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Abstract. In this paper, we consider elliptic estimates for a system with

smooth variable coefficients on a domain Ω ⊂ Rn, n ≥ 2 containing the origin.

We first show the invariance of the estimates under a domain expansion defined

by the scale that y = Rx, x, y ∈ Rn with parameter R > 1, provided that the

coefficients are in a homogeneous Sobolev space. Then we apply these invariant

estimates to the global existence of unique strong solutions to a parabolic

system defined on an unbounded domain.

1. Introduction

We consider the linear elliptic system Lu = f defined by

(Lu)α ≡ −
∑

i,j,β

∂i

(
Aαβ

ij ∂ju
β
)

+ muα = fα in ΩR. (1.1)

Here u is an N dimensional vector field defined on Rn for N ≥ 1, n ≥ 2 and

1 ≤ i, j ≤ n, 1 ≤ α, β ≤ N . m is a nonnegative bounded scalar function. ΩR is the

domain scaled with parameter R and is defined by

ΩR = {y : y = Rx, x ∈ Ω}, R > 1. (1.2)

The domain Ω is a bounded domain with C1,1 boundary containing the origin in

Rn. We assume that the coefficients Aαβ
ij and m are functions of x ∈ ΩR satisfying

the following assumptions:

• Aαβ
ij are uniformly continuous on ΩR, m is bounded and for some fixed

positive constant Λ
∑

i,j,α,β

sup
ΩR

|Aαβ
ij |+ sup

ΩR

m ≤ Λ, (1.3)

• For some fixed positive constant λ

∑

i,j,α,β

Aαβ
ij (x)ξα

i ξβ
j ≥ λ|ξ|2 for all x ∈ ΩR, ξ ∈ RnN . (1.4)

The gradient ∇ is defined by ∇ = (∂1, · · · , ∂n), where ∂i = ∂
∂xi

.
1
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Our main concerns are to find some conditions for elliptic estimates of the op-

erator L independent of domain expansion, namely, independent of the parameter

R > 1.

The elliptic estimate in this paper is the following: if Ω is a bounded C1,1 domain,

∇A ∈ L∞(Ω), f ∈ Lq(Ω) and u is a solution of (1.1) in W 1, q
0 ∩W 2, q(Ω) for some

1 < q < ∞, then u satisfies that

‖∇2u‖Lq(Ω) ≤ C(‖f‖Lq(Ω) + ‖u‖Lq(Ω)), (1.5)

where the constant C depends on Λ, λ, n, q, Ω, ∂Ω, ‖∇A‖L∞(Ω), the modulus of

continuity of A and so on. Furthermore, if the uniqueness of solutions to the system

(1.1) is guaranteed, then we can say that there exists a constant C independent of

u and f such that

‖∇2u‖Lq(Ω) ≤ C‖f‖Lq(Ω). (1.6)

However, we do not know on which parameters the constant C depends exactly

(especially, on the scale parameter R). For details of the estimates (1.5) and (1.6),

we refer the readers to the papers and books of [3, 7, 10, 11, 15, 16, 17].

Throughout this paper, we use the notation for Sobolev space W k, q(Ω), k ≥
0, 1 ≤ q ≤ ∞ and Hk(Ω) = W k, 2(Ω). The space W k, q

0 (Ω)(1 ≤ q < ∞) is the

closure of Ck
0 (Ω) functions in W k, q(Ω).

Now let us introduce a new question: “Can we get the estimate

‖∇2u‖Lq(ΩR) ≤ C(‖f‖Lq(ΩR) + ‖u‖Lq(ΩR)) or ‖∇2u‖Lq(ΩR) ≤ C‖f‖Lq(ΩR)

with the constant C independent of R ? ” If A and m are constants, then the answer

is positive. In fact, let ũ(x) = u(Rx) for a solution u to Lu = f in ΩR. Then ũ is

also a solution to the system Lũ = f̃ in Ω, where f̃(x) = R2f(Rx). The operator

L is not changed under the scaling x 7→ Rx. Hence we get from (1.5) and (1.6) the

estimates

‖∇2ũ‖Lq(Ω) ≤ C(‖f̃‖Lq(Ω) + ‖ũ‖Lq(Ω)) and ‖∇2ũ‖Lq(Ω) ≤ C‖f̃‖Lq(Ω)

with C independent of R and by rescaling

‖∇2ũ‖Lq(ΩR) ≤ C(‖f̃‖Lq(ΩR) + ‖ũ‖Lq(ΩR))

‖∇2u‖Lq(ΩR) ≤ C‖f‖Lq(ΩR)

(1.7)

for R > 1, respectively. However, if A is not constant, then the situation is quite

different. For an invariant estimate under domain expansion, we need to scruti-

nize on which factors the constant C depends and to find some conditions for the

invariance.
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In this connection, let us introduce an invariant condition under the domain

expansion as follows

• (Scaling condition)

∇Aαβ
ij ∈ Lr(ΩR) (1.8)

for some r such that n < r < ∞ if q ≤ n and q ≤ r < ∞ if q > n.

Using the conditions (1.3), (1.4), (1.8), we have

Theorem 1.1. Let Ω be a bounded domain containing the origin of Rn, n ≥ 2,

with C1,1 boundary ∂Ω. Assume that f ∈ Lq(ΩR) for some 2 ≤ q < ∞, A and m

satisfy the conditions (1.3), (1.4), (1.8) for some fixed r on the scaled domain ΩR.

Then there exists a unique solution u ∈ (W 1,q
0 ∩W 2, q)(ΩR) to the boundary value

problem Lu = f in ΩR, R > 1, u = 0 on ∂ΩR satisfying

‖u‖W 2, q(ΩR) ≤ C(‖f‖Lq(ΩR) + (1 + ‖∇A‖Lr(ΩR))
2r

r−n ‖u‖Lq(ΩR)). (1.9)

The constant C may depend on Λ, λ, N, n, q, r,Ω and the modulus continuity of A

but not on R.

For the proof of Theorem 1.1, we use the classical method of freezing coefficient.

Before freezing, we scale the space variables with the factor R. Then in freezing

coefficients we partition the domain Ω into ρ
R scaled balls, where ρ is the modulus

of continuity of A. We revisit the Calderón-Zygmund theories for the whole and

half spaces.

If 1 < p < 2 and N ≥ 2, then contrary to the scalar case we cannot assert

the uniqueness of solution due to the absence of mean value property nor even the

existence of solution to the boundary value problem. However, once u ∈ (W 1, q
0 ∩

W 2, q)(ΩR) is a solution of (1.1) for 1 < q < 2, the same arguments as above show

that u satisfies the estimate (1.9).

Strictly speaking, the right hand side of the estimate (1.9) is not completely

uniform on the parameter R because we still do not know how to control the norm

‖u‖Lq(ΩR). Instead if we assume a further condition on f and restrict the range of

q, then there is a possibility to control it.

To expedite, we introduce some function spaces. We denote by D−1(ΩR) the

dual space of D1
0(ΩR) with < ·, · > being the dual paring of D−1(ΩR) and D1

0(ΩR).

For n ≥ 3 the space D1
0(ΩR) is defined by

D1
0(ΩR) = {v ∈ L

2n
n−2 (ΩR) : ‖v‖D1

0(ΩR) = ‖∇v‖L2(ΩR) < ∞, v = 0 on ∂ΩR}.
Indeed, H1

0 (ΩR) = (D1
0 ∩ L2)(ΩR) and D1

0(ΩR) = H1
0 (ΩR), provided that Ω is

bounded.



4 YONGGEUN CHO, TOHRU OZAWA AND YONG-SUN SHIM

Now if we assume that f ∈ (D−1 ∩Lq)(ΩR) and the size of norms is uniform on

the parameter R > 1, then we can remove the term ‖u‖Lq(ΩR) on the right hand

side of (1.9) through a scaling invariant estimate, see Lemma 2.4 below.

Theorem 1.2. Suppose that A,m, f and Ω satisfy the same condition as in The-

orem 1.1 with q, r and n satisfying that

qk ≤ q < qk+1 for qk < ∞,

max(q, n) ≤ r < ∞, r 6= n, k ≥ 0, n ≥ 3,
(1.10)

where qk = 2n
n−(4k+2) if n > 4k + 2, qk = ∞ by convention if n ≤ 4k + 2.

If we further assume that f ∈ (D−1∩Lq0)(ΩR), then the solution u to the system

(1.1) satisfies that

‖∇u‖L2(ΩR) ≤ C‖f‖D−1(ΩR)

and that

‖u‖W 2, q(ΩR) ≤ C‖f‖(D−1∩Lq0∩Lq)(ΩR)(1 + ‖∇A‖Lr(ΩR))
2r(k+1+δ)

r−n , (1.11)

where δ = n
2 (1/qk − 1/q). Here the constant C also depends on m.

If we assume that infΩR
m ≥ m for some positive constant m and f ∈ (D−1 ∩

Lq)(ΩR) for 2 ≤ q < q0 and n ≥ 2, then

‖u‖H1(ΩR) ≤ C‖f‖D−1(ΩR),

‖u‖W 2, q(ΩR) ≤ C‖f‖(D−1∩Lq)(ΩR)(1 + ‖∇A‖Lr )
2r

r−n .
(1.12)

Remark 1. Note that the 2-dimensional case is included for the second result.

For the estimate of the range of q below 2n
n−2 , in general it seems very difficult

to avoid the assumption m > m. To do so, we need another condition on A. For

simplicity, let us assume that m = 0 and consider the coefficient A of the type

aB + εE. Here a is a scalar C1 function with ∇a ∈ Lr(ΩR) for

max(q, n) ≤ r < ∞, r 6= n

and satisfying that λ ≤ a ≤ Λ on ΩR, B is a constant coefficient with |B| ≤ 1

satisfying (1.4), ε is a small positive constant and E is in C1(ΩR) with∇E ∈ Lr(ΩR)

and |E| ≤ Λ on ΩR. Let us denote the elliptic operators corresponding to the

coefficients A, B and E by L, LB and LE , respectively. Such L is said to be a small

perturbation of the constant type elliptic operator LB .
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Theorem 1.3. Let Ω be a bounded C1,1 domain of Rn, n ≥ 2. If L is a small

perturbation of LB and f ∈ (D−1 ∩ L2 ∩ Lq)(ΩR) for 2 ≤ q < q0 = 2n
n−2 , then the

boundary value problem Lu = f in ΩR and u = 0 on ∂ΩR has a unique solution

u ∈ (W 1, q
0 ∩W 2, q)(ΩR) such that ‖∇u‖L2(ΩR) ≤ C‖f‖D−1(ΩR) and

‖∇u‖W 1, q(ΩR) ≤ C‖f‖(D−1∩L2∩Lq)(ΩR)(1 + ‖∇a‖Lr(ΩR) + ‖∇E‖Lr(ΩR))
2r

r−n .

(1.13)

Remark 2. A typical example of the small perturbation of constant type elliptic

operator is the Lamé operator L, which has variable coefficients Aαβ
ij defined by

Aαβ
ij (x) = µ1(x)δα,βδi,j + (µ1 + µ2)(x)δα,iδβ,j

and hence Lu = −div(µ1∇u)−∇(µ2divu), where µ1 and µ2 are viscosity coefficients

satisfying the relation µ1(x) = ν1a(x) + εe1(x) and (µ1 + µ2)(x) = ν2a(x) + εe2(x).

This relation is a generalization of the Stokes relation (for instance, see [13]). We

assume that a is a C1 scalar function with λ ≤ a ≤ Λ and ∇a ∈ Lr, νi are fixed

positive constants less than 1 and ei is a C1 scalar function with
∑

i |ei| ≤ Λ and

∇ei ∈ Lr. The coefficient A can be rewritten as A = aB + εE, where

Bαβ
ij = ν1δα,βδi,j + ν2δα,iδβ,j

Eαβ
ij = e1δα,βδi,j + e2δα,iδβ,j .

The elliptic estimate for Lamé operator L as in Theorem 1.3 can be applied to

the heat-conducting compressible Navier-Stokes equations with variable coefficients

on an unbounded domain, whole or half space, or exterior domain. One can adapt

the same arguments of domain expansion of [4, 5, 6] to prove the unique solvability

of strong solutions.

Remark 3. If Ω is an exterior domain with compact complement, then we denote

the domain Ω ∩ BR by Ω̃R for sufficiently large R so that the complement of Ω is

contained in BR. If Ω is the whole space, then Ω̃R is BR. If Ω is the half space

Rn
+, then we also denote Ω̃R by R-scaled domain of Ω+ which is a smooth domain

satisfies that Rn
+ ∩B1 ⊂ Ω+ ⊂ Ω ∩B2. Then a solution u ∈ (W 1, q

0 ∩W 2, q)(Ω̃R) of

the system (1.1) on Ω̃R satisfies the estimates (1.9), (1.11), (1.12) and (1.13) with

C independent of R > 1.

A direct application of Theorem 1.2 and Theorem 1.3 is to show the elliptic

estimates on an unbounded domain Ω. To do this we introduce the homogeneous

Sobolev space (for instance see [9])

Dk, r(Ω) ≡ {v ∈ L1
loc(Ω) : ‖v‖Dk,r(Ω) < ∞},

Dk(Ω) = Dk, 2(Ω), ‖v‖Dk,r(Ω) = ‖∇kv‖Lr(Ω).



6 YONGGEUN CHO, TOHRU OZAWA AND YONG-SUN SHIM

Theorem 1.4. Assume that Ω is an unbounded domain, a whole or half space, or

an exterior domain with C1,1 boundary and compact complement. Let f ∈ (D−1 ∩
Lq0 ∩ Lq)(Ω) for the same indices q0, q as defined in (1.10) and A be an elliptic

coefficient satisfying (1.3), (1.4) and (1.8) .

(1) Then there exists a unique solution u ∈ D1
0 ∩ D2, q of the elliptic system

Lu = f with the boundary conditions that u = 0 on ∂Ω and u(x) → 0 as

|x| → ∞. Furthermore, u satisfies that

‖∇u‖L2(Ω) ≤ C‖f‖D−1(Ω),

‖u‖W 2, q(Ω) ≤ C‖f‖(D−1∩Lq0∩Lq)(Ω)(1 + ‖∇A‖Lr(Ω))
2r(k+1+δ)

r−n .
(1.14)

(2) If we further assume that m ≥ m for some positive constant m, 2 ≤ q < q0

and n ≥ 2, then

‖u‖H1
0 (Ω) ≤ C‖f‖D−1(Ω),

‖u‖W 2, q(Ω) ≤ C‖f‖(D−1∩Lq)(Ω)(1 + ‖∇A‖Lr )
2r

r−n .
(1.15)

(3) If L is a small perturbation of LB as in Theorem 1.3 and f ∈ (D−1 ∩L2 ∩
Lq)(Ω) for 2 ≤ q < q0, then

‖∇u‖W 1, q(Ω) ≤ C‖f‖(D−1∩L2∩Lq)(Ω)(1 + ‖∇a‖Lr(Ω) + ‖∇E‖Lr(Ω))
2r

r−n . (1.16)

Secondly, we apply the above theorems to a linear parabolic system:

ϕut + Lu = F in [0, T ]× Ω, u(0, x) = u0(x) in Ω,

(Lu)α = −
∑

i,j,β

∂i

(
Aαβ

ij ∂ju
β
)

.
(1.17)

Here ϕ is assumed to be a nonnegative function which has a compact support or

decays at space infinity. For the simplicity of presentation we only consider that the

domain Ω is the whole R3 or half R3
+ space, or an exterior domain of R3 with C1,1

boundary and compact complement. Aαβ
ij is C1

b ([0, T ]×Ω) satisfying the conditions

(1.3), (1.4), and the symmetry condition

Aβα
ji = Aαβ

ij for all i, j, α, β. (1.18)

Since ϕ can vanish on some open set or decay at space infinity, it is difficult to

expect the uniqueness and regularity of solutions. For this purpose, we assume the

following compatibility condition that for any v ∈ C1
0 (Ω)

∑

i,j,α,β

∫

Ω

Aαβ
ij (0, x)∂ju

β
0∂iv

α dx =
∑
α

∫

Ω

(F (0)α −√ϕgα)vα dx (1.19)

for some g = (gα) ∈ L2(Ω).
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Theorem 1.5. Assume that

0 ≤ ϕ ∈ (L
3
2 ∩ L∞)(Ω), u0 ∈ D1

0(Ω),

F, Ft ∈ L2(0, T ;D−1(Ω)), F ∈ L2(0, T ; L6(Ω))

and also assume that A = A(t, x) ∈ C1
b ([0, T ]× Ω) satisfies (1.3), (1.4) and (1.18)

for each t. If we further assume the compatibility condition (1.19), then there

exists a unique solution u ∈ L∞(0, T∗; D1
0(Ω)) such that ∇u ∈ L2(0, T ; W 1,6(Ω))

and ut ∈ L2(0, T ; D1
0(Ω)).

For the proof we localize the problem and consider the case where ϕ has a positive

lower bound. Then we show that the localized solutions satisfy a priori estimates

uniform for the domain expansion.

2. Preliminary lemmas

Before proving the theorems, let us introduce some lemmas which are crucial for

the proof of the theorems. The first one is on the elliptic regularity in the case of

constant coefficients.

Lemma 2.1. Let A be a constant coefficient satisfying (1.3) and (1.4), and let v be

a vector field in D2(Rn). Then for any 1 < q < ∞ there exists constant C depend

only on λ,Λ, N, n, q such that

‖∇2v‖Lq ≤ C‖L0v‖Lq , (2.1)

where

(L0v)α = −
∑

i,j,β

∂i

(
Aαβ

ij ∂ju
β
)

.

Proof of Lemma 2.1. One may find a proof using fundamental solution to the equa-

tion L0v = 0 in Rn in [2, 3]. Here we introduce a simplified version for a second

order elliptic operator.

By density, we may assume that u ∈ C2
0 . Using Fourier transform such that

ĝ(ξ) =
∫

e−ix·ξg(x) dx, we have

̂(L0v)α(ξ) = −
∑

i,j,β

Aαβ
ij ξiξj v̂β(ξ) = −

∑

i,j,β

Aαβ
ij ξ′iξ

′
j |ξ|2v̂β(ξ) ≡

∑

β

Mαβ(ξ′)∆̂vβ ,

(2.2)

where

Mαβ(ξ′) =
∑

i,j

Aαβ
ij ξ′iξ

′
j and ξ′j =

ξj

|ξ| .
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From the strong ellipticity (1.4), we deduce that
∑

α,β

Mαβ(ξ′)ηαηβ ≥ λ|η|2 for all η ∈ RN ,

|det M | ≥ C(N)λN ,

|∇kMαβ | ≤ C(N, n, k)Λ|ξ|−k for all k ≥ 0.

Thus using the recursion

∇M−1 = −M−1(∇M)M−1 and ∇kM−1 = −∇k−1(M−1(∇M)M−1),

we obtain

|∇kM−1| ≤ CΛ−1

(
Λ
λ

)(k+1)N

|ξ|−k for all ξ 6= 0 and k ≥ 0. (2.3)

From (2.2), we have

∆̂vα(ξ) =
∑

β

(M−1)αβL̂0vβ(ξ)

and hence from (2.3) we deduce that by the Fourier multiplier theorem (for instance,

see Proposition 2, p. 245 of [18]), (2.1) holds. ¤

The following is a half-space version of Lemma 2.1 (for the proof of scalar case

see [11]).

Lemma 2.2. Let A be a constant coefficient satisfying (1.3) and (1.4), and let v be

a vector field in W 1, 1
0 (Ω+) and be a weak solution of L0v = f in Ω+ with u = 0 near

(∂Ω)+ for some f ∈ Lq with 1 < q < ∞, where Ω+ = Ω∩Rn
+ and (∂Ω)+ = ∂Ω∩Rn

+

for some bounded domain Ω containing the origin and having C1,1 boundary. Then

v ∈ (W q
0 ∩W 2, q)(Ω+) and there exists a constant C depending only on λ, Λ, N, n, q

such that

‖∇2v‖Lq(Ω+) ≤ C‖L0v‖Lq(Ω+). (2.4)

Proof of Lemma 2.2. We extend v and f to Rn
+ by defining zero outside of Ω+. Let

the extended functions be still v and f . Then by the support condition v is clearly

a weak solution of L0v = f in Rn
+. Hence by the representation of solution in half

space by the fundamental solution [2, 3], we conclude that v ∈ W 2, q(Rn
+) and (2.4)

holds.

Furthermore, since vα is W 2, q(Ω+) function for each α, there are N functions

gα ∈ Lq such that ∆vα = gα in Ω+. Hence by setting vα = gα = 0 outside

of Ω+ and extending vα and gα via odd reflection to Rn and using a compactly

supported even smooth function η, one can show that vα ∗ ηδ → vα in W 2, q as

δ → 0 and (vα ∗ ηδ)(x′, 0) = 0, where ∗ denotes the convolution and ηδ(x) =
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δ−nη(x/δ). Therefore we conclude that v ∈ W 1, q
0 (Ω+). This completes the proof

of the lemma. ¤

The third one is on the regularity of solutions of (1.1).

Lemma 2.3. Let u ∈ (W 1,q
0 ∩ W 2, q)(Ω) be a solution to the system (1.1) on a

bounded C1,1-domain Ω with A satisfying (1.3), (1.4) and (1.8) for some 1 < q <

∞. Then if f ∈ Ls(Ω) for some s with q < s < ∞, then u ∈ (W 1,s
0 ∩W 2,s)(Ω).

Proof of Lemma 2.3. By applying Caledrón-Zygmund theory equipped with Lem-

mas 2.1 and 2.2 to the local problems over the interior and near the boundary of

Ω, the regularity result follows from the contraction argument in Lp theory of [14].

See also the proof of Lemma 9.16 in [11]. We leave the details of proof to the

readers. ¤

Finally, we introduce some Sobolev inequalities invariant under domain expan-

sion.

Lemma 2.4. Assume that Γ is a C1,1 domain in Rn, n ≥ 2 and v ∈ W k, s(Γ). Let

` be a number such that s ≤ ` ≤ sn
n−ks if ks < n, s ≤ ` ≤ ∞ if ks > n or s ≤ ` < ∞

if ks = n. Then there exists a constant C depending on Γ, `, n, k, s such that for

any R > 1

‖v‖L`(ΓR) ≤ C‖v‖1−δ
Ls(ΓR)‖v‖δ

W k, s(ΓR), (2.5)

where δ = n
k (1/s− 1/`) and ΓR is the R-scaled domain of Γ defined by (1.2).

Proof of Lemma 2.4. For the proof of (2.5) with R = 1, see the proof of Theorem

5.8 of [1]. For the invariance, let v(x) = w(Rx). Then by change of variables, we

have for any R > 1

R−
n
` ‖w‖L`(ΓR) ≤ CR−

n
s (1−δ)‖w‖1−δ

Ls(ΓR)R
(k−n

s )δ‖w‖δ
W k, s(ΓR).

Hence the scaling invariance follows from the fact kδ = n(1/s− 1/`). ¤

3. Independence of domain expansion; Proof of Theorem 1.1

In this section, we prove Theorem 1.1. If q = 2, then since the operator L is of

divergence form, the existence and uniqueness of solution u ∈ (H1
0 ∩H2)(ΩR) read-

ily follows from the Lax-Milgram theorem and the standard method of difference

quotient. We refer the readers to the book [10]. If q > 2, then since the domain is

bounded, the existence and the uniqueness follow automatically from the L2 theory

and Lemma 2.3. Thus we have only to consider the estimates (1.9) and (1.11).
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For the proof, we scale functions by a parameter R and define the scaled functions

by ũ(x) = u(Rx), Ã(x) = A(Rx), m̃(x) = R2m(Rx) and f̃(x) = R2f(Rx). Also we

define a scaled operator L̃ by

(L̃ũ)α ≡ −
∑

i,j,β

∂i(Ã
αβ
ij ũβ) + m̃ũα = f̃α on Ω.

Now fixing R > 1, we freeze the coefficient Ã near the point x0 ∈ Ω′, where Ω′

is a precompact subset of Ω (for example we can take Ω′ = Ω \ (B(0, ε0) + ∂Ω)

for small ε0, where ε0 depends only on ρ, the modulus of continuity of A). Let

L0 be the constant coefficient operator given by L0v = Ã(x0)∇2v. Suppose v has

support in a ball B(x0,
ρ
R ) with ρ < 1

2dist(∂Ω, Ω′) (hereafter we denote by B ρ
R

the

ball B(x0,
ρ
R )). Then we have

L0v = −(Ã(x0)− Ã)∇2v − Ã∇2v,

and by (2.1)

‖∇2v‖Lq(B ρ
R

) ≤ C‖L0v‖Lq(B ρ
R

)

≤ C(sup
B ρ

R

|Ã(x0)− Ã|‖∇2v‖Lq(B ρ
R

) + ‖Ã∇2v‖Lq(B ρ
R

)).

Since Ã is uniformly continuous on Ω′, there exists a positive number δ independent

of R such that

|Ã(x0)− Ã(x)| ≤ 1
2C

(3.1)

if |x − x0| < δ
R . Actually we can choose uniform δ for any x0 ∈ Ω′ from the

conditions (1.3) and (1.4). Hence we have

‖∇2v‖Lq(B ρ
R

) ≤ C(n, q, λ, Λ)‖Ã∇2v‖Lq(B ρ
R

), (3.2)

provided ρ ≤ δ.

Choose a smooth cutoff function η ∈ C2
0 (B ρ

R
) such that η = 1 on B ρ

2R
, η = 0 on

B ρ
R
\B 3

4
ρ
R

and |∇η| ≤ 8R
ρ , |∇2η| ≤ 64R2

ρ2 . Then v = ηũ ∈ W 2, q
0 (Ω) and we have

‖∇2ũ‖Lq(B ρ
2R

) ≤ ‖∇2v‖Lq(B ρ
R

)

≤ C
(
‖ηÃ∇2ũ‖Lq(B ρ

R
) + ‖Ã∇η∇ũ‖Lq(B ρ

R
) + ‖A(∇2η)ũ‖Lq(B ρ

R
)

)

≤ C
(
‖f̃‖Lq(B 3

4
ρ
R

) + ‖m̃ũ‖Lq(B 3
4

ρ
R

)

+‖∇Ã∇ũ‖Lq(B 3
4

ρ
R

) + ‖Ã∇η∇ũ‖Lq(B ρ
R

) + ‖Ã(∇2η)ũ‖Lq(B ρ
R

)

)

≤ C

(
‖f̃‖Lq(B 3

4
ρ
R

) + ‖∇Ã∇ũ‖Lq(B 3
4

ρ
R

) +
R

ρ
‖∇ũ‖Lq(B 3

4
ρ
R

) +
R2

ρ2
‖ũ‖Lq(B 3

4
ρ
R

)

)
,

provided ρ ≤ δ ≤ 1.
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By the Hölder inequality ‖∇Ã∇ũ‖Lq(B 3
4

ρ
R

) ≤ ‖∇Ã‖Lr(Ω)‖∇ũ‖
L

rq
r−q (B 3

4
ρ
R

)
(with

convention rq
r−q = ∞ if r = q), we have

‖∇2ũ‖Lq(B ρ
2R

) ≤ C

(
‖f̃‖Lq(B 3

4
ρ
R

) + ‖∇Ã‖Lr(Ω)‖∇ũ‖
L

rq
r−q (B 3

4
ρ
R

)

+
R

ρ
‖∇ũ‖Lq(B 3

4
ρ
R

) +
R2

ρ2
‖ũ‖Lq(B 3

4
ρ
R

)

)
.

(3.3)

For the estimate ‖∇ũ‖
L

rq
r−q (B 3

4
ρ
R

)
, we apply the Sobolev embedding (2.5) with

s = q, ` = rq
r−q , k = 1 and Γ = B1. Since q < rq

r−q < nq
n−q for q ≤ n and

q < rq
r−q ≤ ∞ for q > n (here we used the convention that nq

n−q = ∞ if q ≥ n), we

deduce that

‖∇ũ‖
L

rq
r−q (B 3

4
ρ
R

)

≤ C
( ρ

R

)n(r−q)
rq ‖∇ũ(

3
4

ρ

R
·)‖

L
rq

r−q (B1)

≤ C
( ρ

R

)n(r−q)
rq ‖∇ũ(

3
4

ρ

R
·)‖1−

n
r

Lq(B1)
‖∇ũ(

3
4

ρ

R
·)‖

n
r

W 1, q(B1)

≤ C
( ρ

R

)n(r−q)
rq

(
‖∇ũ(

3
4

ρ

R
·)‖Lq(B1)

+
( ρ

R

)n
r ‖∇ũ(

3
4

ρ

R
·)‖1−

n
r

Lq(B1)
‖∇2ũ(

3
4

ρ

R
·)‖

n
r

Lq(B1)

)

≤ C
( ρ

R

)n(r−q)
rq

(( ρ

R

)−n
q ‖∇ũ‖Lq(B 3

4
ρ
R

)

+
( ρ

R

)n
r−n

q ‖∇ũ‖1−
n
r

Lq(B 3
4

ρ
R

)‖∇2ũ‖
n
r

Lq(B 3
4

ρ
R

)

)

= C

((
R

ρ

)n
r

‖∇ũ‖Lq(B 3
4

ρ
R

) + ‖∇ũ‖1−
n
r

Lq(B 3
4

ρ
R

)‖∇2ũ‖
n
r

Lq(B 3
4

ρ
R

)

)
,

(3.4)

where the constant C does not depend on ρ and R.

Substituting (3.4) into (3.3), by Young’s inequality we have that for some ε > 0

and small ρ

‖∇2ũ‖Lq(B ρ
2R

)

≤ Cε

(
‖f̃‖Lq(B 3

4
ρ
R

) +

((
R

ρ

)n
r

‖∇Ã‖Lr(Ω) + ‖∇Ã‖
r

r−n

Lr(Ω)

)
‖∇ũ‖Lq(B 3

4
ρ
R

)

+
R

ρ
‖∇ũ‖Lq(B 3

4
ρ
R

) +
R2

ρ2
‖ũ‖Lq(B 3

4
ρ
R

)

)
+ ε‖∇2ũ‖Lq(B 3

4
ρ
R

).

Fixing ρ, choose a finite covering {B′
k}K

k=1 and {Bk}K
k=1 of Ω′ such that B′

k =

B(xk, ρ
2R ) and Bk = B(xk, 3

4
ρ
R ) with xk ∈ Ω′, Ω′ ⊂ ∪kB′

k ⊂ Ω and
∑

k χBk
(x) ≤ cn
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for some fixed positive number cn. The number cn can be taken by 2n by the finite

overlapping property of balls. Hence we have

‖∇2ũ‖q
Lq(Ω′) ≤

∑

k

‖∇2ũ‖q
Lq(B′k)

≤ Cε

∑

k

(
‖f̃‖q

Lq(Bk) + A(n, r, ρ, R)q‖∇ũ‖q
Lq(Bk)

+
Rq

ρq
‖∇ũ‖q

Lq(Bk) +
R2q

ρ2q
‖ũ‖q

Lq(Bk)

)
+ εq

∑

k

‖∇2ũ‖q
Lq(Bk)

≤ Cεcn

(
‖f̃‖q

Lq(Ω) + A(n, r, ρ, R)q‖∇ũ‖q
Lq(Ω)

+
Rq

ρq
‖∇ũ‖q

Lq +
R2q

ρ2q
‖ũ‖q

Lq(Ω)

)
+ εq‖∇2ũ‖q

Lq(Ω),

(3.5)

where

A(n, r, ρ, R) =
(

R

ρ

)n
r

‖∇Ã‖Lr(Ω) + ‖∇Ã‖
r

r−n

Lr(Ω).

Now let us denote the 2ε0 neighborhood of the boundary ∂Ω by Ωε0 for some

fixed ε0 to be chosen later, that is, Ωε0 = ∂Ω + B(0, 2ε0). Then Ω \ Ω′ ⊂ Ωε0 .

Since ∂Ω is uniformly smooth, there are finite number of points xk ∈ ∂Ω, 1 ≤
k ≤ N with a neighborhood Nk = Nxk

containing a ball B(xk, 3ε0) and hence

Ωε0 ⊂
⋃

1≤k≤K′ B(xk, 3ε0), and with a diffeomorphism Ψ = Ψk from Nk onto unit

ball B = B(0, 1) in Rn such that Ψk(Nk ∩ Ω) ⊂ Rn
+, Ψk(Nk ∩ ∂Ω) ⊂ ∂Rn

+. Write

y = Ψk(x), u(y) = ũ(x), x ∈ Nk, y ∈ B. Fixing k, we denote Nk and Ψk by N and

Ψ, respectively. Then we have

Lu = f in B+ = B ∩ Rn
+,

where

(Lu)α =
∑

β,i,j

Aαβ
ij ∂i∂ju

β +
∑

β,k

Bαβ
k ∂kuβ + muα,

f(y) = f̃(Ψ−1(y)), m(y) = m̃(Ψ−1(y)),

Aαβ
ij (y) = −

∑

k,l

Ãαβ
kl (Ψ−1(y))∂kΨi(y)∂lΨj(y)

Bαβ
k (y) = −

∑

i,j

Ãαβ
ij (Ψ−1(y))∂i∂jΨk(y)−

∑

i,j,l

∂kÃαβ
ij (Ψ−1(y))∂iΨl(y)∂jΨk(y).

Since the Jacobian matrix ∇Ψ is invertible, there exists a constant C(Ψ) such that

C(Ψ)−1|x| ≤ |∇Ψ(Ψ−1(y))x| ≤ C(Ψ)|x| for all y ∈ B and any x ∈ Rn. Thus from

this we deduce that
∑

α,β,i,j Aαβ
ij ξα

j ξβ
j ≥ λ|(∇Ψ)ξ|2 ≥ C(Ψ)−2λ|ξ|2 for any ξ ∈ RnN

and also that A is uniformly continuous on B+ and has the modulus continuity ρ∗

R ,

where ρ∗ is a small number depending on ρ and ∇Ψ.
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Now we choose a half ball B′
+ = B(0, s) ∩ Rn

+ with 0 < s < 1 such that

B(xk, 2ε0) ⊂ Ψ−1(B′
+) ⊂ B(xk, 3ε0). Then we have only to apply the same proof

for interior estimate on the domain Ω′ to the half ball B′
+. For this purpose, we

take ρ∗

R scaled balls covers the half ball B′
+ and cut-off functions supported in the

balls. For the estimates on the half balls which are half balls of ρ∗

R scale covering B′
+

with centers B(0, s)∩ ∂Rn
+, we use the half space estimate of Lemma 2.2. Actually

we have

‖∇2u‖q
Lq(B′+)

≤ C

(
‖f‖q

Lq(B+) +

((
R

ρ∗

)nq
r

‖∇A‖q
Lr(B+) + ‖∇A‖

qr
r−n

Lr(B+)

)
‖∇u‖q

Lq(B+)

+
Rq

ρ∗q ‖∇u‖q
Lq(B+) +

R2q

ρ∗2q ‖u‖q
Lq(B+)

)
+ εq‖∇2u‖q

Lq(B+).

Changing the variables via pullback Ψ, we have that

‖∇2ũ‖q
Lq(Ω∩B(xk,2ε0))

≤ C
(
‖f̃‖q

Lq(N ) + A(n, r, ρ∗, R)q‖∇ũ‖q
Lq(N )

+
Rq

ρ∗q ‖∇ũ‖q
Lq(N ) +

R2q

ρ∗2q ‖ũ‖q
Lq(N )

)
+ εq‖∇2ũ‖q

Lq(N ).

Summing all estimates with respect to k, by the choice ε0 and ε such that Ωε0 ⊂⋃
k B(xk, ε) we have that

‖∇2ũ‖q
Lq(Ωε0 )

≤ C
(
‖f̃‖q

Lq(Ω) + A(n, r, ρ∗, R)q‖∇ũ‖q
Lq(Ω)

+
Rq

ρ∗q ‖∇ũ‖q
Lq(Ω) +

R2q

ρ∗2q ‖ũ‖q
Lq(Ω)

)
+ εq‖∇2ũ‖q

Lq(Ω).

(3.6)

Finally combining the estimates (3.5) with (3.6), we get

‖∇2ũ‖Lq(Ω) ≤ C
(
‖f̃‖Lq(Ω) + A(n, r, ρ̃, R)‖∇ũ‖Lq(Ω)

+
R

ρ̃
‖∇ũ‖Lq(Ω) +

R2

ρ̃2
‖ũ‖Lq(Ω)

)
,

(3.7)

where ρ̃ = max(ρ, ρ∗). Then by converting (3.7) back into the unscaled variables

such that Rx 7→ x, we obtain

‖∇2u‖Lq(ΩR) ≤ C
(‖f‖Lq(ΩR) + R−1A(n, r, ρ̃, R)‖∇u‖Lq(ΩR)

+‖∇u‖Lq(ΩR) + ‖u‖Lq(ΩR)

)
, (3.8)

A(n, r, ρ̃, R) = R
(
ρ̃−

n
r ‖∇A‖Lr(ΩR) + ‖∇A‖

r
r−n

L(ΩR)

)
.
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Using a well-known interpolation inequality (for instance see Theorem 5.2 in [1])

that ‖∇v‖Lq(Ω) ≤ C‖v‖
1
2
Lq(Ω)‖v‖

1
2
W 2, q(Ω) for any v ∈ W 2, q(Ω) and for some constant

C independent of v. Now by scaling (u(x) 7→ u(Rx)) and rescaling (u(Rx) 7→ u(x))

with parameter R > 1 we have

‖∇u‖Lq(ΩR) ≤ C‖u‖
1
2
Lq(ΩR)(R

−2‖u‖Lq(ΩR) + R−1‖∇u‖Lq(ΩR) + ‖∇2u‖Lq(ΩR))
1
2

≤ C‖u‖
1
2
Lq(ΩR)‖u‖

1
2

W 2, q(ΩR) .

Substituting this into (3.8) and applying Young’s inequality, we finally conclude

the estimate (1.9).

4. Proof of Theorems 1.2 and 1.3

Multiplying u to (1.1) and integrating over ΩR, by the ellipticity of L and non-

negativity of m we have

‖∇u‖L2(ΩR) ≤ C‖f‖D−1(ΩR). (4.1)

Since f ∈ L
2n

n−2 (ΩR), Theorem 1.1 holds for q = q0 = 2n
n−2 . Using the Sobolev

embedding D1
0 ↪→ L

2n
n−2 , we easily get from (4.1)

‖u‖Lq0 (ΩR) ≤ C‖f‖D−1(ΩR). (4.2)

Since the embedding D1
0 ↪→ L

2n
n−2 is invariant with respect to the scaling, the

constant C in (4.2) does not depend on R. Thus we first get

‖u‖W 2, q0 (ΩR) ≤ C‖f‖(D−1∩Lq0 )(ΩR)(1 + ‖∇A‖Lr(ΩR))
2r

r−n .

If qk is finite, then there holds the embedding ‖v‖Lqj+1 (Ω) ≤ C‖v‖W 2, qj (Ω) for any

0 ≤ j ≤ k− 1. Here the constant C does not depend on v. By scaling invariance of

the above embedding for R > 1 we have

‖u‖Lqj+1 (ΩR) ≤ C‖u‖W 2, qj (ΩR),

where C does not depend on R. Thus by induction

‖u‖Lqk (ΩR) ≤ C‖f‖(D−1∩Lq0∩Lq)(ΩR)(1 + ‖∇A‖Lr(ΩR))
2rk
r−n ,

‖u‖W 2,qk (ΩR) ≤ C‖f‖(D−1∩Lq0∩Lq)(ΩR)(1 + ‖∇A‖Lr(ΩR))
2r(k+1)

r−n .
(4.3)

Using the embedding (2.5) with s = qk, t = q, k = 2 and Γ = Ω, from the

invariance under scaling with parameter R > 1 and the estimates (4.3) we deduce

that

‖u‖Lq(ΩR) ≤ C‖f‖(D−1∩Lq0∩Lq)(ΩR)(1 + ‖∇A‖Lr(ΩR))
2r(k+δ)

r−n .

Therefore the inequality (1.11) follows from (1.9).
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Now we consider the case m ≥ m. Similarly to the above argument, the integra-

tion by parts shows that

‖u‖H1(ΩR) ≤ C‖f‖D−1(ΩR).

Using the estimate (2.5) with s = 2, ` = q, k = 1 and the scale invariance with

respect to R > 1, we have for 2 ≤ q < 2n
n−2

‖u‖Lq(ΩR) ≤ C‖u‖1−n(1/2−1/q)
L2(ΩR) ‖u‖n(1/2−1/q)

H1(ΩR) ≤ C‖f‖D−1(ΩR).

Substituting this into (1.9), we obtain the desired estimate (1.12).

From now on we prove Theorem 1.3. Since L is an elliptic operator for small

ε > 0, it is clear that a unique solution u exists in (W 1, q
0 ∩W 2, q)(ΩR) such that

‖∇u‖L2(ΩR) ≤ C‖f‖D−1(ΩR). For the estimate (1.13), we rewrite the equation

Lu = f by LBu = a−1(f + ∇aB∇u − εLEu). Since LB is a constant elliptic

operator, by the estimate (1.7), we have for some small ε that

‖∇2u‖L2(ΩR)

≤ Ca−1(‖f‖L2(ΩR) + ‖∇a‖Lr(ΩR)‖∇u‖
L

2r
r−2 (ΩR)

+ ε(‖∇E‖Lr(ΩR)‖∇u‖
L

2r
r−2 (ΩR)

+ Λ‖∇2u‖L2(ΩR))) (4.4)

≤ C(‖f‖L2(ΩR) + (‖∇a‖Lr(ΩR) + ‖∇E‖Lr(ΩR))‖∇u‖
L

2r
r−2 (ΩR)

) +
1
4
‖∇2u‖L2(ΩR).

Using the scale invariant estimate (2.5) with s = 2, ` = 2r
r−2 , k = 1, by the fact

2 < 2r
r−2 < q0 we have

‖∇u‖
L

2r
r−2

≤ C‖∇u‖1−
n
r

L2(ΩR)‖∇u‖
n
r

H1(ΩR)

≤ C‖f‖D−1(ΩR) + C‖f‖1−
n
r

D−1(ΩR)‖∇2u‖
n
r

L2(ΩR).

Substituting this into (4.4) and using Young’s inequality we obtain

‖∇2u‖L2(ΩR)

≤ C‖f‖(D−1∩L2)(ΩR)(1 + ‖∇a‖Lr(ΩR) + ‖∇E‖Lr(ΩR))
r

r−n +
1
2
‖∇2u‖L2(ΩR)

and hence

‖∇u‖H1(ΩR) ≤ C‖f‖(D−1∩L2)(ΩR)(1 + ‖∇a‖Lr(ΩR) + ‖∇E‖Lr(ΩR))
r

r−n . (4.5)

On the other hand, it follows from the hypothesis 2 ≤ q < q0 and Lemma 2.4

that

‖∇u‖Lq(ΩR) ≤ ‖∇u‖1−n( 1
2− 1

q )

L2(ΩR) ‖∇u‖n( 1
2− 1

q )

H1(ΩR)

≤ C‖f‖(D−1∩L2)(ΩR)(1 + ‖∇a‖Lr(ΩR) + ‖∇E‖Lr(ΩR))
r

r−n .
(4.6)
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Now using the elliptic estimate (1.7) again for any 2 ≤ q < q0, similarly to (4.4)

we have

‖∇2u‖Lq(ΩR)

≤ C(‖f‖Lq(ΩR) + (‖∇a‖Lr(ΩR) + ‖∇E‖Lr(ΩR))‖∇u‖
L

qr
r−q (ΩR)

)

+
1
4
‖∇2u‖Lq(ΩR).

(4.7)

Since q < qr
r−q < nq

n−q (here nq
n−q = ∞ if q ≥ n), an application of Lemma 2.4 yields

that

‖∇u‖
L

qr
r−q (ΩR)

≤ C‖∇u‖1−
n
r

Lq(ΩR)‖∇u‖
n
r

W 1, q(ΩR).

Substituting this into (4.7) and using Young’s inequality together with (4.6), we

obtain (1.13).

5. Proof of Theorem 1.4

Since f ∈ D−1(Ω), by the Lax-Milgram theorem, there exists a unique weak

solution u ∈ D1
0(Ω) with ‖∇u‖L2(Ω) ≤ C‖f‖D−1 to the boundary value problem:

Lu = f, u = 0 on ∂Ω, u(x) → 0 as |x| → ∞.

Now let fR be a restriction of f to the domain Ω̃R as defined in Remark 3.

Then clearly fR ∈ (D−1 ∩ Lq0 ∩ Lq)(Ω̃R) and the size of its norm is uniform

on R. From Theorems 1.1 and 1.2 it follows that there exists a unique solution

uR ∈ (W 1, q
0 ∩ W 2, q)(Ω̃R) to the boundary value problem LuR = fR in Ω̃R and

uR = 0 on ∂Ω̃R such that

‖∇uR‖L2(Ω̃R) ≤ C‖fR‖D−1(Ω̃R) ≤ C‖f‖D−1(Ω),

‖uR‖W 2,q(Ω̃R) ≤ C‖f‖(D−1∩Lq0∩Lq)(Ω)(1 + ‖∇A‖Lr(Ω))
2r(k+1+δ)

r−n ,

where δ = n
2 (1/qk − 1/q). If we extend uR by defining 0 outside Ω̃R, then by the

weak compactness, there exists a subsequence uRj and w such that uRj → w weakly

in (D1
0,loc ∩W 2, q

loc )(Ω) and for any R suitably large

‖∇w‖L2(Ω̃R) ≤ C‖f‖D−1(Ω),

‖w‖W 2,q(Ω̃R) ≤ C‖f‖(D−1∩Lq0∩Lq)(Ω)(1 + ‖∇A‖Lr(Ω))
2r(k+1+δ)

r−n .

In view of the weak formulation, w becomes a strong solution satisfying the equa-

tions Lw = f . The uniqueness assertion shows that u = w. Therefore the first part

of Theorem 1.4 follows. The second and third parts are proved similarly. Details

are omitted.
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6. Application to a parabolic system: Proof of Theorem 1.5

For sufficiently large R, consider the parabolic system

ϕRuR
t + LuR = FR on [0, T ]× Ω̃R,

uR(0) = uR
0 on Ω̃R,

(6.1)

where ϕR = ϕ + R−2 on Ω̃R, FR = ψRF for some nonnegative cut-off function ψR

supported in Ω̃R with |∇ψR| ≤ 100R−1, uR
0 ∈ (H1

0 ∩H2)(Ω̃R) is a solution to the

boundary value problem

(L|t=0)uR
0 = FR(0)−

√
ϕRg on Ω̃R. (6.2)

Then the unique existence of smooth solution uR follows readily from the standard

argument of parabolic system1.

Now we consider some a priori estimates for the solution uR. Multiplying ut to

(6.1) and integrating over Ω̃R, we get
∫

Ω̃R

ϕR|uR
t |2 dx +

∑

i,j,α,β

∫

Ω̃R

Aαβ
ij ∂iu

R,α
t ∂ju

R,β dx = < FR, uR
t > .

The symmetry of A (1.18) shows that
∫

Ω̃R

ϕR|uR
t |2 dx +

1
2

d

dt

∑

i,j,α,β

∫

Ω̃R

Aαβ
ij ∂iu

R,α∂ju
R,β dx

= < FR, uR
t > +

1
2

∑

i,j,α,β

∫

Ω̃R

(Aαβ
ij )t∂iu

R,α∂ju
R,β dx.

Integrating over [0, t], we have from the ellipticity of A and Hölder inequality that
∫ t

0

‖
√

ϕRut‖2L2(Ω̃R)
ds +

λ

2
‖∇uR‖2

L2(Ω̃R)

≤ C‖∇uR
0 ‖2L2(Ω̃R)

+
∫ t

0

(
ε−1‖FR‖2

D−1(Ω̃R)
+ ε‖∇ut‖2L2(Ω̃R)

+C‖At‖L6(Ω)‖∇uR‖L2(Ω̃R)‖∇uR‖L3(Ω̃R)

)
ds.

(6.3)

Hereafter we will use C as a generic constant independent of R.

Now after taking ∂t to (6.1), if we multiply ut on both sides and integrate them

over Ω̃R, then we obtain from the ellipticity of L that

1
2

d

dt

∫

Ω̃R

ϕR|uR
t |2 dx + λ‖∇uR

t ‖2L2(Ω̃R)

≤ < FR
t , uR

t > −
∑

i,j,α,β

∫

Ω̃R

(Aαβ
ij )t∂iu

R,α
t ∂ju

R,β dx
(6.4)

1One can use the Galerkin approximation as in [8].
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Since ϕRuR
t (0) = FR(0)− (L|t=0)uR

0 =
√

ϕRg, one can show that

1
2
‖
√

ϕRuR
t (0)‖L2(Ω̃R) ≤

1
2
‖g‖L2(Ω).

Hence integrating (6.4) over [0, t], we have by Hölder’s and Young’s inequalities

that

‖
√

ϕRuR
t ‖2L2(Ω̃R)

+ λ

∫ t

0

‖∇uR
t ‖2L2(Ω̃R)

ds

≤ ‖g‖2L2(Ω) + C

∫ t

0

(
‖FR

t ‖2D−1(Ω̃R)
+ ‖∇uR‖2

L3(Ω̃R)

)
ds.

(6.5)

Combining (6.3) and (6.5) for ε = λ
2 , we have for any t ∈ [0, T ]

‖
√

ϕRuR
t ‖2L2(Ω̃R)

+
λ

2
‖∇uR(t)‖2

L2(Ω̃R)
+

λ

2

∫ t

0

‖∇uR
t ‖2L2(Ω̃R)

ds

≤ C‖∇uR
0 ‖2L2(Ω̃R)

+ ‖g‖2L2(Ω) + C

∫ t

0

(‖FR‖2
D−1(Ω̃R)

+ ‖FR
t ‖2D−1(Ω̃R)

) ds

+ C

∫ t

0

(ε−1 + ‖At‖2L6(Ω))‖∇uR‖2
L2(Ω̃R)

ds + ε

∫ t

0

‖∇uR‖2
L6(Ω̃R)

ds.

(6.6)

Here for the last integral we used the Hölder inequality that ‖∇uR‖L3(Ω̃R) ≤
‖∇uR‖

1
2

L2(Ω̃R)
‖∇uR‖

1
2

L6(Ω̃R)
and Young’s inequality.

By the elliptic estimate (1.11) with k = 0, q0 = 6 and r = 6 (hence δ = 0),

‖∇uR‖W 1, 6(Ω̃R)

≤ C(‖FR‖(D−1∩L6)(Ω̃R) + ‖ϕRuR
t ‖(D−1∩L6)(Ω̃R))(1 + ‖∇A‖L6(Ω))4.

(6.7)

From the choice of ψR we observe that

‖FR‖(D−1∩L6)(Ω̃R) ≤ C‖F‖(D−1∩L6)(Ω).

Moreover, from the assumption ϕ ∈ L
3
2 (Ω) that for any v ∈ D1

0(Ω̃R)

< ϕRuR
t , v > = < (ϕ + R−2)uR

t , v >

≤ (‖ϕ‖
L

3
2 (Ω)

+ CR−2+2)‖uR
t ‖L6(Ω̃R)‖v‖L6(Ω̃R)

≤ C(1 + ‖ϕ‖
L

3
2 (Ω)

)‖∇uR
t ‖L2(Ω̃R)‖∇v‖L2(Ω̃R).

Hence

‖ϕRuR
t ‖(D−1∩L6)(Ω̃R) ≤ C(1 + ‖ϕ‖

(L
3
2 ∩L∞)(Ω)

)‖∇uR
t ‖L2(Ω̃R).

Now let us define a constant C0 as

C0 ≡ 1 + ‖∇u0‖L2(Ω) + ‖g‖L2(Ω) + ‖ϕ‖
(L

3
2 ∩L∞)(Ω)

+ sup
[0,T ]

(‖∇A‖L2(Ω) + ‖At‖L6(Ω))

+ ‖F‖L2(0,T ;(D−1∩L6)(Ω)) + ‖Ft‖L2(0,T ;D−1(Ω)).
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Then substituting the above two estimates into (6.7), we have

‖∇uR‖W 1, 6(Ω̃R) ≤ CC4
0 (‖F‖(D−1∩L6)(Ω) + ‖∇uR

t ‖L2(Ω̃R)). (6.8)

Plugging this into (6.6), we have for any t ∈ [0, T ]

‖
√

ϕRuR
t ‖2L2(Ω̃R)

+
λ

2
‖∇uR(t)‖2

L2(Ω̃R)
+

λ

2

∫ t

0

‖∇uR
t ‖2L2(Ω̃R)

ds

≤ CC10
0 + C(ε−1 + C2

0 )
∫ t

0

‖∇uR‖2
L2(Ω̃R)

ds + εCC8
0

∫ t

0

‖∇uR
t ‖2L2(Ω̃R)

ds.

If we choose ε with εCC8
0 ≤ λ

4 , then by Gronwall’s inequality we get for any

t ∈ [0, T ]

‖
√

ϕRuR
t (t)‖2

L2(Ω̃R)
+ ‖∇uR(t)‖2

L2(Ω̃R)
+

∫ t

0

‖∇uR
t ‖2L2(Ω̃R)

ds ≤ CT , (6.9)

where CT is a constant depending on C, C0 and T . From (6.8) it follows that
∫ T

0

‖∇uR‖2
W 1, 6(Ω̃R)

dt ≤ CT . (6.10)

Now extending ϕR, uR
0 , FR and g by defining zero outside Ω̃R to Ω, it is an

easy matter to show uR
0 is a weak solution of (6.2) replaced by Ω and uR

0 → u0 in

D1
0(Ω). Similarly, extending the solution uR by defining zero outside Ω̃R, by the

above a priori estimates (6.9) and (6.10) we deduce that there exists a subsequence

uRj converging in weak or weak∗ sense to a solution u ∈ L∞(0, T ;D1
0) of (1.17)

satisfying that ∇u ∈ L2(0, T ; W 1, 6(Ω)), ut ∈ L2(0, T ; D1
0(Ω)). The uniqueness

follows immediately from the weak formulation of (1.17). This completes the proof

of the theorem.
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