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In this talk, we shall give a survey of the recent results on the traveling wavefronts of

1-D lattice dynamical systems.

Consider for an unknown {un(·)}n∈Z:

u̇n(t) = dn+1[un+1(t)− un(t)]− dn[un(t)− un−1(t)]

+bn[un+1(t)− un−1(t)] + f(n, un(t)) (1)

for n ∈ Z, t > 0, where f is a nonlinear forcing term satisfying

f(n, 0) = f(n, 1) = 0, ∀n.

Equation (1) can be found in many biological models, see, e.g., the books of Fife [8],

Shorrocks-Swingland [13], Shigesada-Kawasaki [12], etc. Equation (1) can also be re-

garded as a spatial-discrete version of the following parabolic partial differential equation

ut = (d(x)ux)x + b(x)ux + f(x, u). (2)

We shall consider two cases:

monostable: fu(x, 0) > 0 > fu(x, 1),

bistable: fu(x, 0) < 0, fu(x, 1) < 0.

We are interested in the wave propagation phenomenon in both homogeneous and het-

erogeneous media. In particular, we are interested in the traveling wavefront solutions.

I. Monostable Nonlinearity: Homogeneous Media

In this case, we consider

u̇n(t) = [un+1(t)− 2un(t) + un−1(t)] + f(un(t)). (3)

A solution of (3) is called a traveling wave with speed c , if there exists a function U

defined on R such that un(t) = U(n + ct). Here U is referred to as the wave profile. We

are interested in solutions taking values in [0, 1] and connecting the steady states 0 and

1, i.e., traveling wave solutions (c, U) ∈ R× C1(R) of the problem (P):
{

c U ′(·) = U(·+ 1) + U(· − 1)− 2U(·) + f(U(·)) on R,

U(−∞) = 0, U(∞) = 1, 0 ≤ U ≤ 1 on R.
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Theorem 1 (Existence, [4]). Assume that

(A) : f ∈ C1([0, 1]), f(0) = f(1) = 0 < f(s) ∀ s ∈ (0, 1).

Then there exists cmin > 0 such that (P) admits a solution if and only if c ≥ cmin.

This theorem was first proved by Zinner-Harris-Hudson [16] under the KPP-type

assumption: f(u) ≤ f ′(0)u ∀u ∈ [0, 1].

Theorem 2 (Uniqueness). Assume (A). Wave profiles of a given speed are unique up

to a translation.

Theorem 3 (Monotonicity). Assume (A). Any wave profile is monotonic; i.e. U ′ > 0

on R.

The proof of uniqueness (Theorem 2) relies on the monotonicity (Theorem 3) and the

detailed asymptotic behavior (Theorem 4 below) of wave profiles. For the details, we

refer the reader to [2]. When f ′(0) > 0 > f ′(1), see [4]. Note that, under the assumption

(A), we only have f ′(0) ≥ 0 ≥ f ′(1).

Theorem 4. Assume (A). Any solution (c, U) of (P) satisfies

lim
x→−∞

U ′(x)

U(x)
= λ, lim

x→∞
U ′(x)

U(x)− 1
= µ, (4)

where µ ≤ 0 ≤ λ are roots of the characteristic equations:
{

c λ = eλ + e−λ − 2 + f ′(0),

c µ = eµ + e−µ − 2 + f ′(1).

In addition, λ is the smaller root when c > cmin and the larger root when c = cmin.

For stability, we consider the system, which is embedded from (3) to a larger one, for

unknown {u(x, ·)}x∈R:

ut(x, t) = u(x + 1, t)− 2u(x, t) + u(x− 1, t) + f(u(x, t)), x ∈ R, t > 0. (5)

For example, we may take u(n + h, t) := un(t + h), h ∈ [0, 1), n ∈ Z. Note that the

traveling wave of (3) is the same as that of (5). For the stability, we assume the following:

(A1) f ∈ C1+α([0, 1]) for some α ∈ (0, 1].

(A2) There exist constants M−
f > 0 and M+

f ∈ R such that

−M−
f u1+α ≤ f(u)− f ′(0)u ≤ M+

f u1+α ∀u ∈ [0, 1].

(A3) f ′(0) > 0 and f ′(1) < 0.

We denote by Λ1(c) the smaller root of the characteristic equation

cλ = eλ + e−λ − 2 + f ′(0) (6)

for c > cmin. Then we have the following stability theorem.
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Theorem 5 ([3]). Assume that f satisfy (A), (A1)–(A3). Let u be the solution of

(5) with initial value uo(·) satisfying uo ∈ C(R → [0, 1]), lim infx→∞ uo(x) > 0 and

limx→−∞ uo(x)e−λx = 1 for some λ ∈ (0, Λ1(cmin)). Then

lim
t→∞

sup
x∈R

∣∣∣ u(x, t)

U(x− ct)
− 1

∣∣∣ = 0 (7)

where (c, U) is the traveling wave satisfies

lim
ξ→−∞

U(ξ)e−λξ = 1 (8)

with λ = Λ1(c).

The stability theorem needs to have wave profiles with the asymptotic expansion as (8)

near x = −∞. Indeed, by constructing suitable sub/super solutions on (−∞, 1] having

special tails near x = −∞, under the additional condition that f(u) = f ′(0)u+O(u1+α)

for some α > 0 and all small u, we show in [2] that:

If c > cmin and f ′(0) > 0, then for some x0 ∈ R

lim
x→−∞

e−λxU(x + x0) = 1 (9)

with λ the smaller root of (6). By a translation, (8) holds.

II. Monostable Nonlinearity: Periodic Media

We consider

u′j(t) = dj+1uj+1(t) + djuj−1(t)− (dj+1 + dj)uj(t) + f(j, uj(t)), t ∈ R, j ∈ Z,(10)

uj(t + N/c) = uj−N(t), t ∈ R, j ∈ Z, (11)

uj(t) → 1 as j → −∞, uj(t) → 0 as j → +∞, locally in t ∈ R, (12)

where dj = dj−N for all j ∈ Z, f(j, s) = f(j−N, s) for all (j, s) ∈ Z× [0, 1], N ∈ N, c is

a (positive) constant. Assume that f : Z× [0, 1] → R is of class C1 in s for each j ∈ Z

and 



∀ j ∈ Z, f(j, 0) = f(j, 1) = 0

∀ j ∈ Z, f ′s(j, 0) := ∂f/∂s(j, 0) > 0,

∀ (j, s) ∈ Z× (0, 1), 0 < f(j, s) ≤ f ′s(j, 0)s,

∃ α > 0,∃ γ ≥ 0, ∀ (j, s) ∈ Z× [0, 1],

f(j, s) ≥ f ′s(j, 0)s− γs1+α,

∃ ρ ∈ (0, 1), ∀ j ∈ Z, ∀ ρ ≤ s ≤ s′ ≤ 1,

f(j, s) ≥ f(j, s′) (e.g., f ′s(j, 1) < 0).

(13)

We always assume 0 ≤ uj(t) ≤ 1 for all j ∈ Z, t ∈ R.

Theorem 6 ([9]). A traveling wave solution of (10)-(12) with a speed c exists if and

only if c ≥ c∗ for some c∗ > 0. Furthermore, u′j(t) > 0 and uj(−∞) = 0 < uj(t) < 1 =

uj(+∞) for all (j, t) ∈ Z×R.
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The sufficient condition for the existence of traveling wave for the periodic media with

monostable nonlinearity was derived before by Hudson-Zinner [10]. We provide in [9]

another totally different proof for the sufficient condition. Also, the necessary condition

is proved in [9].

• At this moment, the uniqueness and stability of traveling wave for the periodic

media with monostable nonlinearity are still open.

• Unlike the homogeneous case, the wave profile is not a single function for the periodic

case. It consists N functions. This makes the study of traveling wave in periodic media

more complicated. On the other hand, periodic media is the most simple case for the

heterogeneous media.

III. Bistable Nonlinearity: Homogeneous Media

We consider

u̇n(t) = d[un+1(t)− 2un(t) + un−1(t)] + f(un(t)),

where f is of bistable type. In [15], Zinner proved that there exists d∗ > 0 such that

a TW with c 6= 0 exists, if d > d∗. On the other hand, Keener [11] shows that only

stationary wave exists, if d is small. This is so-called the phenomenon of propagation

failure. Moreover, Zinner [14] proved that if d is large enough, then there exists a

unique speed c such that the wave profile is unique up to a shift in time. Moreover, this

traveling wave is globally stable.

We also mention that Chow-(Mallet-Paret)-Shen studied 1-D lattice dynamical sys-

tems and fully discrete dynamical systems in [6, 7]. Finally, Bates-Chen-Chmaj [1] also

consider the 1-D lattice dynamical systems which allows infinite-range couplings with

both positive and negative weights.

IV. Bistable Nonlinearity: Periodic Media

In [5], we consider

u̇j(t) =
∑

k

aj,k uj+k(t) + fj(uj(t)), t ∈ R, j ∈ Z. (14)

We are looking for a traveling wave solution of (14) with speed c such that

lim
j→∞

uj(t) = 1, lim
j→−∞

uj(t) = 0, (15)

uj(t + N/c) = uj−N(t) (c 6= 0). (16)

By a spectrum analysis of the linearized operator around a steady state, and the con-

struction of suitable super/subsolutions, we are able to derive the uniqueness and as-

ymptotic stability of traveling wave.
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The most difficult part is to derive the existence of traveling wave. For this, we

introduce (for c 6= 0)

wj(x) := uj(t)
∣∣∣
ct=j−x

= uj

(
j − x

c

)
∀x ∈ R, j ∈ Z.

Then we have wj+N(x) = wj(x) ∀x ∈ R, j ∈ Z. Also, by (15) and (16),

lim
x→∞

wj(x) = lim
ct→−∞

uj(t) = 1, lim
x→−∞

wj(x) = lim
ct→∞

uj(t) = 0.

Finally, (14) becomes

−cw′
j(x) =

∑

k

aj,kwj+k(x + k) + fj(wj(x)). (17)

Note that the constant (speed) c in (17) can be zero. Working on the corresponding

integral formulation, we are able to derive the existence of traveling wave solution. We

refer the reader to [5] for more details.
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