LERAY'S PROBLEM FOR THE STATIONARY NAVIER-STOKES EQUATIONS AND THE HARMONIC VECTOR FIELDS II

TAKU YANAGISAWA

This is a continuation of Prof. Hideo Kozono's talk "Leray's problem for the stationary Navier-Stokes equations and the harmonic vector fields I" of this symposium. Hence, our main concern goes on the existence of solutions to the stationary Navier-Stoke equations under the nonhomogeneous boundary condition:

(1)
$$(NS) \begin{cases} -\mu \Delta v + (v \cdot \nabla)v + \nabla p = 0 \text{ in } \Omega \\ \operatorname{div} v = 0 \text{ in } \Omega, \\ v = \beta \text{ on } \partial \Omega. \end{cases}$$

Here v = v(x): the velocity vector field, p = p(x): the pressure, β : the prescribed boundary data, $\mu(>0)$: the coefficient of viscosity. Ω is a bounded domain in \mathbb{R}^n , n = 2, 3, with the multiply connected boundary $\partial \Omega = \bigcup_{j=0}^L \Gamma_j$ such that Γ_j , $j = 0, 1, \ldots, L$, are smooth connected components and $\Gamma_1, \ldots, \Gamma_L$ lie inside of Γ_0 . When n = 3, the domain Ω is assumed to be simply connected for simplicity.

We assume that the boundary data β satisfies the General Flux Condition

(G.F.)
$$\sum_{j=0}^{L} \int_{\Gamma_j} \beta \cdot \nu \, dS = 0,$$

where ν is the outward unit normal to $\partial\Omega$. As in the talk [I], we are going to say that β satisfies the Restricted Flux Condition, if

(R.F.)
$$\int_{\Gamma_j} \beta \cdot \nu \, dS = 0, \text{ for any } j = 0, 1, \dots, L,$$

hold true.

Main result of this talk is the following criterion on the sufficient conditions of existence of weak solutions of (NS).

Proposition 1. Let the boundary data $\beta \in H^{1/2}(\partial\Omega)$ satisfy (G.F.). Let h be the same harmonic part of the divergence free extension b of β as in [I].

Then, if the estimate

(2)
$$\sup_{z \in \chi(\Omega), \nabla z \neq 0} \frac{(h, (z \cdot \nabla)z)}{\|\nabla z\|_2^2} < \mu$$

holds true, there exists at least one weak solution u of (NS). Here

$$\chi(\Omega) = \{z \in H^1_\sigma(\Omega) \mid \exists q \in W^{1,3/2}(\Omega) \ s.t. \ (z \cdot \nabla)z + \nabla q = 0 \ in \ \Omega\}$$

(the space of weak solutions of stationary Euler equation with Dirichlet boundary condition).

1

¹The content of his talk will be cited just as [I] in what follows. The notation and function spaces defined in [I] might be used without notice.

Remark 2. It is important that the harmonic part h above depends only on the $\int_{\Gamma_j} \beta \cdot \nu \, dS$, $j = 1, \ldots, L$, and the base of $V_{har}(\Omega)$ (= the relative de Rham cohomology on Ω).

The proof of Proposition 1 is achieved by virtue of Leray-Schauder fixed point theorem and our decomposition theorem of the vector fields on Ω stated in [I] ([4]) via reduction to absurdity.

The crux of the proof of Proposition 1 is the following

Lemma 3. Given the same b and h as in Theorem 1, one has

(3)
$$((z \cdot \nabla)z, b) = ((z \cdot \nabla)z, h), \text{ for } any \ z \in \chi(\Omega).$$

This lemma is shown by utilizing our decomposition theorem and the property of the space $\chi(\Omega)$ proven in [3].

Lemma 4 ([3]). Suppose that $z \in H^1_{0,\sigma}(\Omega)$ and $q \in W^{1,3/2}(\Omega)$ satisfy, in the weak sense,

$$(z \cdot \nabla)z + \nabla q = 0$$
, $\operatorname{div} z = 0$ in Ω .

Then the trace $\gamma(q)$ of q exists in $W^{1/3,3/2}(\partial\Omega)$ and obeys

$$\gamma(q)|_{\Gamma_i} = c_i \ (= const.), \ j = 0, 1, \dots, L.$$

Once Proposition 1 has been obtained, it is not difficult to show the main theorem stated in [I] by just estimating the integral $(h, (z \cdot \nabla)z)$ in (2) for any $z \in \chi(\Omega)$. Furthermore, we can derive the result shown by [2] from Proposition 1 directly.

As for the validity of Leray's inequality which has been discussed in [I], we can show the following rather simple criterion, again using our decomposition theorem and Lemma 3.

Lemma 5. If Leray's inequality (L.I.) holds true for the boundary data $\beta \in H^{1/2}(\partial\Omega)$ satisfying (G.I.), then

$$(4) (h, (z \cdot \nabla)z) = 0$$

holds true for any $z \in \chi(\Omega)$.

It is easy to see form this lemma that, when Ω is the 2-D annular domain, (L.I.) holds true for $\beta \in H^{1/2}(\partial\Omega)$ satisfying (G.I.) if and only if β satisfies (R.F.). In fact, Takeshita [6] gave more general statement.

Theorem 6 ([6]). Let Ω be a bounded domain in \mathbb{R}^n with the smooth boundary $\partial\Omega = \bigcup_{j=0}^L \Gamma_j$, Γ_j being the smooth connected component of $\partial\Omega$. Assume that $\Gamma_1, \ldots, \Gamma_L$ lie inside of Γ_0 and each Γ_j , $j = 1, \ldots, L$, is diffeomorphic to a sphere contained in Ω . Then (L.I.) holds true for $\beta \in H^{1/2}(\partial\Omega)$ satisfying (G.I.) if and only if β satisfies (R.F.).

Hence, for any domain stated in Theorem 6, the method relying upon (L.I.) as in [I] can not be used to show the existence of weak solutions of (NS) with $\beta \in H^{1/2}(\partial\Omega)$ satisfying only (G.F.). However, this fact does not signify that there exists no weak solution of (NS) in such cases.

As a matter of fact, Amick showed

Theorem 7 ([1]). Let Ω be a bounded domain in \mathbb{R}^2 with the multiply connected smooth boundary $\partial \Omega = \bigcup_{j=0}^L \Gamma_j$. Suppose that Ω is symmetric with respect to x_1 -axis and every boundary components Γ_j , $j=0,1,\ldots,L$, intersect with x_1 -axis. Let $\beta \in H^{1/2}(\partial \Omega)$ satisfying (G.F.) be symmetric with respect to x_1 -axis. Then there exists at least one symmetric weak solution of (NS).

Here the function $v = (v_1, v_2)$ is called symmetric with respect to x_1 -axis if v_1 is even function and v_2 is odd function with respect to x_2 . We will give a simple proof of this theorem, utilizing Proposition 1 and Lemma 3.

We should mention that Fujita [5] gave another constructive proof by showing an inequality, which is similar to (L.I.), under symmetric assumption on test functions. We might discuss the case when the domain Ω retains the other type of symmetry.

References

- Amick, J., Existence of solutions to the Nonhomogeneous steady Navier-Stokes equations. Indiana Univ. Math. J. 33, 817-830 (1984).
- [2] Borchers, W., Pileckas, K., Note on the flux problem for stationary incompressible Navier-Stokes equations in domains with a multiply connected boundary. Acta Appl. Math. 37, 21-30 (1994)
- [3] Kapitanskii, L.V., Pileckas, K.I., On spaces of solenoidal vector fields and boundary value problems for the Navier-Stokes equations in domains with noncompact boundaries. Proc. Math. Inst. Steklov, 159, 3-34, (1984).
- Kozono, H., Yanagisawa, T., L^r-variational inequality for vector fields and the Helmholtz-Weyl decompositions in bounded domains. submitted.
- [5] Fujita, H., On stationary solutions to Navier-Stokes equation in symmetric plane domains under general outflow condition. Navier-Stokes equations: theory and numerical methods, Varenna, 1997 Pitman Res. Notes Math. Ser., 388, Longman, Harlow, 16-30, 1998.
- [6] Takeshita, A., A remark on Leray's inequality. Pacific J. Math. 157, 151-158 (1993).

Department of Mathematics, Nara Women's University, Kita-Uoya Nishimachi, Nara, $630\text{-}8506,\,\mathrm{Japan}^2$

²E-mail: taku@cc.nara-wu.ac.jp