, the vortex strengths are given by
(−1.60e−03, 1.31e−03, 1.88e−03,−1.61e−04,−9.99e−01, 8.35e−04, 8.05e−04, 1.00e−03, 2.34e−04, 1.38e−03);
(1.47e−03, 8.97e−03,−9.99e−01,−1.85e−03, 4.53e−04,−3.37e−03,−6.19e−03, 6.59e−03,−1.02e−03, 6.36e−05);
(2.46e−04,−1.72e−04, 2.20e−03,−8.13e−04,−7.56e−03, 9.99e−01, 1.46e−03, 2.44e−03, 7.21e−04, 2.39e−03);
(6.20e−04, 5.14e−03,−9.99e−01,−8.33e−04,−2.21e−03, 2.56e−03, 4.37e−03, 1.33e−02, 4.04e−03, 5.59e−03);
(−3.91e−05,−1.79e−03,−4.78e−04, 4.96e−05, 4.45e−04, 4.08e−04, 9.99e−01, 8.77e−04, 4.37e−04,−2.23e−04);
(1.37e−04, 1.36e−03,−1.54e−05,−9.99e−01,−7.70e−04,−1.38e−03,−2.72e−03, 1.17e−04, 1.96e−03,−2.31e−03);
(7.99e−04,−8.61e−04,−2.12e−04, 1.82e−03,−2.67e−04, 8.14e−04,−3.05e−04, 9.99e−01, 9.86e−05, 1.51e−04);
(9.95e−03,−9.99e−01, 1.30e−05,−1.15e−03,−6.55e−04,−1.08e−04,−1.83e−03,−2.54e−04, 9.63e−05,−2.73e−03);
(4.22e−04, 1.91e−04,−4.14e−04, 8.39e−04,−1.05e−04, 4.51e−04, 4.68e−02, 8.80e−04,−1.76e−04,−9.98e−01);
(−4.09e−04,−2.58e−03,−1.20e−03,−5.46e−04,−9.31e−04, 9.99e−01,−1.26e−04,−6.47e−04,−1.64e−05,−1.19e−03);.
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Figure 8. Histograms of the length of the center-of-vorticity vector ‖J‖. In each case, the peak
clusters around the unit value which would be its value if there was a single point vortex of unit
strength.

as well as the ensemble averages of the singular components:

< σi >M = 1
M

∑M
j=1 σ

(j)
i ; < σi >∞= limM→∞ < σi >M , (4.2)

< λi >M = 1
M

∑M
j=1 λ

(j)
i ; < λi >∞= limM→∞ < λi >M (4.3)

The standard deviation of each quantity is denoted with double brackets << · >>. We
denote the averaged normalized values

< σ̂i >M = 1
M

∑M
j=1 σ̂

(j)
i ; < σ̂i >∞= limM→∞ < σ̂i >M , (4.4)

< λ̂i >M = 1
M

∑M
j=1 λ̂

(j)
i ; < λ̂i >∞= limM→∞ < λ̂i >M (4.5)

with standard deviations << ·̂ >>. We then define the Shannon entropy of the jth
member of the ensemble to be

S(j) = −
k∑

i=1

λ̂
(j)
i log λ̂

(j)
i , (4.6)

with ensemble average

< S >M=
1
M

M∑
j=1

S(j); < S >∞= lim
M→∞

< S >M , (4.7)
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Figure 9. Histograms of the Hamiltonian energy H. In each case, the peak clusters around
zero, indicating a relatively even distribution of points around the sphere with vortex strengths
of mixed sign.

and standard deviation << S >>.

4.2. Statistical properties
Here we summarize the main results based on an analysis of the ensemble averages
for the cases N = 4, 5, 6, 7, 8, 9, 10. Table 1 shows the ensemble averaged properties
of the singular values, listed in decreasing order, for the case N = 10. For each of
the ten singular values, we show the maximum value in the ensemble (maxjσ

(j)
i ), the

minimum value (minjσ
(j)
i ), the sample mean (< σi >M ), and the sample standard

deviation (<< σi >>M ) for M = 1000. The smallest singular value, σ10, has converged
to the sample average < σ10 >1000= 9.97× 10−11. In Table 2 we show the corresponding
results for the normalized family of singular values σ̂i. Here, the smallest sample average
is < σ̂10 >1000= 5.09× 10−12 with a gap of ten orders of magnitude between it and the
next smallest value < σ̂9 >1000= 1.39× 10−2. The size of the smallest singular value, the
gap between it and the next smallest, and the steady decrease of the convergence curve
shown in figure 1(a) gives us confidence that we are in close proximity to an equilibrium
configuration. Figure 10 shows the distribution of the normalized singular values for
N = 4, 6, 8, 10. A noteworthy feature is that the shape of the distribution for the final
two cases N = 8, 10 is quite similar, indicating convergence to a fixed distribution as a
function of N .
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Sing vals maxjσ
(j)
i minjσ

(j)
i < σi >M << σi >>M

σ1 3.72e+02 1.88e+00 8.73e+00 2.00e+01
σ2 3.71e+02 1.75e+00 8.43e+00 2.01e+01
σ3 4.77e+01 1.22e+00 3.18e+00 2.28e+00
σ4 4.22e+01 8.99e-01 2.59e+00 1.98e+00
σ5 1.16e+01 7.06e-01 1.70e+00 7.40e-01
σ6 4.93e+00 4.61e-01 1.24e+00 5.08e-01
σ7 3.81e+00 2.73e-01 8.44e-01 3.21e-01
σ8 2.56e+00 9.92e-02 5.36e-01 2.27e-01
σ9 1.03e+00 7.44e-03 2.75e-01 1.36e-01
σ10 9.99e-11 9.54e-11 9.97e-11 4.07e-13

Table 1. Maximum value, minimum value, sample mean and standard deviation for the
N = 10 ensemble averaged singular values (not normalized) based on a sample size of

M = 1000.

Sing vals maxj σ̂
(j)
i minj σ̂

(j)
i < σ̂i >M << σ̂i >>M

σ̂1 4.95e-01 1.72e-01 2.74e-01 5.76e-02
σ̂2 4.95e-01 1.51e-01 2.56e-01 6.20e-02
σ̂3 2.60e-01 2.21e-03 1.38e-01 3.64e-02
σ̂4 2.15e-01 2.11e-03 1.12e-01 3.26e-02
σ̂5 1.38e-01 1.98e-03 7.84e-02 2.48e-02
σ̂6 1.14e-01 1.53e-03 5.78e-02 1.99e-02
σ̂7 8.74e-02 9.52e-04 4.06e-02 1.58e-02
σ̂8 7.60e-02 8.96e-04 2.62e-02 1.21e-02
σ̂9 4.65e-02 2.31e-04 1.39e-02 8.21e-03
σ̂10 1.10e-11 1.19e-13 5.09e-12 2.03e-12

Table 2. Maximum value, minimum value, sample mean and standard deviation for the
N = 10 ensemble averaged singular values (normalized) based on a sample size of M = 1000.

In Table 3 we show the statistical properties of the averaged Shannon entropy and
Frobenius norms for N = 4, 5, 6, 7, 8, 9, 10. These quantities, shown as a function of the
sample size M are depicted in figures 11 and 13. It is interesting to note from figure 11,
the spacing of the converged values is quite regular, indicating an underlying scaling law.
Indeed, in figure 12 we show the ensemble averaged Shannon entropy values shown in
Table 3 plotted as a function of N on a log-log scale. The data shows power-law scaling
of the form < S >∼ αNβ , with α ∼ 0.305683, β ∼ 0.671424 as obtained via a least
squares fit to the data. In figure 14 we show histograms of the total vortex strength of
each equilibrium. We note the tendency for

∑N
i=1 Γi to cluster at the extreme values ±1

in agreement with the observation that the histograms of ‖J‖ in figure 8 cluster around
one. The ‘pure translation’ case

∑N
i=1 Γi = 0 appears to be quite rare although there are

examples of pure translational equilibria in the samples.

5. Discussion
The richness of the class of relative equilibria provided by solving the linear algebra

problem (2.7) for each N allowed us to use them as microstates from which to extract
information on the macroscopic level via ensemble averages. There are two main findings:
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Figure 10. Distribution of ensemble averaged normalized singular values, with error bars at
one standard deviation about the mean. Note that there appears to be little difference between
the distributions shown for N = 8, 9, 10.
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Figure 11. Ensemble averaged entropy levels for N = 4− 10, compared with the maximum
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Figure 12. Ensemble averaged Shannon entropy values shown in Table 3, plotted as a function
of N on a log-log scale. The data shows power-law scaling of the form < S >∼ αNβ , with
α ∼ 0.305683, β ∼ 0.671424 as obtained via a least squares fit to the data.
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N < S > << S >> < ‖ · ‖ > << ‖ · ‖ >>
4 7.74e-01 9.71e-02 2.75e+00 5.32e+00
5 8.88e-01 1.64e-01 4.78e+00 1.32e+01
6 1.02e+00 2.07e-01 7.96e+00 1.25e+01
7 1.14e+00 2.30e-01 1.04e+01 1.09e+01
8 1.23e+00 2.51e-01 1.63e+01 2.11e+01
9 1.35e+00 2.51e-01 1.89e+01 1.46e+01
10 1.42e+01 2.75e-01 2.75e+01 4.27e+01

Table 3. Ensemble averaged Shannon entropy and Frobenius norms with standard deviations
for N = 4− 10. Each ensemble consists of 1000 equilibrium configurations.
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Figure 13. Ensemble averaged Frobenius norms for N = 4− 10.

(a) The length of the center-of-vorticity vector, ‖J‖ clusters near one, as shown in
the histograms of figure 8, while the total vorticity associated with each member of the
ensemble, as expressed by

∑N
i=1 Γ(j)

i , tends to cluster at the extreme values of ±1 as
shown in the histograms in figure 14.

(b) The averaged Shannon entropy scales very nearly like < S >≈ αNβ , with β ∼ 2/3.
This quantity reflects the averaged distribution of the normalized singular values shown
in figure 10 as a function of N and provides a scalar measure of the relative weighting
of the rank-one components, ~ui~v

T
i , constituting the equilibrium ‘pattern’, as encoded in

the configuration matrix and expressed in (2.12).
The first conclusion provides evidence that the macroscopic average vorticity can be

thought of as one single vortex of unit strength, with either clockwise or counterclockwise
circulation, discretized, in a sense, by the point vortices in their relative equilibrium con-
figuration. Since this macroscopic state is in agreement with statistical results reported
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Figure 14. Histograms showing the total vortex strength of the ensemble. (a) N = 4; (b) N = 6;

(c) N = 8; (d) N = 10. Note the tendency for
PN

i=1 Γi to cluster at the extreme values ±1. The

‘pure translation’ case
PN

i=1 Γi = 0 appears to be quite rare.

by mean-field theory using collections of equal strength vortices moving dynamically on
the sphere or via Monte Carlo simulations (see the recent monograph of Lim & Nebus
(2006)) it suggests that using the full family of relative equilibria (presumably most of
them unstable) offers a useful and rich enough set of microscopic building blocks from
which to extract meaningful macroscopic information. The second conclusion, we believe
is unexpected as there is no a priori reason for the averaged quantities to follow any
clean scaling law. Indeed, as shown in figure 13, the ensemble averaged Frobenius norms
do not exhibit clear scaling features. The use of equilibria, in lieu of time-averaging over
dynamical trajectories as is usually done, offers distinct computational advantages, not
the least of which is the numerical accuracy with which these states can be computed
as compared with long-time averages based on simulations of typically chaotic systems.
As a final remark, we point out that the methods and conclusions reached in this paper
are also relevant in treating the classical problem of optimally distributing N charged
electrons on the surface of a conducting sphere, an unsolved problem with a long history
(see, as an example, Erber and Hockney (1991)) and listed by Smale (2000) as one of the
outstanding mathematical problems for the next century.
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