Stability of ground states for nonlinear Schrödinger equations with nonlocal interaction

Masahito Ohta
Department of Mathematics, Saitama University
mohta@rimath.saitama-u.ac.jp

This talk is based on a joint work with Hiroaki Kikuchi (Kyoto University). We consider the following nonlinear Schrödinger equation

\[i \partial_t u = -\Delta u - (W_m \ast |u|^2)u \quad (t, x) \in \mathbb{R} \times \mathbb{R}^3, \]

where \(*\) denotes the convolution in \(\mathbb{R}^3\), \(m \geq 0\) is a constant, and

\[W_m(x) = \frac{e^{-m|x|}}{2\pi|x|} \]

is the Yukawa potential. Note that \(W_m \ast |u|^2 = 2(-\Delta + m^2)^{-1}|u|^2\), and (1) is a simplification of the coupled Klein-Gordon-Schrödinger equations

\[
\begin{align*}
 i\partial_t u + \Delta u &= -2uv, \\
 \partial^2_t v - \Delta v + m^2 v &= |u|^2.
\end{align*}
\]

In this talk, we consider the single equation (1) instead of the system (2), just for simplicity. We study the orbital stability of standing wave solutions \(u(t, x) = e^{i\omega t}\psi_\omega(x)\) of (1), where \(\omega > 0\) is a parameter, and \(\psi_\omega\) is a ground state of the stationary problem

\[-\Delta \psi + \omega \psi - (W_m \ast |\psi|^2)\psi = 0, \quad x \in \mathbb{R}^3. \]

We use the following notation.

\[
\begin{align*}
 E(v) &= \frac{1}{2} \|\nabla v\|_{L^2}^2 - \frac{1}{4} \int_{\mathbb{R}^3 \times \mathbb{R}^3} W_m(x-y)|v(x)|^2|v(y)|^2 \, dx \, dy, \\
 S_\omega(v) &= E(v) + \frac{\omega}{2} \|v\|_{L^2}^2, \\
 \mathcal{A}_\omega &= \{v \in H^1(\mathbb{R}^3) : S'_\omega(v) = 0, \; v \neq 0\}.
\end{align*}
\]
Then, the set of ground states of (3) is defined by
\[\mathcal{G}_\omega = \{ w \in \mathcal{A}_\omega : S_\omega(w) \leq S_\omega(v), \forall v \in \mathcal{A}_\omega \}. \]

Note that the Cauchy problem for (1) is globally well-posed in \(H^1(\mathbb{R}^3) \), and the energy \(E(u) \) and \(\| u \|^2_{L^2} \) are conserved quantities of (1) (see [2]).

Definition

(i) For \(\Omega \subset H^1(\mathbb{R}^3) \), we say that the set \(\Omega \) is stable for (1) if for any \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(u_0 \in H^1(\mathbb{R}^3) \) and \(\text{dist}(u_0, \Omega) < \delta \) then the solution \(u(t) \) of (1) with \(u(0) = u_0 \) satisfies \(\text{dist}(u(t), \Omega) < \varepsilon \) for all \(t \in \mathbb{R} \). Here, \(\text{dist}(v, \Omega) = \inf \{ \| v - w \|_{H^1} : w \in \Omega \} \).

(ii) For \(\varphi \in \mathcal{A}_\omega \), we say that \(e^{i\omega t} \varphi \) is stable if \(\{ e^{i\theta} \varphi(\cdot + y) : \theta \in \mathbb{R}, y \in \mathbb{R}^3 \} \) is stable, and that \(e^{i\omega t} \varphi \) is unstable if \(e^{i\omega t} \varphi \) is not stable.

When \(m = 0 \), Cazenave and Lions [1] proved that for any \(\omega > 0 \) and for \(\varphi_\omega \in \mathcal{G}_\omega \), \(e^{i\omega t} \varphi_\omega \) is stable for (1). However, little is known for the case \(m > 0 \) (see [3] for a partial result). We now state our main results.

Theorem 1 Let \(m > 0 \), \(\omega > 0 \) and \(\psi_\omega \in \mathcal{G}_\omega \). Then, there exists \(\omega_1 > 0 \) such that \(e^{i\omega t} \psi_\omega \) is stable for (1) for any \(\omega \in (\omega_1, \infty) \).

Theorem 2 Let \(m > 0 \), \(\omega > 0 \) and \(\psi_\omega \in \mathcal{G}_\omega \). Then, there exists \(\omega_2 > 0 \) such that \(e^{i\omega t} \psi_\omega \) is unstable for (1) for any \(\omega \in (0, \omega_2) \).

Theorem 3 Let \(m > 0 \) and \(\varphi_m \in H^1(\mathbb{R}^3) \) is a unique positive solution of
\[-\Delta \varphi + m^2 \varphi - \varphi^2 = 0, \quad x \in \mathbb{R}^3. \]
Then, the standing wave solution \(e^{imx^2/(1/\sqrt{2})} \varphi_m \) of (1) is stable.

Remark We do not know whether \((1/\sqrt{2}) \varphi_m \in \mathcal{G}_{m^2} \) or not.

References

