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UNCONDITIONAL UNIQUENESS OF SOLUTION
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OF THE NONLINEAR SCHRODINGER EQUATION
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Department of Mathematics, Kyoto University
Kyoto 606-8502, JAPAN

We consider the uniqueness of solution for the Cauchy problem of the nonlinear

Schrédinger equation:

(1) i0ru + Au = A|u|%u, tel0,T], ze€R"

(2) u(0,z) = up(z), zeR",

where A € C and T' > 0. Let a > 0 and s > 0 be specified later, and let uy € H?.
Suppose that v € C([0,T]; H®) with (2) and wu satisfies equation (1) in D’((0,T") x
R™), that is, in the distribution sense.

We briefly recall known results on the uniqueness of solution for (1)-(2). In [3],
Ginibre and Velo prove that if s =1 and a < 4/(n — 2), the solution is unique. In

[2], Cazenave and Weissler show that when

(3) ue L7(0,T; B;Q),

o+ 2 4(a+2)

P = m, = m,

the solution is unique. The solution is often constructed within the framework
of C([0,T]; H®) and an auxiliary space such as (3). Space (3) is associated with
the Strichartz estimate and (p,~y) is an admissible pair of the Strichartz estimate
(see, e.g., [1]). The uniqueness of solution in an auxiliary space such as (3) as
well as in C([0,T]; H®) is called the conditional uniqueness, to which the result in

[2] corresponds. On the other hand, the uniqueness without an auxiliary space is

called the unconditional uniqueness. From now on, we refere to the unconditional
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uniqueness as (UU). In [6], T. Kato extensively studies the unconditional uniqueness
of solution for (1)-(2) and shows the following result: Assume that any of the

following three is satisfied.

(a) n=1 0<s<1/2, 0<a<(1+42s)/(1-2s),
(b) n>2 0<s<n/2, 0<a<min{4/(n—2s),(2+2s)/(n—2s)},

(c) n>1, s>n/2.

Then, (UU) holds. Furioli and Terraneo [4] use the Besov spaces of negative indices

to improve the result by Kato [6] and show that if

4 2s 24+4
3<n<5 1<a<min s crast
n—2s n—2s' n—2s

and additionally, for n = 3,

Sn+2—2s

n — 2s n — 2s

then (UU) holds. Furthermore, as Cazenave pointed out in [1], it follows from a
variant of the proof by Kato [6] that when

4
n—2s’

n>3 1<s<n/2, a=

(UU) holds.

Remark 1. (i) The unconditional uniqueness does not always make sense, because
equation (1) may not make sense without an auxiliary sapce. The assumption
a < (n+2s)/(n—2s) implies that |u|*u € L}, _(R™), which ensures that equation (3)
makes sense within the framework of the distribution. Furthermore, the assumption

a < 4/(n—2s) comes from the scaling invariance of equation (3). Therefore, when

we consider the unconditional uniqueness, the following restriction seems natural.

4 2
(4) 0<a§min{ nt S}.

n—2s' n—2s

(ii) When 1 < s < n/2 and 1 < a < 4/(n — 2s), (UU) is already known (see
Kato [6] and Cazenave [1]).



(iii) Even in the so-called subcritical case @ < 4/(n — 2s), the unconditonal
uniqueness is not obvious (see, e.g., Kato [7], where he pointed out that if it is
in L"(0,T; B; 5(R™)) for a certain addmissible pair (g,r) with sufficiently large g,
the solution belongs to L"(0, T; B; 5(R™)) for all addimissible pairs (g, ) associated
with the Strichartz estimate and so (UU) holds).

Accordingly, (UU) has been open in the following four cases:

n + 2s 1+ s
C 1 :2, = = y
(Case 1) n o n—2s< 1_3)
2+4s n+2—2s
C 2 :37 4’ > i )
(Case 2) n (4), «a>min R R }
2+2
or + Sgagl,
n —2s
2+4 4
(Case 3) n=4,5 maxql, s <a<
n — 2s n — 2s
2+2
or + Sgagl,
n—2s
24 2s
C 4 >6 <a< .
(Case 4) nED T s TS s

We have the following theorem concerning the unconditional uniqueness of so-
lution for (1)-(2), which has recently been obtained in collaboration with Yin Yin

Su Win, Kyoto University.
Theorem 1. Let 0 < s < 1. We assume either of the following two:

(a) Cases 1 and 2 except for (n,a,s) = (2,1,0),(3,2,1/2),

(3,0,0), 2/3<60<1

242 4 2414
(b) n=4,5, max{ﬁ,l}gagmin{ + S}.

n—2s’ ' n—2s
Then, (UU) holds for (1)-(2).

Remark 2. (i) Case (a) in Theorem 1 is divided into three subcases. When (n, a, s) =
(3,60,0) and 2/3 < 6 < 1, our proof does not work for some technical reason. In the
second subcase (n,a,s) = (2,1,0), (3,1,0), we have

n + 2s
n—2s’

a =

3



which implies that the nonlinearity only belongs to L!'(R™). This seems to be a

little more serious problem. In the third subcase (n,«,s) = (3,2,1/2), we have

4 n + 2s
a= = .
n — 2s n — 2s

The last subcase seems to contain an essential difficulty.

(ii) If @« < 4/(n — 2s), that is, in the subcritical case, we can replace u €
C([0,T]; H?) by uw € L*(0,T; H®). However, if « = 4/(n — 2s), the unconditional
uniqueness generally breaks down without the strong continuity in the time variable

of solution (see Example 1 below).
Example 1. We consider the following L?-critical nonlinear Schrédinger equation.
(5) i + Au = —|u|¥™u, teR, zeR" n>4.

We put

1 Qg2 ~ T
N 1 - 1 A € ) DR YA SN

where ¢ is a solution of the semilinear elliptic equation associated with (5).
—Np+¢—¢ T =0, ¢>0, pcH"

Then, u(t) € C(R\{0}; H') and u(t) — 0 weakly in L? (¢ — 0). Therefore,
u € Cu(R;L?) and u satisfies (1)-(2) with ug = 0. But, obviously, u = 0 is

also a solution with u(0) = 0.

After the list of references, we draw a figure to compare our Theorem 1 with the

results by Kato [6] and Furioli and Terraneo [4] for n = 3.
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