SMALL DATA SCATTERING FOR NONLINEAR KLEIN-GORDON EQUATIONS

NAKAO HAYASHI

1. Introduction

This talk is based on the joint work with Naumkin. I am interested in the scattering operator for the nonlinear Klein-Gordon equation

$$
\begin{equation*}
u_{t t}-\Delta u+u=f(u), \quad(t, x) \in \mathbf{R} \times \mathbf{R}^{n} \tag{1.1}
\end{equation*}
$$

with a power type nonlinearity $f(u)=\mu|u|^{\sigma-1} u$ or $f(u)=\mu|u|^{\sigma}$, where $\sigma>$ $1+\frac{4}{n+2}, \mu \in \mathbf{C}$, for space dimensions $n \geq 3$. The construction of the scattering operator implies the study of the Cauchy problem and the final state problem.

In the previous paper [7], we constructed the scattering operator in $\mathbf{H}^{1+\frac{n}{2}, 1}$ for the nonlinear Klein-Gordon equation (1.1) with $\sigma>1+\frac{2}{n}$ in the case of space dimensions $n=1$ or 2 . We applied the operator

$$
\mathcal{J}=\langle i \nabla\rangle U(t) x U(-t)=E\langle i \nabla\rangle x+i A t \nabla
$$

where

$$
E=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

which plays the same role as the operator $x+i t \nabla$ in the case of the nonlinear Schrödinger equations. Our purpose is to apply the operator \mathcal{J} to the nonlinear Klein-Gordon equation (1.1) in higher space dimensions $n \geq 3$ and to prove the existence of the scattering operator similarly to the case of the nonlinear Schrödinger equations [3].

When $\mu<0, f(u)=\mu|u|^{\sigma-1} u$ and $1+\frac{4}{n}<\sigma<\sigma^{*}(n)$, with $\sigma^{*}(n)=\frac{n+2}{n-2}$ for $n \geq 3$, the completeness of the scattering operator for the nonlinear Klein-Gordon equation (1.1) in the energy space was established in papers [1], [2], [6], [10], [11] by using the Morawetz type estimates and the energy conservation law. This result was extended to lower space dimensions $n=1,2$ in paper [9]. The condition $\mu<0$ can be removed if we restrict our attention to small solutions (see [13] for the case of $f(u)=\mu|u|^{\sigma-1} u$, the case $f(u)=\mu|u|^{\sigma}$ can also be treated). The existence of global in time solutions to the Cauchy problem for the nonlinear Klein-Gordon equation (1.1) (i.e. the existence of the inverse wave operator \mathcal{W}_{-}^{-1}) was shown in [13] by using the $\mathbf{L}^{1+\sigma}-\mathbf{L}^{1+\frac{1}{\sigma}}$ time decay estimates for the linear problem if $\sigma_{0}(n)<\sigma \leq 1+\frac{4}{n}$, where $\sigma_{0}(n)$ is a positive root of $\frac{n}{2} \frac{\sigma-1}{\sigma+1} \sigma>1$. The wave operator \mathcal{W}_{+}was also constructed in [13] for $\sigma_{0}(n)<\sigma \leq 1+\frac{4}{n}$. However the scattering operator $\mathcal{S}_{+}=\mathcal{W}_{-}^{-1} \mathcal{W}_{+}$was not defined since the range of the wave operator \mathcal{W}_{+} differs from the domain of the inverse wave operator \mathcal{W}_{-}^{-1}. As far as we know the

[^0]scattering operator \mathcal{S}_{+}was not constructed for the nonlinearities of order less than $1+\frac{4}{n}$ except our previous work [7] for $n=1,2$. Note that $1+\frac{4}{n+2}<\sigma_{0}(n)$.

We now turn to the results concerning the Cauchy problem for the nonlinear Klein-Gordon equation

$$
\left\{\begin{array}{c}
u_{t t}-\Delta u+u=f(u), \quad(t, x) \in \mathbf{R} \times \mathbf{R}^{n} \tag{1.2}\\
u(0, x)=u_{0}(x), u_{t}(0, x)=u_{1}(x), x \in \mathbf{R}^{n}
\end{array}\right.
$$

which are related to the construction of the inverse wave operator \mathcal{W}_{-}^{-1}. When $n=3, \sigma=2$, then $\frac{n}{2} \frac{\sigma-1}{\sigma+1} \sigma=1$, so the $\mathbf{L}^{1+\sigma}-\mathbf{L}^{1+\frac{1}{\sigma}}$ time decay estimates of [13] can not be applied to the Cauchy problem (1.2) even if the nonlinearity is smooth. In the case of the Cauchy problem, the lower order σ were treated in papers [8] and [12], where the global existence of small solutions to quadratic nonlinear KleinGordon equations in three space dimensions was proved by the vector fields and the normal forms methods, respectively. However these methods do not work for the nonlinearity of the form $|u| u$. The vector field method was improved in paper [4], [5], where the global existence theorem was proved for the fractional order $\sigma>1+\frac{2}{n}$, in space dimensions $n=1,2,3$, if the initial data have a compact support. It seems that the method does not work for the data which do not have a compact support.

We put

$$
\begin{gathered}
w \equiv \frac{1}{2}\left(\mathbf{a} u+i \mathbf{b}\langle i \nabla\rangle^{-1} u_{t}\right), w^{0} \equiv \frac{1}{2}\left(\mathbf{a} u_{0}+i \mathbf{b}\langle i \nabla\rangle^{-1} u_{1}\right) \\
\mathcal{L}=E \partial_{t}+i A\langle i \nabla\rangle
\end{gathered}
$$

and

$$
\mathcal{N}(w)=\frac{i \mu}{2} \mathbf{b}\langle i \nabla\rangle^{-1}|(\mathbf{a} \cdot w)|^{\sigma-1}(\mathbf{a} \cdot w) \text { or } \mathcal{N}(w)=\frac{i \mu}{2} \mathbf{b}\langle i \nabla\rangle^{-1}|(\mathbf{a} \cdot w)|^{\sigma}
$$

where

$$
\mathbf{a}=\binom{1}{1}, \mathbf{b}=\binom{1}{-1}, E=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Then the nonlinear Klein-Gordon equation (1.2) can be rewritten as a system of equations

$$
\left\{\begin{array}{c}
\mathcal{L} w=\mathcal{N}(w), \quad(t, x) \in \mathbf{R} \times \mathbf{R}^{n} \tag{1.3}\\
w(0, x)=w^{0}(x), x \in \mathbf{R}^{n}
\end{array}\right.
$$

The direct Fourier transform $\hat{\phi}(\xi)$ of the function $\phi(x)$ is defined by

$$
\mathcal{F} \phi=\hat{\phi}=(2 \pi)^{-\frac{n}{2}} \int_{\mathbf{R}^{n}} e^{-i(x \cdot \xi)} \phi(x) d x
$$

then the inverse Fourier transformation is given by

$$
\mathcal{F}^{-1} \phi=(2 \pi)^{-\frac{n}{2}} \int_{\mathbf{R}^{n}} e^{i(x \cdot \xi)} \phi(\xi) d \xi
$$

Denote the usual Lebesgue space $\mathbf{L}^{p}=\left\{\phi \in \mathbf{S}^{\prime} ;\|\phi\|_{\mathbf{L}^{p}}<\infty\right\}$, where the norm $\|\phi\|_{\mathbf{L}^{p}}=\left(\int_{\mathbf{R}^{n}}|\phi(x)|^{p} d x\right)^{\frac{1}{p}}$ if $1 \leq p<\infty$ and $\|\phi\|_{\mathbf{L}^{\infty}}=\operatorname{vrai} \sup _{x \in \mathbf{R}^{n}}|\phi(x)|$ if $p=\infty$. Weighted Sobolev space is

$$
\mathbf{H}_{p}^{m, k}=\left\{\phi \in \mathbf{S}^{\prime}:\|\phi\|_{\mathbf{H}_{p}^{m, k}} \equiv\left\|\langle x\rangle^{k}\langle i \partial\rangle^{m} \phi\right\|_{\mathbf{L}^{p}}<\infty\right\}
$$

where $m, k \in \mathbf{R}, 1 \leq p \leq \infty,\langle x\rangle=\sqrt{1+|x|^{2}}$. We also write $\mathbf{H}^{m, k}=\mathbf{H}_{2}^{m, k}$. The usual Sobolev space is $\mathbf{H}^{m}=\mathbf{H}_{2}^{m, 0}$, so the index 0 we usually omit if it does not cause a confusion. Different positive constants we denote by the same letter C.

We introduce the free evolution group

$$
U(t)=\left(\begin{array}{cc}
e^{-i\langle i \nabla\rangle t} & 0 \\
0 & e^{i\langle i \nabla\rangle t}
\end{array}\right)
$$

The operator

$$
\mathcal{J}=\langle i \nabla\rangle U(t) x U(-t)=E\langle i \nabla\rangle x+i A t \nabla
$$

is useful for obtaining the large time decay estimates of solutions. We have $[\mathcal{L}, \mathcal{J}]=$ 0 , since $[x,\langle i \nabla\rangle]=\langle i \nabla\rangle^{-1} \nabla$. However it is difficult to calculate the action of \mathcal{J} on the nonlinearity \mathcal{N}. Therefore we use the first order differential operator

$$
\mathcal{P}=E t \nabla+E x \partial_{t}
$$

which is closely related to \mathcal{J} by $\mathcal{P}=\mathcal{L} x-i \mathcal{J}$, and it almost commutes with \mathcal{L} since $[\mathcal{L}, \mathcal{P}]=-i\langle i \nabla\rangle^{-1} \nabla \mathcal{L}$ (see [8]).

First we prove the existence of the inverse wave operator

$$
\mathcal{W}_{+}^{-1}:\left(\mathbf{H}^{\beta, 1}\right)^{2} \rightarrow\left(\mathbf{H}^{\beta, 1}\right)^{2}
$$

where $\beta=\max \left(\frac{3}{2}, 1+\frac{2}{n}\right)$.
Theorem 1.1. Let $1+\frac{4}{n+2}<\sigma<1+\frac{4}{n}$ and $n \geq 3$. Suppose that the initial data $w^{0} \in\left(\mathbf{H}^{\beta, 1}\right)^{2}, \beta=\max \left(\frac{3}{2}, 1+\frac{2}{n}\right)$ have a small norm $\left\|w^{0}\right\|_{\mathbf{H}^{\beta, 1}}$. Then there exists a unique solution $U(-t) w \in \mathbf{C}\left([0, \infty) ;\left(\mathbf{H}^{\beta, 1}\right)^{2}\right)$ to the Cauchy problem (1.3) such that

$$
\|w(t)\|_{\mathbf{L}^{q}} \leq C(1+t)^{-\frac{n}{2}\left(1-\frac{2}{q}\right)}
$$

for all $t \geq 0$, where $2 \leq q<\frac{2 n}{n-2}$. Furthermore there exists a unique final state $w^{+} \in\left(\mathbf{H}^{\beta, 1}\right)^{2}$ such that

$$
\begin{equation*}
\left\|U(-t) w(t)-w^{+}\right\|_{\mathbf{H}^{\beta, 1}} \leq C(1+t)^{-\gamma} \tag{1.4}
\end{equation*}
$$

for all $t \geq 0$, where $\gamma=\frac{n}{2}(\sigma-1)\left(1-\frac{1}{q}\right)-1>0$.
We now consider the final state problem for the nonlinear Klein-Gordon equation

$$
\left\{\begin{array}{c}
\mathcal{L} w=\mathcal{N}(w), \tag{1.5}\\
\left\|w(t)-U(t) w^{+}\right\|_{\mathbf{L}^{2}} \rightarrow 0 \text { as } t \rightarrow \infty
\end{array}\right.
$$

with a given final state $w^{+} \in\left(\mathbf{H}^{\beta, 1}\right)^{2}$.
Theorem 1.2. Let $1+\frac{4}{n+2}<\sigma<1+\frac{4}{n}$ and $n \geq 3$. Suppose that the final state $w^{+} \in\left(\mathbf{H}^{\beta, 1}\right)^{2}, \beta=\max \left(\frac{3}{2}, 1+\frac{2}{n}\right)$. Then there exists a time $T \geq 0$ and a unique solution $U(-t) w \in \mathbf{C}\left([T, \infty) ;\left(\mathbf{H}^{\beta, 1}\right)^{2}\right)$ of the final state problem (1.5) such that

$$
\|w(t)\|_{\mathbf{L}^{q}} \leq C(1+t)^{-\frac{n}{2}\left(1-\frac{2}{q}\right)}
$$

for all $t \geq T$, where $2 \leq q<\frac{2 n}{n-2}$. Furthermore the asymptotics

$$
\left\|U(-t) w(t)-w^{+}\right\|_{\mathbf{H}^{\beta, 1}} \leq C t^{-\gamma}
$$

is valid for all $t \geq T$, where $\gamma=\frac{n}{2}(\sigma-1)\left(1-\frac{1}{q}\right)-1>0$.
By Theorem 1.2, we can define the wave operator \mathcal{W}_{+}which maps any final state $w^{+} \in\left(\mathbf{H}^{\beta, 1}\right)^{2}$ to the solution $U(-t) w \in\left(\mathbf{H}^{\beta, 1}\right)^{2}$ if $t \geq T$. If we choose a sufficiently small norm $\left\|w^{+}\right\|_{\mathbf{H}^{\beta, 1}}$, we can take $T=0$. Namely, the wave operator

$$
\mathcal{W}_{+}: w^{+} \in\left(\mathbf{H}^{\beta, 1}\right)^{2} \rightarrow w^{0} \in\left(\mathbf{H}^{\beta, 1}\right)^{2}
$$

is well-defined in the neighborhood of the origin in the $\left(\mathbf{H}^{\beta, 1}\right)^{2}$ space. Furthermore since the initial data w^{0} are also sufficiently small in the norm of $\left(\mathbf{H}^{\beta, 1}\right)^{2}$, by applying Theorem 1.1 for the negative time we can define the inverse wave operator

$$
\mathcal{W}_{-}^{-1}: w^{0} \in\left(\mathbf{H}^{\beta, 1}\right)^{2} \rightarrow w^{-} \in\left(\mathbf{H}^{\beta, 1}\right)^{2}
$$

This means that the scattering operator

$$
\mathcal{S}_{+}=\mathcal{W}_{-}^{-1} \mathcal{W}_{+}: w^{+} \in\left(\mathbf{H}^{\beta, 1}\right)^{2} \rightarrow w^{-} \in\left(\mathbf{H}^{\beta, 1}\right)^{2}
$$

is well-defined in the neighborhood of the origin in the $\left(\mathbf{H}^{\beta, 1}\right)^{2}$ space.

References

[1] P. Brenner, On space time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations, Math. Z., 186 (1984), pp. 383-391.
[2] P. Brenner, On scattering and everywhere defined scattering operators for nonlinear KleinGordon equations, J. Differential Equations, 56 (1985), pp. 310-344.
[3] T.Cazenave and F.B.Weissler, Rapidly decaying soutions of the nonlinear Schrödinger equation, Commun. Math. Phys., 147(1992), pp. 75-100.
[4] V. Georgiev and S. Lecente, Weighted Sobolev spaces applied to nonlinear Klein-Gordon equation, C. R. Acad. Sci. Paris, 329 (1999), pp. 21-26.
[5] V. Georgiev and S. Lecente, Deacy for nonlinear Klein-Gordon equations, Nonlinear differ. equ. appl., 11 (2004), pp. 529-555.
[6] J. Ginibre and G. Velo, Time deacy of finite energy solutions of the nonlinear Klein-Gordon equation, Ann. Inst. H. Poncaré Phys. Théor., 41 (1985), pp. 399-442.
[7] N.Hayashi and P.Naumkin, Scattering operator for the nonlinear Klein-Gordon equations, preprint 2006.
[8] S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Commun. Pure Appl. Math., 38 (1985), pp. 631641.
[9] K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, J. Funct. Anal. 169 (1999), pp. 201-225.
[10] H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., 185 (1984), pp. 261-270.
[11] H. Pecher, Low energy scattering for Klein-Gordon equations, J. Funct. Anal, 63 (1985), pp. 101-122.
[12] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., 38 (1985), pp. 685-696.
[13] W.A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), pp. 110-133.

Department of Mathematics, Graduate School of Science, Osaka University, Osaka, Toyonaka, 560-0043, Japan

E-mail address: nhayashi@math.wani.osaka-u.ac.jp

[^0]: Nonlinear Wave Equations in Hokkaido University, 27,28,29 August.

