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1. INTRODUCTION

This talk is based on the joint work with Naumkin. I am interested in the
scattering operator for the nonlinear Klein-Gordon equation

(1.1) upg —Au+u=f(u), (t,z) e RxR"

with a power type nonlinearity f(u) = p |u\‘7_1 wor f(u) = plul”, where o >
1+ %4_2, u € C, for space dimensions n > 3. The construction of the scattering
operator implies the study of the Cauchy problem and the final state problem.

In the previous paper [7], we constructed the scattering operator in H!t%! for
the nonlinear Klein-Gordon equation (1.1) with ¢ > 1 + % in the case of space
dimensions n = lor 2. We applied the operator

J = (GV)U (t) zU (—t) = E (iV) x + i AtV,

e=(3 1) =4 5)

which plays the same role as the operator = + itV in the case of the nonlinear
Schrédinger equations. Our purpose is to apply the operator J to the nonlinear
Klein-Gordon equation (1.1) in higher space dimensions n > 3 and to prove the
existence of the scattering operator similarly to the case of the nonlinear Schrédinger
equations [3].

When 1 < 0, f (u) = p|ul” " wand 1+ 1 <o <o*(n), with o* (n) = 22 for
n > 3, the completeness of the scattering operator for the nonlinear Klein-Gordon
equation (1.1) in the energy space was established in papers [1], [2], [6], [10], [11]
by using the Morawetz type estimates and the energy conservation law. This result
was extended to lower space dimensions n = 1,2 in paper [9]. The condition x < 0
can be removed if we restrict our attention to small solutions (see [13] for the case
of f(u) = p|ul” " u, the case f(u) = pu|u|” can also be treated). The existence
of global in time solutions to the Cauchy problem for the nonlinear Klein-Gordon
equation (1.1) (i.e. the existence of the inverse wave operator W~!) was shown

where

in [13] by using the LT — L!*7 time decay estimates for the linear problem if
oo(n) <o < 1—&—%, where o (n) is a positive root of %Z—ﬁa > 1. The wave operator
W, was also constructed in [13] for g (n) < o < 1+ 2. However the scattering
operator S, = W-'W, was not defined since the range of the wave operator W,

differs from the domain of the inverse wave operator W=!. As far as we know the
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scattering operator S; was not constructed for the nonlinearities of order less than
1+ 2 except our previous work [7] for n = 1,2. Note that 1+ —5 < o¢ (n).

We now turn to the results concerning the Cauchy problem for the nonlinear
Klein-Gordon equation

wi—Dutu=f(w), (1) €RxR,
(1.2) { w(0,2) =ug (z), ut (0,2) =up (x), x € R™,

which are related to the construction of the inverse wave operator W-'. When

n = 3,0 =2, then %Z—HO’ =1, so the L' — L'*% time decay estimates of [13]
can not be applied to the Cauchy problem (1.2) even if the nonlinearity is smooth.
In the case of the Cauchy problem, the lower order o were treated in papers [8]
and [12], where the global existence of small solutions to quadratic nonlinear Klein-
Gordon equations in three space dimensions was proved by the vector fields and the
normal forms methods, respectively. However these methods do not work for the
nonlinearity of the form |u| u. The vector field method was improved in paper [4],[5],
where the global existence theorem was proved for the fractional order o > 1 4 %,
in space dimensions n = 1, 2, 3, if the initial data have a compact support. It seems
that the method does not work for the data which do not have a compact support.
We put

w= % (au +ib (V) ut) ,w' = % (auo +ib (V)" ul) ,

L=FE0 +iA (V)
and

ZN“ . —1 o
L i9) ! (a-w)l”,

(1) () e (0 1) (0 0)

Then the nonlinear Klein-Gordon equation (1.2) can be rewritten as a system of
equations

Lw=N (w), (t,z) e R x R,
(1.3) { w(0,7) =w’(z), z € R™.

N (w) = %‘b (V)@ w) " (a- w) or A (w) =

where

The direct Fourier transform ¢ (€) of the function ¢ () is defined by
Fo=¢= (277)_% / e @9 (z) da
then the inverse Fourier transformation is given by
Flo=(n)E [ 90

Denote the usual Lebesgue space LP = {¢ € S';[|¢||y, < oo}, where the norm

ol = (fR,L |pdx)P if 1 <p < oo and ||§| = vrai sup,cgn|¢ ()| if
p = oo. Weighted Sobolev space is
< oo} ,

= oS ol = [
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where m,k € R, 1 < p < o0, (z) = /1 + |z|*. We also write H™F = HJ"* The

usual Sobolev space is H™ = H;n’o, so the index 0 we usually omit if it does not
cause a confusion. Different positive constants we denote by the same letter C.
We introduce the free evolution group

67i<iV)t 0
Ult)= ( 0 R ) :

J = GV)U (t)zU (—t) = E (iV) x + i AtV

is useful for obtaining the large time decay estimates of solutions. We have [£, J]| =
0, since [z, (iV)] = (iV) "' V . However it is difficult to calculate the action of J
on the nonlinearity A/. Therefore we use the first order differential operator

which is closely related to J by P = Lx—1iJ, and it almost commutes with £ since
(£, P] = —i (iV) "' VL (see [8)).
First we prove the existence of the inverse wave operator

— 2 2
W () - (1)°,

where § = max (%, 1+ %) .

The operator

Theorem 1.1. Let 1+ n;er <o<l1l+ % and n > 3. Suppose that the initial data
w’ e (Hﬁvl)2 , B = max (%, 14 %) have a small norm HwOHHB,l. Then there exists
a unique solution U (—t)w € C ([0, 00); (Hﬁ’l)Q) to the Cauchy problem (1.3) such
that

Jw (®)ll < € (14173070
for all t > 0, where 2 < g < % Furthermore there exists a unique final state
wt e (Hﬁ’l)2 such that
(1.4) (U (=) w () —wF||gs, <CA+)
for all t > 0, where v = % (0 — 1) (1—&) —1>0.

We now consider the final state problem for the nonlinear Klein-Gordon equation

Lw =N (w),

(1.5) { o (£) = U (£) wH]| e — 0 as ¢ — o

with a given final state w* € (H'B’l)2 .

n

wt € (H5’1)2, [ = max (%, 14 %) . Then there exists a time T > 0 and a unique
solution U (—t)w € C ([T7 00); (Hﬁ’l)Q) of the final state problem (1.5) such that

Theorem 1.2. Let 1+ ni—i-Q <o <142 andn > 3. Suppose that the final state

lw @)l < € (1447 #073)
forallt > T, where 2 < q < % Furthermore the asymptotics
U (=t)w(t) —wh|| g, <Ct7
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is valid for all t > T, where’y:%(a—l)(l—%)—1>0.

By Theorem 1.2, we can define the wave operator W, which maps any final

state wt € (Hﬁ’l)2 to the solution U (—t)w € (H'B’l)2 if t > T. If we choose a
sufficiently small norm ||w™||¢s.., we can take T'= 0. Namely, the wave operator

Wy cwt e (H*)? = w e (HP)?

is well-defined in the neighborhood of the origin in the (Hﬁ ’1)2 space. Furthermore

since the initial data w® are also sufficiently small in the norm of (Hﬁ’l)Q, by

applying Theorem 1.1 for the negative time we can define the inverse wave operator

woliw e (HPY)? - wo e (HPY)?.

This means that the scattering operator
St =wW_'Wy iwt € (Hﬂ’l)2 —w € (Hﬁ’l)2
is well-defined in the neighborhood of the origin in the (H'B’l)2 space.
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