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We consider the uniqueness of solution for the Cauchy problem of the nonlinear

Schrödinger equation:

i∂tu+∆u = λ|u|αu, t ∈ [0, T ], x ∈ Rn,(1)

u(0, x) = u0(x), x ∈ Rn,(2)

where λ ∈ C and T > 0. Let α > 0 and s ≥ 0 be specified later, and let u0 ∈ Hs.

Suppose that u ∈ C([0, T ];Hs) with (2) and u satisfies equation (1) in D0((0, T )×
Rn), that is, in the distribution sense.

We briefly recall known results on the uniqueness of solution for (1)-(2). In [3],

Ginibre and Velo prove that if s = 1 and α < 4/(n− 2), the solution is unique. In
[2], Cazenave and Weissler show that when

u ∈ Lγ(0, T ;Bsρ,2),(3)

ρ =
α+ 2

1 + αs/n
, γ =

4(α+ 2)

α(n− 2s) ,

the solution is unique. The solution is often constructed within the framework

of C([0, T ];Hs) and an auxiliary space such as (3). Space (3) is associated with

the Strichartz estimate and (ρ, γ) is an admissible pair of the Strichartz estimate

(see, e.g., [1]). The uniqueness of solution in an auxiliary space such as (3) as

well as in C([0, T ];Hs) is called the conditional uniqueness, to which the result in

[2] corresponds. On the other hand, the uniqueness without an auxiliary space is

called the unconditional uniqueness. From now on, we refere to the unconditional
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uniqueness as (UU). In [6], T. Kato extensively studies the unconditional uniqueness

of solution for (1)-(2) and shows the following result: Assume that any of the

following three is satisfied.

n = 1, 0 ≤ s < 1/2, 0 < α ≤ (1 + 2s)/(1− 2s),(a)

n ≥ 2, 0 ≤ s < n/2, 0 < α < min
©
4/(n− 2s), (2 + 2s)/(n− 2s)

ª
,(b)

n ≥ 1, s ≥ n/2.(c)

Then, (UU) holds. Furioli and Terraneo [4] use the Besov spaces of negative indices

to improve the result by Kato [6] and show that if

3 ≤ n ≤ 5, 1 < α < min

½
4

n− 2s ,
n+ 2s

n− 2s ,
2 + 4s

n− 2s

¾
,

and additionally, for n = 3,

2s

n− 2s < α ≤ n+ 2− 2s
n− 2s ,

then (UU) holds. Furthermore, as Cazenave pointed out in [1], it follows from a

variant of the proof by Kato [6] that when

n ≥ 3, 1 ≤ s < n/2, α =
4

n− 2s ,

(UU) holds.

Remark 1. (i) The unconditional uniqueness does not always make sense, because

equation (1) may not make sense without an auxiliary sapce. The assumption

α ≤ (n+2s)/(n−2s) implies that |u|αu ∈ L1loc(Rn), which ensures that equation (3)
makes sense within the framework of the distribution. Furthermore, the assumption

α ≤ 4/(n− 2s) comes from the scaling invariance of equation (3). Therefore, when

we consider the unconditional uniqueness, the following restriction seems natural.

(4) 0 < α ≤ min
½

4

n− 2s ,
n+ 2s

n− 2s

¾
.

(ii) When 1 ≤ s < n/2 and 1 < α ≤ 4/(n − 2s), (UU) is already known (see
Kato [6] and Cazenave [1]).
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(iii) Even in the so-called subcritical case α < 4/(n − 2s), the unconditonal
uniqueness is not obvious (see, e.g., Kato [7], where he pointed out that if it is

in Lr(0, T ;Bsq,2(Rn)) for a certain addmissible pair (q, r) with sufficiently large q,

the solution belongs to Lr(0, T ;Bsq,2(Rn)) for all addimissible pairs (q, r) associated

with the Strichartz estimate and so (UU) holds).

Accordingly, (UU) has been open in the following four cases:

n = 2, α =
n+ 2s

n− 2s

µ
=
1 + s

1− s

¶
,(Case 1)

n = 3, (4), α ≥ min
½
2 + 4s

n− 2s ,
n+ 2− 2s
n− 2s

¾
(Case 2)

or
2 + 2s

n− 2s ≤ α ≤ 1,

n = 4, 5, max

½
1,
2 + 4s

n− 2s

¾
≤ α ≤ 4

n− 2s(Case 3)

or
2 + 2s

n− 2s ≤ α ≤ 1,

n ≥ 6, 2 + 2s

n− 2s ≤ α ≤ 4

n− 2s .(Case 4)

We have the following theorem concerning the unconditional uniqueness of so-

lution for (1)-(2), which has recently been obtained in collaboration with Yin Yin

Su Win, Kyoto University.

Theorem 1. Let 0 ≤ s < 1. We assume either of the following two:

Cases 1 and 2 except for (n,α, s) = (2, 1, 0), (3, 2, 1/2),(a)

(3, θ, 0), 2/3 < θ ≤ 1

n = 4, 5, max

½
2 + 2s

n− 2s , 1
¾
≤ α ≤ min

½
4

n− 2s ,
2 + 4s

n− 2s

¾
.(b)

Then, (UU) holds for (1)-(2).

Remark 2. (i) Case (a) in Theorem 1 is divided into three subcases. When (n,α, s) =

(3, θ, 0) and 2/3 < θ < 1, our proof does not work for some technical reason. In the

second subcase (n,α, s) = (2, 1, 0), (3, 1, 0), we have

α =
n+ 2s

n− 2s ,
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which implies that the nonlinearity only belongs to L1(Rn). This seems to be a

little more serious problem. In the third subcase (n,α, s) = (3, 2, 1/2), we have

α =
4

n− 2s =
n+ 2s

n− 2s .

The last subcase seems to contain an essential difficulty.

(ii) If α < 4/(n − 2s), that is, in the subcritical case, we can replace u ∈
C([0, T ];Hs) by u ∈ L∞(0, T ;Hs). However, if α = 4/(n − 2s), the unconditional
uniqueness generally breaks down without the strong continuity in the time variable

of solution (see Example 1 below).

Example 1. We consider the following L2-critical nonlinear Schrödinger equation.

(5) i∂tu+∆u = −|u|4/nu, t ∈ R, x ∈ Rn, n ≥ 4.

We put

u(t, x) =
1

(2t)n/2
ei|x|

2/(4t)ei/tφ

µ
x

2t

¶
,

where φ is a solution of the semilinear elliptic equation associated with (5).

−∆φ+ φ− φ1+4/n = 0, φ > 0, φ ∈ H1.

Then, u(t) ∈ C(R\{0};H1) and u(t) → 0 weakly in L2 (t → 0). Therefore,

u ∈ Cw(R;L2) and u satisfies (1)-(2) with u0 = 0. But, obviously, u ≡ 0 is

also a solution with u(0) = 0.

After the list of references, we draw a figure to compare our Theorem 1 with the

results by Kato [6] and Furioli and Terraneo [4] for n = 3.
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