
FRACTIONAL PROCESSES WITH LONG-RANGE
DEPENDENCE

AKIHIKO INOUE AND VO VAN ANH

Abstract. We introduce a class of Gaussian processes with stationary in-
crements which exhibit long-range dependence. The class includes fractional
Brownian motion with Hurst parameter H > 1/2 as a typical example. We es-
tablish infinite and finite past prediction formulas for the processes in which the
predictor coefficients are given explicitly in terms of the MA(∞) and AR(∞)
coefficients. We apply the formulas to prove an analogue of Baxter’s inequal-
ity, which concerns the L1-estimate of the difference between the finite and
infinite past predictor coefficients.

1. Introduction

Let (X(t) : t ∈ R) be a centered Gaussian process with stationary increments,
defined on a probability space (Ω,F , P ), that admits the moving-average represen-
tation

(1.1) X(t) =
∫ ∞

−∞
{g(t− s)− g(−s)} dW (s), t ∈ R,

where (W (t) : t ∈ R) is a Brownian motion, and g(t) is a function of the form

g(t) =
∫ t

0

c(s)ds, t ∈ R,(1.2)

c(t) := I(0,∞)(t)
∫ ∞

0

e−tsν(ds), t ∈ R,(1.3)

with some Borel measure ν on (0,∞) satisfying

(1.4)
∫ ∞

0

1
1 + s

ν(ds) < ∞.

We will also assume some extra conditions such as

lim
t→0+

c(t) = ∞,(1.5)

g(t) ∼ tH−(1/2)`(t) · 1
Γ( 1

2 + H)
, t →∞,(1.6)

where `(t) is a slowly varying function at infinity and H is a constant such that

(1.7) 1/2 < H < 1.
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In (1.6), and throughout the paper, a(t) ∼ b(t) as t →∞ means limt→∞ a(t)/b(t) =
1. We call c(t) (rather than g(t)) the MA(∞) coefficient of (X(t)).

A typical example of ν is

(1.8) ν(ds) =
sin{π(H − 1

2 )}
π

s1/2−Hds on (0,∞)

with (1.7). For this ν, g(t) becomes

(1.9) g(t) = I(0,∞)(t)tH−1/2 1
Γ( 1

2 + H)
, t ∈ R,

and (X(t)) reduces to fractional Brownian motion (BH(t)) with Hurst parameter
H (see Example 2.3 below). Fractional Brownian motion, abbreviated fBm, was
introduced by Kolmogorov [20]. For 1/2 < H < 1, fBm has both self-similarity and
long-range dependence (Samorodnitsky and Taqqu [27]), and plays an important
role in various fields such as network traffic (see, e.g., Mikosch et al. [22]) and
finance (see, e.g., Hu et al. [10]); see also Taqqu [28] and other papers in the same
volume. Because of its importance, stochastic calculus for fBm has been developed
by many authors; see, e.g., Decreusefond and Üstünel [8], and Nualart [24]. Other
important examples of (X(t)) are the processes with long-range dependence which,
unlike fBm, have two different indices H0 and H describing the local properties
(path properties) and long-time behavior of (X(t)), respectively (see Example 2.4
below).

Let t0, t1 and T be real constants such that

(1.10) −∞ < −t0 ≤ 0 ≤ t1 < T < ∞, −t0 < t1.

For I = (−∞, t1] or [−t0, t1], we write PIX(T ) for the predictor of the future value
X(T ) based on the observable (X(s) : s ∈ I) (see Section 3 below). One of the
fundamental prediction problems for (X(t)) is to express PIX(T ) using the segment
(X(s) : s ∈ I) and some deterministic quantities. Another is to express the variance
of the prediction error P⊥I X(T ) := X(T ) − PIX(T ). Results of this type become
important tools in the analysis of non-Markovian processes and systems modulated
by them (see, e.g., Norros et al. [23], Anh et al. [3], Inoue et al. [19] and Inoue and
Nakano [18]). One of our main purposes here is to derive such results for (X(t)).

We establish the following infinite and finite past prediction formulas for (X(t))
(see Theorems 3.8 and 4.12 below):

P(−∞,t1]X(T ) = X(t1) +
∫ t1

−∞

{∫ T−t1

0

b(t1 − s, τ)dτ

}
dX(s),(1.11)

P[−t0,t1]X(T ) = X(t1) +
∫ t1

−t0

{∫ T−t1

0

h(s + t0, u)du

}
dX(s).(1.12)

The significance of (1.11) and (1.12) is that the predictor coefficients b(t, s) and
h(t, s) are given explicitly in terms of the MA(∞) coefficient c(t) and AR(∞) co-
efficient a(t) of (X(t)). We will find that a(t) has a nice integral representation
similar to (1.3) (see (3.3) below). It turns out that the existence of such a nice
AR(∞) coefficient, in addition to the nice MA(∞) coefficient, is a key to the solu-
tion to the prediction problems above.

We apply the results above to the proof of Baxter’s inequality for (X(t)), which
concerns the L1-estimate of the difference between the predictor coefficients b(t, s)
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and h(t, s). The original inequality of Baxter [4] is an assertion for stationary time
series (Yn : n ∈ N) with short memory. It takes the form

(1.13)
n∑

j=1

|φn,j − φj | ≤ K

∞∑
k=n+1

|φk|, ∀n ≥ 1,

where K is a positive constant, and φj and φn,j are the infinite and finite past
predictor coefficients in

P(−∞,−1]Y0 =
∞∑

j=1

φjY−j , P[−n,−1]Y0 =
n∑

j=1

φn,jY−j ,

respectively, with P(−∞,−1]Y0 and P[−n,−1]Y0 being defined similarly. See Berk [5],
Cheng and Pourahmadi [7], and Inoue and Kasahara [17] for related work; for a
textbook account, see Pourahmadi [26, Section 7.6.2]. Using the explicit represen-
tations of b(t, s) and h(t, s), we can prove an analogue of (1.13) for (X(t)) which
are continuous-time stationary-increment processes with long-range dependence.

For fBm with 1/2 < H < 1, the predictor coefficients b(t, s) and h(t, s) are
given in Gripenberg and Norros [9] (see (3.13) and (5.3) below). See [23] and [25]
for different proofs. Fractional Brownian motion has a variety of nice properties,
and the methods of proof of [9, 23, 25] naturally rely on such special properties of
fBm, hence are not applicable to (X(t)). The method of this paper is based on
the alternating projections to the past and future (see Section 4.1 below). As for
fBm with 0 < H < 1/2, its infinite and finite past prediction formulas also exist,
and are due to Yaglom [29] and Nuzman and Poor [25], respectively (see also Anh
and Inoue [2]); see Inoue and Anh [15] for an extension to these results, which have
different forms from (1.11) and (1.12) since no stochastic integrals appear there.

We provide the basic properties and examples of (X(t)) in Section 2. We consider
the infinite and finite past prediction problems for (X(t)) in Sections 3 and 4,
respectively. In Section 5, we prove an analogue of Baxter’s inequality for (X(t)),
using the results in Sections 3 and 4.

2. Basic properties and examples

In this section, we assume (1.2)–(1.4) and

(2.1)
∫ ∞

1

c(t)2dt < ∞.

Then, as in [15, Lemma 2.1], we have
∫∞
−∞ |g(t − s) − g(−s)|2ds < ∞ for t ∈

R. Therefore, for a one-dimensional standard Brownian motion (W (t) : t ∈ R)
with W (0) = 0, we may define the centered stationary-increment Gaussian process
(X(t) : t ∈ R) by (1.1).

For s > 0 and t ∈ R, we put ∆sX(t) := X(t + s) −X(t). Then, by definition,
(∆sX(t) : t ∈ R) is a stationary process.

Lemma 2.1. Let s ∈ (0,∞). We assume (1.6) and (1.7). Then

E [∆sX(t) ·∆sX(0)] ∼ t2H−2`(t)2 ·
s2Γ(2− 2H) sin{(H − 1

2 )π}
π

, t →∞.

Since −1 < 2H − 2 < 0 in Lemma 2.1, we see from this lemma that (∆sX(t)),
whence (X(t)), has long-range dependence.

We put σ(t) := E[|X(t + s)−X(s)|2]1/2 for t ≥ 0 and s ∈ R.
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Lemma 2.2. Let H0 ∈ (1/2, 1) and `0(·) a slowly varying function at infinity. We
assume

(2.2) g(t) ∼ tH0−(1/2)`0(1/t) · 1
Γ( 1

2 + H0)
, t → 0 + .

Then

σ(t) ∼ tH0`(1/t)
√

v(H0), t → 0+,

where v(H0) := Γ(2− 2H0) cos(πH0)/{πH0(1− 2H0)}. In particular, we have

H0 = sup{β : σ(t) = o(tβ), t → 0+} = inf{β : tβ = o(σ(t)), t → 0+}.

From Lemma 2.2, we see that the index H0 describes the path properties of
(X(t)) (see Adler [1, Section 8.4]).

By the monotone density theorem (cf. Bingham et al. [6, Theorem 1.7.5]), (1.6)
with (1.7) implies

(2.3) c(t) ∼ tH−(3/2)`(t) · 1
Γ(H − 1

2 )
, t →∞.

Similarly, (2.2) implies

(2.4) c(t) ∼ tH0−(3/2)`0(1/t) · 1
Γ(H0 − 1

2 )
. t → 0 + .

Lemmas 2.1 and 2.2 follow from (2.3) and (2.4), respectively, by standard argu-
ments. However, since we do not use these results in the arguments below, we omit
the details.

Example 2.3. For H ∈ (1/2, 1), let ν be as in (1.8). Then we have (1.9); and so
all the conditions above are satisfied. The resulting process (X(t)) is fBm (BH(t)):

(2.5) BH(t) =
1

Γ( 1
2 + H)

∫ ∞

−∞

{
((t− s)+)H−(1/2) − ((−s)+)H−(1/2)

}
dW (s),

where (x)+ := max(0, x) for x ∈ R. The representation (2.5) of fBm is due to the
pioneering work of Mandelbrot and Van Ness [21].

Example 2.4. Let f(·) be a nonnegative, locally integrable function on (0,∞). For
H0,H ∈ (1/2, 1) and slowly varying functions `0(·) and `(·) at infinity, we assume

f(s) ∼
sin{π(H0 − 1

2 )}
π

s(1/2)−H`(1/s), s → 0+,

f(s) ∼
sin{π(H0 − 1

2 )}
π

s(1/2)−H0`0(s), s →∞.

Let ν(ds) = f(s)ds. Then, by Abelian theorems for Laplace transforms (cf. [6,
Section 1.7]), we have (2.3), whence (1.6). Similarly, we have (2.4), whence (2.2).
Thus all the conditions above are satisfied. As we have seen above, the indices H0

and H describe the path properties and long-time behavior of (X(t)), respectively.
4



3. Infinite past prediction problems

In this section, we assume (1.1)–(1.5), (2.1) and

(3.1) lim
t→∞

g(t) = ∞.

Notice that, for the processes (X(t)) in Examples 2.3 and 2.4, all these conditions
are satisfied. We also assume (1.10).

We write M(X) for the real Hilbert space spanned by (X(t) : t ∈ R) in
L2(Ω,F , P ), and ‖ · ‖ for its norm. Let I be a closed interval of R such as [−t0, t1],
(−∞, t1], and [−t0,∞). Let MI(X) be the closed subspace of M(X) spanned by
(X(t) : t ∈ I). We write PI for the orthogonal projection operator from M(X) to
MI(X), and P⊥I for its orthogonal complement: P⊥I Z = Z − PIZ for Z ∈ M(X).
Note that, since (X(t)) is a Gaussian process, we have

PIZ = E [Z| σ(X(s) : s ∈ I)] , Z ∈ M(X).

3.1. MA and AR coefficients. The conditions (1.5) and (3.1) imply ν(0,∞) = ∞
and

∫∞
0

s−1ν(ds) = ∞, respectively. Therefore, by [15, Theorem 3.2], there exists
a unique Borel measure µ on (0,∞) satisfying∫ ∞

0

1
1 + s

µ(ds) < ∞, µ(0,∞) = ∞,

∫ ∞

0

1
s
µ(ds) = ∞

and

(3.2) −iz

{∫ ∞

0

eiztc(t)dt

} {∫ ∞

0

eiztα(t)dt

}
= 1, =z > 0,

with

α(t) :=
∫ ∞

0

e−stµ(ds), t > 0.

We define the AR(∞) coefficient a(t) of (X(t)) by

(3.3) a(t) := −dα

dt
(t) =

∫ ∞

0

e−stsµ(ds), t > 0.

We define the positive kernel b(t, s) by

b(t, s) :=
∫ s

0

c(u)a(t + s− u)du, t, s > 0.

Then, by [15, Lemma 3.4], the following equalities hold:∫ ∞

0

b(t, s)dt = 1, s > 0,(3.4)

c(t + s) =
∫ t

0

c(t− u)b(u, s)du, t, s > 0.(3.5)

3.2. Stochastic integrals. Let I be a closed interval of R. We define

HI(X) :=

{
f :

f is a real-valued measurable function on I such

that
∫∞
−∞

{∫
I
|f(u)|c(u− s)du

}2
ds < ∞.

}
.

This is the class of functions f for which we can define the stochastic integral∫
I
f(s)dX(s). We define a subclass H0

I of HI(X) by

H0
I :=

{∑m

k=1
akI(tk−1,tk](s) :

m ∈ N, −∞ < t0 < t1 < · · · < tm < ∞
with (t0, tm] ⊂ I, ak ∈ R (k = 1, . . . ,m)

}
.
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Each member of f ∈ H0
I a simple function on I.

Definition 3.1. For f =
∑m

k=1 akI(tk−1,tk] ∈ H0
I , we define∫

I

f(s)dX(s) :=
m∑

k=1

ak {X(tk)−X(tk−1} .

We see that
∫

I
f(s)dX(s) ∈ MI(X) for f ∈ H0

I .

Proposition 3.2. For f ∈ H0
I , we have

(3.6)
∫

I

f(s)dX(s) =
∫ ∞

−∞

{∫
I

f(u)c(u− s)du

}
dW (s).

Proof. For −∞ < a < b < ∞ with (a, b] ⊂ I, we have

X(b)−X(a) =
∫ ∞

−∞

{∫
I

I(a,b](u)c(u− s)du

}
dW (s),

which implies (3.6) for f = I(a,b]. The general case follows easily from this. �

Proposition 3.3. Let f ∈ HI(X) such that f ≥ 0, and let fn (n = 1, 2, . . . ) be a
sequence of simple functions on I such that 0 ≤ fn ↑ f a.e. Then, in M(X),

lim
n→∞

∫ ∞

−∞
fn(s)dX(s) =

∫ ∞

−∞

{∫
I

f(u)c(u− s)du

}
dW (s).

Proof. By Proposition 3.2 and the monotone convergence theorem, we have∥∥∥∥∫
I

fn(s)dX(s)−
∫ ∞

−∞

{∫
I

f(u)c(u− s)du

}
dW (s)

∥∥∥∥2

≤
∫ ∞

−∞

{∫
I

(f(u)− fn(u))c(u− s)du

}2

ds ↓ 0, n →∞.

Thus the proposition follows. �

For a real-valued function f on I, we write f(x) = f+(x)− f−(x), where

f+(x) := max(f(x), 0), f−(x) := max(−f(x), 0), x ∈ I.

Definition 3.4. For f ∈ HI(X), we define∫
I

f(s)dX(s) := lim
n→∞

∫
I

f+
n (s)dX(s)− lim

n→∞

∫
I

f−n (s)dX(s) in M(X),

where {f+
n } and {f−n } are arbitrary sequences of non-negative simple functions on

I such that f+
n ↑ f+, f−n ↑ f−, as n →∞, a.e.

From the definition above, we see that
∫

I
f(s)dX(s) ∈ MI(X) for f ∈ HI(X).

The next proposition follows immediately from Proposition 3.3.

Proposition 3.5. The equality (3.6) also holds for f ∈ HI(X).
6



3.3. Infinite past prediction formulas. We denote by D(R) the space of all
φ ∈ C∞(R) with compact support, endowed with the usual topology. For a
random distribution Y (cf. [11, Section 2] and [3, Section 2]), we write DY for
its derivative. For t ∈ R, we write M(−∞,t](Y ) for the closed linear hull of
{Y (φ) : φ ∈ D(R), supp φ ⊂ (−∞, t]} in L2(Ω,F , P ). Notice that MI(X) here
coincides with that defined above.

As in [15, Proposition 2.4], we have the next proposition.

Proposition 3.6. The derivative DX of (X(t)) is a purely nondeterministic sta-
tionary random distribution, and (W (t) : t ∈ R) is a canonical Brownian motion
of DX in the sense that M(−∞,t](DX) = M(−∞,t](DW ) for every t ∈ R.

Here is the infinite past prediction formula for
∫∞

t
f(s)dX(s).

Theorem 3.7. For t ∈ [0,∞) and f ∈ H[t,∞)(X), the following assertions hold:

(a)
∫∞
0

b(t− ·, τ)f(t + τ)dτ ∈ H(−∞,t](X).
(b) P(−∞,t]

∫∞
t

f(s)dX(s) =
∫ t

−∞
{∫∞

0
b(t− s, τ)f(t + τ)dτ

}
dX(s).

Proof. Since f ∈ H[t,∞)(X) iff |f | ∈ H[t,∞)(X), we may assume f ≥ 0. Since

(3.7) c(u) = 0, t ≤ 0,

it follows from (3.5) and the Fubini–Tonelli theorem that, for s < t,

(3.8)

∫ ∞

t

f(u)c(u− s)du =
∫ ∞

0

dτf(t + τ)
∫ t−s

0

c(t− s− u)b(u, τ)du

=
∫ t

−∞
duc(u− s)

∫ ∞

0

b(t− u, τ)f(t + τ)dτ.

Thus we obtain (a). By Proposition 3.6 and [3, Proposition 2.3 (2)], we have

(3.9) M(−∞,t](X) = M(−∞,t](DW ).

This and Proposition 3.5 yield

P(−∞,t]

∫ ∞

t

f(s)dX(s) =
∫ t

−∞

{∫ ∞

t

f(u)c(u− s)du

}
dW (s).

By (3.7), (3.8) and Proposition 3.5, the integral on the right-hand side is∫ t

−∞

{∫ t

−∞
duc(u− s)

∫ ∞

0

b(t− u, τ)f(t + τ)dτ

}
dW (s)

=
∫ t

−∞

{∫ ∞

0

b(t− s, τ)f(t + τ)dτ

}
dX(s).

Thus (b) follows. �

By putting f(s) = I(t1,T ](s) in Theorem 3.7 (b), we immediately obtain the next
infinite past prediction formula for (X(t)).

Theorem 3.8. Let 0 ≤ t1 < T < ∞. Then
∫ T−t1
0

b(t1−·, τ)dτ ∈ H(−∞,t1](X) and
the infinite past prediction formula (1.11) holds.

Using the Hilbert space isomorphism θ : M(X) → M(X) characterized by
θ(X(t)) = X(−t) for t ∈ R, we obtain the next theorem from Theorem 3.7 (see the
proof of [3, Theorem 3.6]).
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Theorem 3.9. For t ∈ [0,∞) and f ∈ H[t,∞)(X), the following assertions hold:

(a)
∫∞
0

b(t + ·, τ)f(t + τ)dτ ∈ H[−t,∞)(X).
(b) P[−t,∞)

∫ −t

−∞ f(−s)dX(s) =
∫∞
−t

{∫∞
0

b(t + s, τ)f(t + τ)dτ
}

dX(s).

As in [3, Definition 2.2], we define another Brownian motion (W ∗(t) : t ∈ R) by

(3.10) W ∗(t) := θ(W (−t)), t ∈ R.

Proposition 3.10. Let I be a closed interval of R and let f ∈ HI(X). Then∫
I

f(s)dX(s) =
∫ ∞

−∞

{∫
I

f(u)c(s− u)du

}
dW ∗(s).

The proof of Proposition 3.10 is the same as that of [3, Proposition 3.5], whence
we omit it. We need Theorem 3.9 and Proposition 3.10 in the next section.

Example 3.11. As in Example 2.3, we consider fBm (BH(t)) with 1/2 < H < 1.
Then the MA(∞) coefficient c(t) is given by

(3.11) c(t) = tH−3/2 1
Γ(H − 1

2 )
, t > 0,

so that
∫∞
0

eiztc(t)dt = (−iz)1/2−H for =z > 0. From (3.2), we have∫ ∞

0

eiztα(t)dt = (−iz)H−3/2.

Hence, α(t) = t
1
2−H/Γ( 3

2 −H), so that the AR(∞) coefficient a(t) is given by

(3.12) a(t) = t−(H+ 1
2 ) H − 1

2

Γ( 3
2 −H)

, t > 0.

By the change of variable u = sv,
∫ s

0
(s− u)H−(3/2)(t + u)−H−(1/2)du becomes

sH− 1
2 t−H− 1

2

∫ 1

0

(1− v)H− 3
2 {1 + (s/t)v}−H− 1

2 dv =
1

(H − 1
2 )

(s

t

)H− 1
2 1

t + s
,

where we have used the equality∫ 1

0

(1− v)p−1(1 + xv)−p−1dv =
1

p(x + 1)
, p > 0, x > −1.

Thus

(3.13) b(t, s) =
sin{π(H − 1

2 )}
π

(s

t

)H− 1
2 1

t + s
, t > 0, s > 0;

and so, from Theorem 3.8, we see that, for 0 ≤ t < T ,
E [BH(T )| σ(BH(s) : −∞ < s ≤ t)]

= BH(t) +
sin{π(H − 1

2 )}
π

∫ t

−∞

{∫ T−t

0

(
τ

t− s

)H− 1
2 1

t− s + τ
dτ

}
dBH(s).

This prediction formula was obtained in [9, Theorem 3.1] by a different method.

4. Finite past prediction problems

In this section, we assume (1.1)–(1.7) and (1.10). Notice that (1.6) with (1.7)
implies (3.1) as well as (2.3), whence (2.1). For t0, t1, and T in (1.10), we put

t2 := t0 + t1, t3 := T − t1.
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4.1. Alternating projections to the past and future. For n ∈ N, we define
the orthogonal projection operator Pn by

Pn :=

{
P(−∞,t1], n = 1, 3, 5, . . . ,

P[−t0,∞), n = 2, 4, 6, . . . .

It should be noted that {Pn}∞n=1 is merely an alternating sequence of projection
operators, first to M(−∞,t1](X), then to M[−t0,∞)(X), and so on. This sequence
plays a key role in the proof of the finite past prediction formula for (X(t)).

For t, s ∈ (0,∞) and n ∈ N, we define bn(t, s) = bn(t, s; t2) iteratively by

(4.1)

{
b1(t, s) := b(t, s),
bn(t, s) :=

∫∞
0

b(t, u)bn−1(t2 + u, s)du, n = 2, 3, . . . .

Proposition 4.1. For f ∈ H[t1,∞)(X), the following assertions hold:

(a)
∫∞
0

bn(t1 − ·, τ)f(t1 + τ)dτ ∈ H(−∞,t1](X) for n = 1, 3, 5, . . . .
(b)

∫∞
0

bn(t0 + ·, τ)f(t1 + τ)dτ ∈ H[−t0,∞)(X) for n = 2, 4, 6, . . . .

Proof. We may assume that f ≥ 0. By Theorem 3.7, (a) holds for n = 1. By the
Fubini–Tonelli theorem, we have, for s > −t0,∫ ∞

0

dub(t0 + s, u)
∫ ∞

0

b1(t2 + u, τ)f(t1 + τ)dτ =
∫ ∞

0

b2(t0 + s, τ)f(t1 + τ)dτ.

Hence, by Theorem 3.9, we have (b) for n = 2. Repeating this procedure, we obtain
the proposition. �

Let f ∈ H[t1,∞)(X). By Proposition 4.1, we may define the random variables
Gn(f) by

Gn(f) :=

{∫ t1
−t0

{∫∞
0

bn(t1 − s, τ)f(t1 + τ)dτ
}

dX(s), n = 1, 3, . . . ,∫ t1
−t0

{∫∞
0

bn(t0 + s, τ)f(t1 + τ)dτ
}

dX(s), n = 2, 4, . . . .

We may also define the random variables εn(f) by ε0 (f) :=
∫∞

t1
f(s)dX(s) and

εn(f) :=

{∫ −t0
−∞

{∫∞
0

bn(t1 − s, τ)f(t1 + τ)dτ
}

dX(s), n = 1, 3, . . . ,∫∞
t1

{∫∞
0

bn(t0 + s, τ)f(t1 + τ)dτ
}

dX(s), n = 2, 4, . . . .

Proposition 4.2. Let f ∈ H[t1,∞)(X) and n ∈ N. Then

(4.2) PnPn−1 · · ·P1

∫ ∞

t1

f(s)dX(s) = εn (f) +
n∑

k=1

Gk(f).

We can prove (4.2) using Proposition 4.1 and the facts

M[−t0,t1](X) ⊂ M(−∞,t1](X) ∩M[−t0,∞)(X),(4.3)

Gk ∈ M[−t0,t1](X), k = 1, 2, . . . .(4.4)

Since the proof is similar to that of [3, Proposition 4.4], we omit the details.
We are about to investigate the limit of (4.2) as n →∞ (see Lemma 4.9 below).
For f ∈ H[t1,∞)(X) and s > 0, we define Dn(s, f) = Dn(s, f ; t1, t2) by

Dn(s, f) :=

{∫∞
0

c(u)f(t1 + s + u)du, n = 0,∫∞
0

duc(u)
∫∞
0

bn(t2 + u + s, τ)f(t1 + τ)dτ, n = 1, 2, . . . .
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From the proof of the next proposition, we see that these integrals converge abso-
lutely. Recall (W ∗(t)) from (3.10).

Proposition 4.3. Let f ∈ H[t1,∞)(X). Then

P⊥n+1εn (f) =

{∫∞
t1

Dn(s− t1, f)dW (s), n = 0, 2, 4, . . . ,∫ −t0
−∞ Dn(−t0 − s, f)dW ∗(s), n = 1, 3, 5, . . . .

Proof. By (3.9) and Proposition 3.5,

P⊥1 ε0 (f) =
∫ ∞

t1

{∫ ∞

s

f(u)c(u− s)du

}
dW (s) =

∫ ∞

t1

D0(s− t1, f)dW (s).

Thus the assertion holds for n = 0. Let n = 1, 3, . . . . Then, by Proposition 3.10,

εn (f) =
∫ ∞

−∞

{∫ −t0

−∞
duc(s− u)

∫ ∞

0

bn(t1 − u, τ)f(t1 + τ)dτ

}
dW ∗(s).

Hence, using [3, Proposition 2.3 (7)] and (3.7),

P⊥n+1εn (f) =
∫ −t0

−∞

{∫ s

−∞
duc(s− u)

∫ ∞

0

bn(t1 − u, τ)f(t1 + τ)dτ

}
dW ∗(s)

=
∫ −t0

−∞

{∫ ∞

0

duc(u)
∫ ∞

0

bn(t2 + u− t0 − s, τ)f(t1 + τ)dτ

}
dW ∗(s)

=
∫ −t0

−∞
Dn(−t0 − s, f)dW ∗(s).

Thus we obtain the assertion for n = 1, 3, . . . . The proof for n = 2, 4, . . . is similar;
and so we omit it. �

From Propositions 4.2 and 4.3, we immediately obtain the next proposition
(cf. the proof of [3, Proposition 4.9]).

Proposition 4.4. Let f ∈ H[t1,∞)(X). Then the following assertions hold:

(a) ‖P⊥1
∫∞

t1
f(s)dX(s)‖2 =

∫∞
0

D0(s, f)2ds.
(b) ‖P⊥n+1PnPn−1 · · ·P1

∫∞
t1

f(s)dY (s)‖2 =
∫∞
0

Dn(s, f)2ds for n = 1, 2, . . . .

We write Q for the orthogonal projection operator from M(X) onto the intersec-
tion M(−∞,t1](X) ∩M[−t0,∞)(X). Then, by von Neumann’s alternating projection
theorem (see, e.g., [26, Theorem 9.20]), we have Q = s-lim

n→∞
PnPn−1 · · ·P1. Using

this, (4.3) and Proposition 4.4, we immediately obtain the next proposition (cf. the
proof of [3, Proposition 4.9 (3)]).

Proposition 4.5. Let f ∈ H[t1,∞)(X). Then limn→∞
∫∞
0

Dn(s, f)2ds = 0.

We need the next proposition.

Proposition 4.6. Let f ∈ H[t1,∞)(X). Then, for t > 0 and n = 0, 1, . . . , we have∫ ∞

0

bn+1(t, τ)f(t1 + τ)dτ =
∫ ∞

0

a(t + u)Dn(u, f)du.

10



Proof. We may assume f ≥ 0. By the Fubini–Tonelli theorem, we have, for t > 0,∫ ∞

0

b1(t, τ)f(t1 + τ)dτ =
∫ ∞

0

{∫ τ

0

c(τ − u)a(t + u)du

}
f(t1 + τ)dτ

=
∫ ∞

0

a(t + u)
{∫ ∞

0

c(τ)f(t1 + u + τ)dτ

}
du =

∫ ∞

0

a(t + u)D0(u, f)du.

Thus the assertion holds for n = 0. Now we assume that n ≥ 1. Since we have

bn+1(t, τ) =
∫ ∞

0

a(t + v)
{∫ ∞

0

c(u)bn(t2 + u + v, τ)du

}
dv, t, τ > 0,

we obtain the assertion, again using the Fubini–Tonelli theorem. �

For t, s > 0, we define k(t, s) = k(t, s; t2) by

k(t, s) :=
∫ ∞

0

c(t + u)a(t2 + u + s)du.

Notice that k(t, s) < ∞ for t, s > 0 since k(t, s) ≤ c(t)
∫∞

t2+s
a(u)du.

Proposition 4.7. Let f ∈ H[t1,∞)(X). Then

Pn+1εn (f) =

{∫ t1
−∞

{∫∞
0

k(t1 − s, u)Dn−1(u, f)du
}

dW (s), n = 2, 4, . . . ,∫∞
−t0

{∫∞
0

k(t0 + s, u)Dn−1(u, f)du
}

dW ∗(s), n = 1, 3, . . . .

Proof. We assume n = 2, 4, . . . . Then, by Propositions 3.5 and 4.6, we have

Pn+1εn (f) =
∫ t1

−∞

{∫ ∞

t1

duc(u− s)
∫ ∞

0

bn(t0 + u, τ)f(t1 + τ)dτ

}
dW (s)

=
∫ t1

−∞

{∫ ∞

0

dvc(t1 − s + v)
∫ ∞

0

a(t2 + v + u)Dn−1(u, f)du

}
dW (s)

=
∫ t1

−∞

{∫ ∞

0

k(t1 − s, u)Dn−1(u, f)du

}
dW (s).

The proof of the case n = 1, 3, . . . is similar. �

We need the next L2-boundedness theorem.

Theorem 4.8. Let p ∈ (0, 1/2) and let `(·) be a slowly varying function at infinity.
Let C(·) and A(·) be nonnegative and decreasing functions on (0,∞). We assume
C(·) ∈ L1

loc[0,∞) and A(0+) < ∞. We also assume

A(t) ∼ t−(1+p)`(t)p, t →∞,

C(t) ∼ t−(1−p)

`(t)
· sin(pπ)

π
, t →∞.

Then

sup
0<x<∞

∫ ∞

0

K(x, y) (x/y)1/2
dy < ∞,

sup
0<y<∞

∫ ∞

0

K(x, y) (y/x)1/2
dx < ∞,

where K(x, y) :=
∫∞
0

C(x + u)A(u + y)du for x, y > 0. In particular, the inte-
gral operator K defined by (Kf)(x) :=

∫∞
0

K(x, y)f(y)dy for x > 0 is a bounded
operator on L2((0,∞), dy).
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The proof of Theorem 4.8 is similar to that of [15, Theorem 5.1], whence we omit
it.

By putting z = iy in (3.2), we get

y

{∫ ∞

0

e−ytc(t)dt

} {∫ ∞

0

e−ytα(t)dt

}
= 1, y > 0.

By Karamata’s Tauberian theorem (cf. [6, Theorem 1.7.6]) applied to this, (2.3)
implies

α(t) ∼ t−(H− 1
2 )

`(t)
· 1
Γ( 3

2 −H)
, t →∞.

This and the monotone density theorem give

(4.5) a(t) ∼ t−(H+ 1
2 )

`(t)
·

(H − 1
2 )

Γ( 3
2 −H)

, t →∞.

The next lemma is a key to our arguments.

Lemma 4.9. Let f ∈ H[t1,∞)(X). Then ‖εn(f)‖ → 0 as n →∞.

Proof. It follows from (2.3), (4.5) and Theorem 4.8 below that the integral operator
K defined by Kf(t) :=

∫∞
0

k(t, s)f(s)ds is a bounded operator on L2((0,∞), ds).
Hence, by Propositions 4.3, 4.5 and 4.7, we have

‖εn (f)‖2 =
∫ ∞

0

Dn(s, f)2ds +
∫ ∞

0

{∫ ∞

0

k(s, u)Dn−1(u, f)du

}2

ds

≤
∫ ∞

0

Dn(s, f)2ds + ‖K‖2
∫ ∞

0

Dn−1(s, f)2ds → 0, n →∞.

Thus the lemma follows. �

We can now state the conclusions of the arguments above.

Theorem 4.10. The following assertions hold:
(a) M[−t0,t1](X) = M(−∞,t1](X) ∩M[−t0,∞)(X).
(b) P[−t0,t1] = s-lim

n→∞
PnPn−1 · · ·P1.

(c) ‖P⊥[−t0,t1]
Z‖2 =

∥∥P⊥1 Z
∥∥2 +

∑∞
n=1

∥∥(Pn+1)⊥Pn · · ·P1Z
∥∥2 for Z ∈ M(X).

We can prove Theorem 4.10 using Proposition 4.2 and Lemma 4.9. Since the
proof is similar to that of [3, Theorem 4.6], we omit the details.

4.2. Finite past prediction formulas. We define h(s, u) = h(s, u; t2) by

(4.6) h(s, u) :=
∞∑

k=1

{b2k−1(t2 − s, u) + b2k(s, u)} , 0 < s < t2, u > 0.

Here is the finite past prediction formula for
∫∞

t1
f(s)dX(s).

Theorem 4.11. Let f ∈ H[t1,∞)(X). Then the following assertions hold:

(a)
∫∞
0

h(t0 + ·, u)f(t1 + u)du ∈ H[−t0,t1](X).
(b) P[−t0,t1]

∫∞
t1

f(s)dX(s) =
∫ t1
−t0

{∫∞
0

h(t0 + s, u)f(t1 + u)du
}

dX(s).
(c) ‖P⊥[−t0,t1]

∫∞
t1

f(s)dX(s)‖2 =
∑∞

n=0

∫∞
0

Dn(s, f)2ds.
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Proof. We may assume that f ≥ 0. By Theorem 4.10 (b), Proposition 4.2 and
Lemma 4.9, we have, in M(X),

P[−t0,t1]

∫ ∞

t1

f(s)dX(s) = lim
n→∞

PnPn−1 · · ·P1

∫ ∞

t1

f(s)dX(s)

= lim
n→∞

∫ t1

−t0

{∫ ∞

0

hn(t0 + u, v)f(t1 + v)dv

}
dX(s),

where, for 0 < s < t2 and u > 0, we define hn(s, u) = hn(s, u; t2) by

hn(s, u) =

{
b1(t2 − s, u) + b2(s, u) + · · ·+ bn(t2 − s, u), n = 1, 3, 5, . . . ,

b1(t2 − s, u) + b2(s, u) + · · ·+ bn(s, u), n = 2, 4, 6, . . . .

Since hn(s, u) ↑ h(s, u) as n → ∞, we obtain (a) and (b) using the monotone
convergence theorem. Finally, (c) follows immediately from Theorem 4.11 (c) and
Proposition 4.4. �

For s, u > 0, we define Dn(s) = Dn(s; t2, t3) by

Dn(s) :=
∫ ∞

0

duc(u)
∫ t3

0

bn(t2 + u + s, τ)dτ, n = 1, 2, . . . .

Here are the solutions to the finite past prediction problems for (X(t)).

Theorem 4.12. The finite past prediction formula (1.12) and the following equality
for the mean-square prediction error hold:∥∥∥P⊥[−t0,t1]

X(T )
∥∥∥2

=
∫ T−t1

0

g(s)2ds +
∞∑

n=1

∫ ∞

0

Dn(s)2ds.

Proof. We put f(s) = I(t1,T ](s). Then
∫∞

t1
f(s)dX(s) = X(T )−X(t1) and∫ ∞

0

h(t0 + s, u)f(t1 + u)du =
∫ t3

0

h(t0 + s, u)du, −t0 < s < t1.

We also have Dn(s, f) = Dn(s) for n = 1, 2, . . . and D0(s, f) = g(t3− s). Thus the
theorem follows from Theorem 4.11. �

5. Baxter’s inequality

In this section, we assume (1.1)–(1.7) and (1.10). Let t2 := t0 + t1 as before. By
(4.6), the infinite and finite past predictor coefficients b(t, s) and h(s, u) = h(s, u; t2)
satisfy, for s ∈ (−t0, t1) and u > 0,

(5.1) h(s + t0, u)− b(t1 − s, u) =
∞∑

k=1

{b2k(s + t0, u) + b2k+1(t1 − s, u)} > 0,

where we recall that bn(t, s) = bn(t, s; t2) from (4.1).
The aim here is to prove Baxter’s inequality for (X(t)).

Theorem 5.1. There exists a positive constant K such that, for all t0 ≥ 1,∫ t1

−t0

ds

∫ T−t1

0

{h(s + t0, u)− b(t1 − s, u)}du ≤ K

∫ −t0

−∞
ds

∫ T−t1

0

b(t1 − s, u)du.
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5.1. Representation in terms of β. We define a positive function β(t) by

β(t) :=
∫ ∞

0

c(v)a(t + v)dv, t > 0.

We next derive the representation of the finite past prediction coefficient h(s, u) =
h(s, u; t2) in terms of β(t) (and c(t) and a(t)). We need this result in Section
5.2. See [16, 17, 14] for the usefulness of such expressions in terms of β(t) in the
discrete-time setting.

For t, u, v > 0, we define δ1(u, v; t) := β(t + v + u),

δ2(u, v; t) :=
∫ ∞

0

dw1β(t + v + w1)β(t + w1 + u),

and, for k = 3, 4, . . . ,

δk(u, v; t) :=
∫ ∞

0

dwk−1 · · ·
∫ ∞

0

dw1β(t + v + wk−1)

×
{∏k−2

l=1
β(t + wl+1 + wl)

}
β(t + w1 + u).

For t, s > 0, we define B1(t, s; t2) := b(t, s), and, for k ≥ 2,

Bk(t, s; t2) :=
∫ s

0

dvc(s− v)
∫ ∞

0

a(t + u)δk−1(u, v; t2)du

The next proposition gives the desired representation of h(s, u).

Proposition 5.2. For t, s > 0 and k ≥ 1, bk(t, s; t2) = Bk(t, s; t2), that is,

bk(t, s; t2) =
∫ s

0

dvc(s− v)
∫ ∞

0

a(t + u)δk−1(u, v; t2)du, k = 2, 3, . . . .

Proof. It is enough to show that, for t, s > 0 and k = 1, 2, . . . ,

Bk+1(t, s; t2) =
∫ ∞

0

b(t, τ)Bk(t2 + τ, s; t2)dτ.

However, from the Fubini–Tonelli theorem, we see that∫ ∞

0

b(t, τ)Bk(t2 + τ, s; t2)dτ

=
∫ ∞

0

{∫ τ

0

c(τ − z)a(t + z)dz

}
×

{∫ s

0

dvc(s− v)
∫ ∞

0

a(t2 + τ + u)δk−1(u, v; t2)du

}
dτ

=
∫ s

0

dvc(s− v)
∫ ∞

0

dza(t + z)∫ ∞

0

du

{∫ ∞

z

dvc(τ − z)a(t2 + τ + u)
}

δk−1(u, v; t2)

=
∫ s

0

dvc(s− v)
∫ ∞

0

dza(t + z)
∫ ∞

0

β(t2 + zu)δk−1(u, v; t2)du

=
∫ s

0

dvc(s− v)
∫ ∞

0

dza(t + z)δk(z, v; t2)

= Bk+1(t, s; t2).
14



Thus the proposition follows. �

5.2. Proof of Baxter’s inequality. For simplicity, we write d := H − 1
2 . Then

0 < d < 1/2. From (2.3), (4.5) and [11, Proposition 4.3], we have

(5.2) β(t) ∼ t−1 · sin(πd)
π

, t →∞.

As in [12, Section 6], [13, Section 3] and [17, Section 3]], we put, for u ≥ 0,

f1(u) :=
1

π(1 + u)
, f2(u) :=

1
π2

∫ ∞

0

ds1

(s1 + 1)(s1 + 1 + u)
,

and, for k = 3, 4, . . . ,

fk(u) :=
1
πk

∫ ∞

0

dsk−1 · · ·
∫ ∞

0

ds1
1

(1 + sk−1)
×

{∏k−2

l=1

1
(1 + sl+1 + sl)

}
× 1

(1 + s1 + u)
.

Proposition 5.3. The following assertions hold:

(a) For r ∈ (1,∞), there exists N > 0 such that

0 < δk(u, v; t) ≤ fk(0){r sin(πd)}k

t
, u, v > 0, k ∈ N, t ≥ N.

(b) For k ∈ N and u > 0, δk(tu, v; t) ∼ t−1fk(u) sink(πd) as t →∞.

For example, we see from (5.2) that, formally,

tδk(tu, v; t) =
∫ ∞

0

dsk−1 . . .

∫ ∞

0

ds1tβ(t(1 + (v/t) + sk−1))

×
{∏k−2

l=1
tβ(t(1 + sl+1 + sl))

}
tβ(t(1 + s1 + u))

→ fk(u) sink(πd), t →∞,

which is (b) of the proposition above. Since we can prove the two assertions rigor-
ously as in the proof of [17, Proposition 3.2], we omit the details.

Theorem 5.1 follows immediately from the next more precise result.

Lemma 5.4. For 0 ≤ t1 < T , we have, as t0 →∞,∫ t1

−t0

ds

∫ T−t1

0

{h(s + t0, u; t2)− b(t1 − s, u)}du

∼ t2a(t2) ·

{∫ T−t1

0

ds

∫ s

0

c(v)dv

}
·
{∫ 1

0

s−d−1[(1− s)−d − 1]ds

}
∼

∫ −t0

−∞
ds

∫ T−t1

0

b(t1 − s, u)du · d
∫ 1

0

s−d−1[(1− s)−d − 1]ds.
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Proof. By (5.1) and Proposition 5.2, we have∫ t1

−t0

ds

∫ T−t1

0

{h(s + t0, u; t2)− b(t1 − s, u)}du

=
∞∑

k=2

∫ T−t1

0

ds

∫ t2

0

dτbk(τ, s; t2)

=
∞∑

k=2

∫ t1

−t0

ds

∫ s

0

dvc(s− v)
∫ t2

0

dτ

∫ ∞

0

a(τ + u)δk−1(u, v; t2)du

= (t2)2
∞∑

k=2

∫ t1

−t0

ds

∫ s

0

dvc(s− v)
∫ t2

0

dτ

∫ ∞

0

a(t2(τ + u))δk−1(t2u, v; t2)du.

Therefore, by (4.5), Proposition 5.3 and standard arguments involving Potter’s
theorem (cf. [6, Theorem 1.5.6]) and the dominated convergence theorem,

1
t2a(t2)

∫ t1

−t0

ds

∫ T−t1

0

{h(s + t0, u; t2)− b(t1 − s, u)}du

=
∞∑

k=2

∫ t1

−t0

ds

∫ s

0

dvc(s− v)
∫ t2

0

dτ

∫ ∞

0

a(t2(τ + u))
a(t2)

t2δk−1(t2u, v; t2)du

→

{∫ T−t1

0

ds

∫ s

0

c(v)dv

} ∞∑
m=1

{∫ ∞

0

dufm(u)
∫ 1

0

1
(τ + u)d+1

dτ

}
sinm(πd)

as t0 →∞. On the other hand,

1
t2a(t2)

∫ −t0

−∞
ds

∫ T−t1

0

b(t1 − s, u)du

=
∫ T−t1

0

du

∫ u

0

dvc(u− v)
∫ ∞

0

a(t2(1 + s + (v/t2)))
a(t2)

ds

→
∫ T−t1

0

du

∫ u

0

duc(u− v)
∫ ∞

0

1
(1 + s)d+1

ds =
1
d

∫ T−t1

0

du

∫ u

0

dvc(u− v)

as t0 →∞. Therefore, by Lemma 5.5 below, we obtain the lemma. �

Lemma 5.5. For 0 < d < 1/2, it holds that

∞∑
m=1

{∫ ∞

0

dufm(u)
∫ 1

0

1
(τ + u)d+1

dτ

}
sinm(πd) =

∫ 1

0

s−d−1[(1− s)−d − 1]ds.

Proof. Though the lemma is a general result, we give a proof based on the results
for fBm. Thus we take fBm (BH(t)) as (X(t)). Then we have (3.11) and (3.12).
Also, by [9], we have (3.13) and

(5.3) h(s, u; t2) =
sin

{
π(H − 1

2 )
}

π
(t2 − s)−(H− 1

2 )s−(H− 1
2 ) {u(u + t2)}H− 1

2

u + t2 − s
,
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whence, as t0 →∞,

1
t2a(t2)

∫ t1

−t0

ds

∫ T−t1

0

{h(s + t0, u; t2)− b(t1 − s, u)}du

=
1

t2a(t2)

∫ t2

0

ds

∫ T−t1

0

{h(t2 − s, u; t2)− b(s, u)}du

=
1

Γ(d + 1)

∫ T−t1

0

duud

∫ 1

0

ds
s−dt2

u + t2s

{(
u

t2
+ 1

)d

(1− s)−d − 1

}

→ (T − t1)d+1

Γ(d + 2)

∫ 1

0

s−d−1[(1− s)−d − 1]ds.

However, by the proof of Theorem 5.1, this limit must be equal to{∫ T−t1

0

ds

∫ s

0

c(v)dv

} ∞∑
m=1

{∫ ∞

0

dufm(u)
∫ 1

0

1
(τ + u)d+1

dτ

}
sinm(πd).

Thus the lemma follows. �
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