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1. Introduction

This talk is based on the joint work with Naumkin. I am interested in the
scattering operator for the nonlinear Klein-Gordon equation

utt −∆u + u = f (u) , (t, x) ∈ R ×Rn(1.1)

with a power type nonlinearity f (u) = µ |u|σ−1
u or f (u) = µ |u|σ , where σ >

1 + 4
n+2 , µ ∈ C, for space dimensions n ≥ 3. The construction of the scattering

operator implies the study of the Cauchy problem and the final state problem.
In the previous paper [7], we constructed the scattering operator in H1+n

2 ,1 for
the nonlinear Klein-Gordon equation (1.1) with σ > 1 + 2

n
in the case of space

dimensions n = 1or 2. We applied the operator

J = 〈i∇〉U (t) xU (−t) = E 〈i∇〉x+ iAt∇,

where

E =
(
1 0
0 1

)
, A =

(
1 0
0 −1

)

which plays the same role as the operator x + it∇ in the case of the nonlinear
Schrödinger equations. Our purpose is to apply the operator J to the nonlinear
Klein-Gordon equation (1.1) in higher space dimensions n ≥ 3 and to prove the
existence of the scattering operator similarly to the case of the nonlinear Schrödinger
equations [3].
When µ < 0, f (u) = µ |u|σ−1

u and 1 + 4
n

< σ < σ∗ (n) , with σ∗ (n) = n+2
n−2

for
n ≥ 3, the completeness of the scattering operator for the nonlinear Klein-Gordon
equation (1.1) in the energy space was established in papers [1], [2], [6], [10], [11]
by using the Morawetz type estimates and the energy conservation law. This result
was extended to lower space dimensions n = 1, 2 in paper [9]. The condition µ < 0
can be removed if we restrict our attention to small solutions (see [13] for the case
of f (u) = µ |u|σ−1

u, the case f (u) = µ |u|σ can also be treated). The existence
of global in time solutions to the Cauchy problem for the nonlinear Klein-Gordon
equation (1.1) (i.e. the existence of the inverse wave operator W−1

− ) was shown
in [13] by using the L1+σ − L1+ 1

σ time decay estimates for the linear problem if
σ0 (n) < σ ≤ 1+ 4

n , where σ0 (n) is a positive root of n
2

σ−1
σ+1σ > 1. The wave operator

W+ was also constructed in [13] for σ0 (n) < σ ≤ 1 + 4
n . However the scattering

operator S+ = W−1
− W+ was not defined since the range of the wave operator W+

differs from the domain of the inverse wave operator W−1
− . As far as we know the
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scattering operator S+ was not constructed for the nonlinearities of order less than
1 + 4

n except our previous work [7] for n = 1, 2. Note that 1 + 4
n+2 < σ0 (n).

We now turn to the results concerning the Cauchy problem for the nonlinear
Klein-Gordon equation{

utt −∆u+ u = f (u) , (t, x) ∈ R × Rn,
u (0, x) = u0 (x) , ut (0, x) = u1 (x) , x ∈ Rn,

(1.2)

which are related to the construction of the inverse wave operator W−1
− . When

n = 3, σ = 2, then n
2

σ−1
σ+1

σ = 1, so the L1+σ − L1+ 1
σ time decay estimates of [13]

can not be applied to the Cauchy problem (1.2) even if the nonlinearity is smooth.
In the case of the Cauchy problem, the lower order σ were treated in papers [8]
and [12], where the global existence of small solutions to quadratic nonlinear Klein-
Gordon equations in three space dimensions was proved by the vector fields and the
normal forms methods, respectively. However these methods do not work for the
nonlinearity of the form |u| u. The vector field method was improved in paper [4],[5],
where the global existence theorem was proved for the fractional order σ > 1 + 2

n ,
in space dimensions n = 1, 2, 3, if the initial data have a compact support. It seems
that the method does not work for the data which do not have a compact support.
We put

w ≡ 1
2

(
au + ib 〈i∇〉−1

ut

)
, w0 ≡ 1

2

(
au0 + ib 〈i∇〉−1

u1

)
,

L = E∂t + iA 〈i∇〉
and

N (w) =
iµ

2
b 〈i∇〉−1 |(a · w)|σ−1 (a · w) or N (w) =

iµ

2
b 〈i∇〉−1 |(a · w)|σ ,

where

a =
(
1
1

)
, b =

(
1
−1

)
, E =

(
1 0
0 1

)
, A =

(
1 0
0 −1

)
.

Then the nonlinear Klein-Gordon equation (1.2) can be rewritten as a system of
equations { Lw = N (w) , (t, x) ∈ R × Rn,

w(0, x) = w0 (x) , x ∈ Rn.
(1.3)

The direct Fourier transform φ̂ (ξ) of the function φ (x) is defined by

Fφ = φ̂ = (2π)−
n
2

∫
Rn

e−i(x·ξ)φ (x) dx,

then the inverse Fourier transformation is given by

F−1φ = (2π)−
n
2

∫
Rn

ei(x·ξ)φ (ξ)dξ.

Denote the usual Lebesgue space Lp = {φ ∈ S′; ‖φ‖Lp < ∞}, where the norm
‖φ‖Lp =

(∫
Rn |φ (x)|p dx

) 1
p if 1 ≤ p < ∞ and ‖φ‖L∞ = vrai supx∈Rn |φ (x)| if

p = ∞. Weighted Sobolev space is
Hm,k

p =
{
φ ∈ S′ : ‖φ‖

H
m,k
p

≡
∥∥∥〈x〉k 〈i∂〉m φ

∥∥∥
Lp

< ∞
}

,
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where m, k ∈ R, 1 ≤ p ≤ ∞, 〈x〉 =
√
1 + |x|2. We also write Hm,k = Hm,k

2 . The

usual Sobolev space is Hm = Hm,0
2 , so the index 0 we usually omit if it does not

cause a confusion. Different positive constants we denote by the same letter C.
We introduce the free evolution group

U (t) =
(

e−i〈i∇〉t 0
0 ei〈i∇〉t

)
.

The operator

J = 〈i∇〉U (t) xU (−t) = E 〈i∇〉x+ iAt∇
is useful for obtaining the large time decay estimates of solutions. We have [L,J ] =
0, since [x, 〈i∇〉] = 〈i∇〉−1 ∇ . However it is difficult to calculate the action of J
on the nonlinearity N . Therefore we use the first order differential operator

P = Et∇+ Ex∂t

which is closely related to J by P = Lx− iJ , and it almost commutes with L since
[L,P] = −i 〈i∇〉−1 ∇L (see [8]).
First we prove the existence of the inverse wave operator

W−1
+ :

(
Hβ,1

)2 → (
Hβ,1

)2
,

where β = max
(

3
2
, 1 + 2

n

)
.

Theorem 1.1. Let 1 + 4
n+2 < σ < 1 + 4

n and n ≥ 3. Suppose that the initial data

w0 ∈ (
Hβ,1

)2
, β = max

(
3
2 , 1+ 2

n

)
have a small norm

∥∥w0
∥∥
Hβ,1. Then there exists

a unique solution U (−t)w ∈ C
(
[0, ∞) ; (Hβ,1

)2
)

to the Cauchy problem (1.3) such
that

‖w (t)‖Lq ≤ C (1 + t)−
n
2 (1− 2

q)

for all t ≥ 0, where 2 ≤ q < 2n
n−2

. Furthermore there exists a unique final state

w+ ∈ (
Hβ,1

)2
such that∥∥U (−t)w (t) − w+

∥∥
Hβ,1 ≤ C (1 + t)−γ(1.4)

for all t ≥ 0, where γ = n
2
(σ − 1)

(
1− 1

q

)
− 1 > 0.

We now consider the final state problem for the nonlinear Klein-Gordon equation{ Lw = N (w) ,
‖w (t)− U (t)w+‖L2 → 0 as t → ∞(1.5)

with a given final state w+ ∈ (
Hβ,1

)2
.

Theorem 1.2. Let 1 + 4
n+2

< σ < 1 + 4
n

and n ≥ 3. Suppose that the final state

w+ ∈ (
Hβ,1

)2
, β = max

(
3
2 , 1+ 2

n

)
. Then there exists a time T ≥ 0 and a unique

solution U (−t)w ∈ C
(
[T,∞) ; (Hβ,1

)2
)

of the final state problem (1.5) such that

‖w (t)‖Lq ≤ C (1 + t)−
n
2 (1− 2

q)

for all t ≥ T, where 2 ≤ q < 2n
n−2

. Furthermore the asymptotics∥∥U (−t)w (t)− w+
∥∥
Hβ,1 ≤ Ct−γ
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is valid for all t ≥ T, where γ = n
2 (σ − 1)

(
1− 1

q

)
− 1 > 0.

By Theorem 1.2, we can define the wave operator W+ which maps any final
state w+ ∈ (

Hβ,1
)2
to the solution U (−t)w ∈ (

Hβ,1
)2
if t ≥ T. If we choose a

sufficiently small norm ‖w+‖Hβ,1, we can take T = 0. Namely, the wave operator

W+ : w+ ∈ (
Hβ,1

)2 → w0 ∈ (
Hβ,1

)2

is well-defined in the neighborhood of the origin in the
(
Hβ,1

)2 space. Furthermore
since the initial data w0 are also sufficiently small in the norm of

(
Hβ,1

)2
, by

applying Theorem 1.1 for the negative time we can define the inverse wave operator

W−1
− : w0 ∈ (

Hβ,1
)2 → w− ∈ (

Hβ,1
)2

.

This means that the scattering operator

S+ =W−1
− W+ : w+ ∈ (

Hβ,1
)2 → w− ∈ (

Hβ,1
)2

is well-defined in the neighborhood of the origin in the
(
Hβ,1

)2
space.
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