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1 Introduction and main results

We consider the Cauchy problem for the three-dimensional Navier-Stokes
equations with the Coriolis force:

ut + (u · ∇)u + Ωe3 × u − ∆u = −∇p, ∇ · u = 0, u|t=0 = u0, (1)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the unknown velocity vec-
tor field and p = p(x, t) is the unknown scalar pressure at the point x =
(x1, x2, x3) ∈ R3 in space and time t > 0 while u0 = u0(x) is the given ini-
tial velocity field. Here Ω ∈ R is the Coriolis parameter, which is twice the
angular velocity of the rotation around the vertical unit vector e3 = (0, 0, 1);
the kinematic viscosity coefficient in normalized by one. By × we denote the
exterior product, hence, the Coriolis term is represented by e3 × u = Ju with
the corresponding skew-symmetric 3 × 3 matrix J .

We would like to solve (1) when initial data u0 is almost periodic, i.e., u0 is
formally of the form

u0(x) =
∑
λ∈Λ

aλe
iλx, (2)

where Λ (called a frequency set) is countable set in R3 and aλ ∈ C3 \ {0}.
We would like to discuss time evolution of frequency sets. A naive space for
this purpose is BUC, the space of all bounded uniformly continuous functions
since almost periodic functions in the sense of Bohr belong to BUC. The
problem (1) is well-posed when Ω = 0 as proved in [10]. However, when Ω ̸= 0
it is shown in [11] that the linearized problem around u = 0 is ill-posed in
the space BUC. Sawada [20] and Hieber and Sawada [15] proved unique local
existence for initial data in a homogeneous Besov space Ḃ0

∞,1, which is strictly
smaller than BUC. The estimate for the existence time is improved by [11].
However, non of these results gives a uniform estimate for the existence time
in the speed of rotation Ω ∈ R, the precondition to consider fast singular
oscillating limits Ω → ±∞ and prove global existence for large fixed Ω.

To overcome this difficulty the space FM0 (Fourier preimage of the space of
all finite Radon measures with no point mass at the origin) is introduced in
[12]. This space FM0 is strictly smaller than Ḃ0

∞,1 as proved in [12]. However,
the existence time can be taken uniformly in Ω as proved in [12].

The global existence of a regular solution of (1) for large |Ω| were obtained
in L2-setting for the periodic domains such as cylinder with infinite length in
the direction of the rotating axis (periodic or zero stress boundary conditions
in the vertical direction) or spatial lattices [4], [5], [17]. In this regard, for the
Euler equations, Nicolaenko, Bardos Golse and the third author [18] proved
uniform local existence and long-time regularity for initial data in H4.
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In FM0 setting a global solvability is proved for small Reynolds number but
all Ω under some conditions on frequency set of u0 [13].

Our goal in this paper is to prove the analyticity of the solution u in time.
Here is a typical result.

Theorem 1.1. Assume that u0 ∈ FM0 with div u0 = 0. Let u be the unique
mild solution u = u(t) ∈ C([0, T ], FM0) of (1) (see [12]). Then u is analytic
in (0, T ) in the sense it can be extended to be a holomorphic function with
values in FM0 in a complex neighborhood of (0, T ).

For the case Ω = 0 we may state in the framework of BUC.

Theorem 1.2. Assume that Ω = 0 and u0 ∈ BUC with div u0 = 0. Let
u be the unique mild solution u = u(t) ∈ C([0, T ], BUC) of (1). Then u is
analytic in (0, T ) with values in BUC.

The analyticity in time for the Navier-Stokes equations has been discussed
by many authors in various settings. The first result in this direction was
established by Masuda[19]. He proved that if u ∈ C([0, T ]; H2(D)) is a weak
solution of (1) with Ω = 0, then u is analytic in (0, T ) with value in H2(D).
In [19] D is assumed to be a bounded domain and the Dirichlet condition
is imposed. Also, an analytic exterior force is allowed. (His result works for
unbounded domains in L2-setting too.) This result is extended by the first
author [9] for Lp-setting. Foias and Temam[8] and Iooss[16] also discuss the
time analyticity when Ω = 0 in a different setting. However, non of these
results apply to the space containing nondecaying functions such as almost
periodic functions.

We now consider an almost periodic initial data u0 ∈ FM0 of the form (2).
As pointed out in [12] the solution u(t) ∈ FM0 is almost periodic as proved in
[14] for other spaces. It is interesting to study evolution of the frequency set.

Theorem 1.3. Let u be the mild solution of (1) in [0, T ] with initial data
u0 ∈ FM0 which is almost periodic of the form (2). Then the frequency set
Λ(u(·, t)) of u(·, t) is contained in the additive free semigroup G generated by
Λ. Thus u is of the form

u(x, t) =
∑
λ∈G

aλ(t)e
iλ·x, (3)

where the amplitude aλ(t) ∈ C3 and satifies

sup
0<t<T

∑
λ∈G

|aλ(t)| < ∞.
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(The sum converges in absolute sense uniformly in x ∈ R3.)

Since the amplitude function aλ(t) can be calculated by

aλ(t) = M[ue−iλ·x],

where M[f ] = limR→∞ |CR|−1
∫
CR

fdx is the spatial averaging operator; CR

denote the cube {x = (x1, x2, x3)| |xi| ≤ R, 1 ≤ i ≤ 3}; see [7]. By the
time analyticity result we are able to prove the analyticity of the amplitude
function.

Theorem 1.4. Assume the same hypotheses of either Theorem 1.1 or 1.2.
Then the complex amplitude function aλ(t) is analytic in time t > 0.

This implies that there is no sudden creation of new mode at t0 > 0 or there
is no chance that some mode vanishes identically from some t0 > 0. All modes
appearing for t > 0 are created instantaneously. There is no waiting time for
exciting amplitude dynamics corresponding to any frequency.

The work of the first author was partly supported by the Grant-in-Aid for
Scientific Research, No. 18204011, No. 17654037, the Japan Society of the
Promotion of Science (JSPS). He was also partly supported by the Grant-in-
Aid for formation of COE ’Mathmatics of Nonlinear Structures via Singulari-
ties’ (Hokkaido University) sponsored by JSPS. The work of the third author
was partly supported by AFOSR contract FA9550-05-1-0047. The work of the
fourth author was partly supported by the Grant-in-Aid for JSPS Fellows.

2 Persistence of almost periodicity and frequency set

We begin by recalling the notion of almost periodicity in the sense of Bohr
[1], [7]. Let f be in BUC(Rn). We say f is almost periodic if the set

Σf := {f(· + ξ) | ξ ∈ Rn} ⊂ L∞(Rn)

is relatively compact in L∞(Rn). (Uniform continuity is redundant. In fact,
if f must be uniformly continuous [1],[7].) If f is periodic in x, clearly, f is
almost periodic since Σf is a torus.

We next recall the fact that if u0 is almost periodic so is the solution u(·, t) of
(1). To state more precisely we recall an integral equation which is formally
equivalent to (1):

u(t) = e−A(Ω)tu0 −
∫ t

0
div e−A(Ω)(t−s)P(u(s) ⊗ u(s))ds, (4)
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where A(Ω) = −∆ + ΩS,S = PJP (Poincaré-Riesz operator) and P = (I +
RiRj)i≤i,j≤3 (Helmholtz projection); here, Rj denotes the Riesz operator Rj =
(−∆)−1/2∂/∂xj. Instead of considering solutions of (1), we rather consider a
solution of (4) in C([0, T ], FM0) (or C([0, T ], BUC) for Ω = 0) which is called
a mild solution. The relation of (1) and (2) is discussed in [12] and [10]; we do
not repeat it here.

Theorem 2.1.

(i) Assume that u0 ∈ FM0 with div u0 = 0 is almost periodic. Let u ∈
C([0, T ], FM0) be the unique mild solution of (4). Then u(·, t) is almost
periodic in R3 for t ∈ [0, T ].

(ii) Assume that Ω = 0. Assume that u0 ∈ BUC(R3) with div u0 = 0 is almost
periodic. Let u ∈ C([0, T ], BUC) be the unique mild solution of (4). Then
u(·, t) is almost periodic in R3 for t ∈ [0, T ].

The second statement (ii) is found in [14] (Theorem 2.3). The first statement
(i) is not explicitly written but the proof parallels that of (ii). We just give a
sketch of the proof of (i) for the reader’s convenience.

Sketch of the proof of (i). For the solution u(t) = u(·, t) let S(t) denote the
mapping u0 7→ u(t).

Since (1) is invariant under translation in the space variables, the solution uη

with initial data u0η(x) = u0(x+η), η ∈ R3 fulfills uη(x, t) = u(x+η, t). Thus
S(t) maps Σu0 onto Σu(t). We notice that

sup
0<t<T

∥uη∥FM(t) = sup
0<t<T

∥u∥FM(t).

We now apply a uniform continuity dependence on initial data described below
in Lemma 2.2 and observe that S(t) is a well-defined continuous mapping from
the closure Σ̄u0 to Σ̄u(·,t) in FM0. Thus if Σ̄u0 is compact in FM0, so is Σ̄u(·,t).
One may replace FM0 by BUC as proved below in Lemma 2.4. The proof is
now complete. 2

Lemma 2.2.(Continuity with respect to initial data.) For a given N and
T let B(N) denote the set of all u0 ∈ FM0 such that

sup
0<t<T

∥S(t)u0∥FM ≤ N.

Then S(t) is a Lipschitz continuous on B(N) to FM0 with a constant depend-
ing only on N and T .

The proof parallels that of [14] ( Proposition 3.2). It is essentially contained
in [12] (Section 3).
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We conclude this section by proving Theorem 1.3. For this purpose we clarify
the meaning of (2) when u0 ∈ FM .

Lemma 2.3. Assume that f is almost periodic and belongs to FM(Rn).
Then f is a Fourier sum of the form

f(x) =
∑
λ∈Λ

aλe
iλx with

∑
λ∈Λ

|aλ| < ∞, (5)

where aλ ∈ Cn and Λ is a countable subset of Rn. Conversely, if f has the
form (5), then f ∈ FM(Rn) and f is almost periodic.

Proof. Let µ be the Fourier image f̂ of f . We split µ ∈ M as

µ = µp + µc

where µp is the point mass part and µc is the continuous part. The inverse
Fourier image F−1µp of µp is a Fourier sum as in (5). So F−1µp is almost
periodic [7]. We should prove that fc = F−1µc is zero if it is almost periodic.
As in [7] it suffices to prove that all Fourier coefficients (complex amplitudes)
of fc must be zero which is obtained by calculating the average

M[fce
−iλ·x] = lim

R→∞
(2R)−n

∫
CR

fce
−iλ·xdx.

We observe that

(2π)n
∫

CR

fce
−iλ·xdx =

∫
Rn

∫
CR

eix·ξe−iλ·xµc(dξ)dx =
∫
Rn

∫
CR

eix·ηµλ
c (dη)dx

= Rn
∫
Rn

(∫
C1

eiy·Rηdy
)

µλ
c (dη),

where µλ
c is the translation of µc defined by µλ

c (B) = µc(B + {λ}) for Borel
set B. Since

lim
R→∞

∫
C1

eiy·Rηdy = 0 for all η ̸= 0

and µλ
c has no point mass at the origin, by the Lebesgue dominant convergence

theorem we conclude that M[fce
−iλ·x] = 0 for all λ ∈ Rn.

The converse is clear since
∑ |aλ| = ∥f∥FM and the uniform limit of the

Fourier sum is almost periodic. 2

Lemma 2.4. A function f ∈ FM0(R
n) is almost periodic if and only if Σf

is relatively compact in FM0(R
n).
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Proof. It suffices to prove ‘only if’ part since FM0 ⊂ L∞ is continuous. We
may assume that f is a scalar valued function. Suppose that Σf (⊂ FM0) is
relatively compact in L∞(Rn). Then any sequence {fnk

} ⊂ Σf has a conver-
gent subsequence {fℓ = f(· + ηk(ℓ))} → f0 in L∞(Rn) as ℓ → ∞. It suffices
to prove that fℓ → f0 in FM0. By (5) we have f0(x) =

∑
λ∈Λ aλe

iλx and
fℓ(x) =

∑
λ∈Λ aλeλℓe

iλx, where eλℓ := exp(iλnk(ℓ)). Since fℓ → f0 in L∞(Rn),
we have

lim
ℓ→∞

M[(fℓ − f0)e
−iµ·x] = 0 for all µ ∈ Λ.

In other words
aµeµℓ → aµ as ℓ → ∞

for all µ ∈ Λ. Thus we conclude that

∥fℓ − f0∥FM =
∑
λ∈Λ

|aλ − aλeλℓ| → 0,

since
∑

λ∈Λ |aλ| =
∑

λ∈Λ |aλeλℓ| < ∞. (The same statement holds even if we
replace FM0 by FM .) 2

Proof of Theorem 1.3. Assume that f, g ∈ FM are almost periodic. Let
Λ(f) denote the frequency set, i.e., it is the set of all λ ∈ Λ such that aλ ̸= 0.
Then by Lemma 2.3 it is easy to see that

Λ(fg) ⊂ Λ(f) + Λ(g) = {a + b|a ∈ Λ(f), b ∈ Λ(g)}.

Since the solution of (4) is the limit of the successive approximation

um+1(t) = e−A(Ω)tu0 −
∫ t

0
dive−A(Ω)(t−s)P(um(s) ⊗ um(s))ds (m ≥ 1),

u1(t) = e−A(Ω)tu0

and e−A(Ω)t, div e−A(Ω)tP does not grow the frequency set, we observe that
um(t) is a Fourier sum of the form (5) and that

Λ(u1(t)) ⊂ Λ(u0),

Λ(um+1(t)) ⊂
⋃

0≤τ<t

Λ(um(τ)) + Λ(um(τ)),m = 1, 2 · · · .

This implies that Λ(um(t)) ⊂ G, where G is the free additive semigroup
generated by Λ. Since the convergence of um in C([0, T0], FM0) to the so-
lution u for small T0 has been established in [12] (Section 3), and since∑

λ∈G |aλ(t)| = ∥u(t)∥FM , we obtain (3) in (0, T0]. We repeat this argument
starting form t = T0 with Λ = G and obtain (1.3) in [T0, T0 + T1] with T1 > 0.
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We repeat this argument finitely many times to conclude (3) in [0, T ] since
the amount of increment of time interval in each step can be taken uniformly
since it depends only on the size of initial data in FM . 2

Remark 2.5.

(i) Our terminology is slightly different from [13], where it gives an impression
that frequency set is the support of f̂ , which is the closure of our frequency
set of almost periodic function f .

(ii) The assertion that the frequency set of u is contained in G is still valid in
BUC setting when Ω = 0 since we have Λ(fg) ⊂ Λ(f) + Λ(g) for almost
periodic f, g ∈ BUC(Rn); note that an almost priodic function can be
approximated by trigonometric polynomials in uniform sense.

3 Time analyticity

We shall prove Theorem 1.1 and 1.2. Theorem 1.4 is an easy collorary of
Theorem 1.1 and 1.2.

We recall the definition of holomorphic functions with values in a (complex)
Banach space X. Let D be an open set in C. We say that a function from
D to X is (strongly) holomorphic (with values in X) in D if f is strongly
differentiable at every point of D, i.e., for each z ∈ D there exists an L ∈ X
such that

lim
h→0,h∈C

1

|h|
∥f(z + h) − f(z) − hL∥X = 0.

For basic properties of Banach valued holomorphic functions the reader is
referred to classical books by Yosida [22] and by Berger [3]. Let H∞(D,X) be
the space of all bounded holomorphic functions in D with values in X. It is a
Banach space equipped with the supremun norm defined by

∥f∥H∞(D) = sup{∥f(z)∥X : z ∈ D}.

We still use such notation when D is an open set in C2; in this case we say
that f : D → X is holomorphic if f = f(t, s) is holomorphic in each variable
t and s. For σ ∈ (0, π/2) and T > 0 we set

S(T, σ) = {t ∈ C : |arg t| < σ, Re t < T}
Z(T, σ) = {(t, s) ∈ S(T, σ) × S(T, σ) : Re (t − s) > 0}
Zϵ(T, σ) = {(t, s) ∈ Z(T, σ) : Re (t − s) > ε} for ε > 0,
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where Re z denotes the real part of a complex number z. The next Theorem
is elementary but a key for our argument. It is implicitly used in the proof of
[9] (Lemma 2).

Theorem 3.1. Assume that f ∈ H∞(Zε(T, σ), X) for each ε ∈ (0, T ).
Assume that there is an positive integrable functions φ on (0, T ) such that

∥f(t, s)∥X ≤ φ(Re (t − s)) for (t, s) ∈ Z(T, σ). (6)

Then F (t) :=
∫ t
0 f(t, s)ds is in H∞(S(T, σ), X) with

∥F∥H∞(S(T,σ)) ≤
∫ T

0
φ(τ)dτ. (7)

Here, we interpret that the complex integration is made along the segment
connecting two ends 0 and t.

Proof. We set

Fδ(t) =
∫ t(1−δ)

0
f(t, s) ds

for δ ∈ (0, 1). It suffices to prove that Fδ ∈ H∞(S(T, σ), X) since F is a
uniform limit of Fδ as δ → 0 by the assumption (6); the estimate (7) easily
follows from (6).

Since the boundedness of Fδ in S(T, σ) is clear, it suffices to prove that Fδ

is holomorphic in S(T, σ). For t ∈ S(T, σ) we take h ∈ C small so that
t + h ∈ S(T, σ). Applying Cauchy’s integration theorem to change the path
we observe that

Fδ(t + h) − Fδ(t) =
∫ α(t+h)

0
(f(t + h, s) − f(t, s))ds

+
∫ α(t+h)

0
f(t, s)ds −

∫ αt

0
f(t, s)ds

=
∫ α(t+h)

0
(f(t + h, s) − f(t, s))ds +

∫ α(t+h)

αt
f(t, s)ds

=: J1 + J2

with α = 1 − δ. We recall a form of Taylor’s expansion (See [2]):

g(z) =
n−1∑
k=0

g(k)(a)

k!
(z − a)k +

(
1

2πi

∫
C

g(ζ)

(ζ − a)n(ζ − z)
dζ

)
· (z − a)n. (8)
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Here g is an holomorphic function defined in a domain D ⊂ C and a ∈ D; C(⊂
D) is a circle (oriented counterclockwise) centered at a which encloses z.

We use (8) with n = 2, a = t, z = t + h, g(z) = f(z, s). We fix the circle
C : |ζ − t| = r so that r < dist (t, ∂S(T, σ)). We take h small so that |h| < r.
Then

J1

h
−

∫ α(t+h)

0

∂f

∂t
(t, s)ds = h

∫ α(t+h)

0

{
1

2πi

∫
C

f(ζ, s)

(ζ − (t + h))(ζ − t)2
dζ

}
ds.

The norm of the right hand side in X is dominated by

h

2π

Mε

(r − |h|)r2
· 2πr with Mε = ∥f∥H∞(Zε(T,σ)).

Similarly, we apply (8) with n = 1, a = αt, z = s and g(z) = f(t, z) to
observe that

J2

h
− αf(t, αt) =

∫ α(t+h)

αt

{
1

2πi

∫
C

f(ζ, s)

(ζ − αt)(ζ − s)
dζ · (s − αt)

}
ds.

Here we fix the critical C : |ζ − αt| = r so that r < dist (αt, ∂S(T, σ)) and
take h small so that α|h| < r. The norm of the right hand side is dominated
by

1

2π

Mε

r(r − α|h|)
2πr · α|h|.

Thus we conclude that

lim
|h|→0

1

|h|

∥∥∥∥∥Fδ(t + h) − Fδ(t) − h

{∫ αt

0

∂f

∂t
(t, s)ds + αf(t, αt)

}∥∥∥∥∥
X

= 0,

that is to say that Fδ is (complex) differentiable at t ∈ S(T, σ). 2

Lemma 3.2

If u ∈ H∞(S(T, σ); FM), then

f(t, s) := dive−(t−s)A(Ω)Pu(s) ⊗ u(s) (9)

belongs to H∞(Zε(T, σ); FM) for all ε ∈ (0, T ). Moreover,

∥f(t, s)∥FM ≤ C

(Re(t − s))
1
2

∥u∥2
FM (10)

holds with constant C independent of t, s and u.

Proof. First we show that the function f(t, s) belongs to H∞(Zε(T, σ); FM)
if u ∈ H∞(S(T, σ); FM) briefly. Let σ∗(A) be the symbol of the operator A.
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We shall recall the symbol of operators appearing in dive−(t−s)A(Ω)P. As in
[11] the symbol of etΩS is given by

σ∗(etΩS) = exp(Ωt
ξ3

|ξ|
R(ξ)), (11)

where R(ξ) is the symbol of the vector Riesz operator, i.e.,

R(ξ) =
1

|ξ|


0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 .

The symbol of e−tA(Ω) and P equal to

σ∗(e−A(Ω)t) = e−|ξ|2tσ∗(e−tΩS) and σ∗(P) = (δjk −
ξjξk

|ξ|2
).

Thus the symbol of dive−(t−s)A(Ω)P is holomophic in (t, s) from Z(T, σ) →
BUC(R3), since the symbol σ∗(dive−tA(Ω)P) can be extended to be continuous
up to the origin. Moreover, σ∗(dive−(t−s)A(Ω)P) ∈ H∞(Zε(T, σ), BUC(R3)).
Thus for µ ∈ M , the associate measure µ⌊σ∗(dive−(t−s)A(Ω)P) is
in H∞(Zε(T, σ),M). We now conclude that f ∈ H∞(Zε(T, σ), FM).

Next we show (10). Note that ∥Pu∥FM ≤ ∥u∥FM holds (see [12]). By [12] we
have

∥e−tΩS∥FM→FM ≤ sup
ξ∈R3

|σ∗(e−tΩS)|,

where | · | denotes the operator norm of 3×3 matrix from the Euclidean space
R3 into itself. Note that the symbol of e−tΩS is expressed in (11) and it is
unitary in real t. There exists a constant C∗ depending only on Ω, σ and T
satisfying

∥e−(t−s)ΩS∥FM→FM ≤ sup
ξ∈R3

|σ∗(e−Im(t−s)ΩS)| ≤ C∗

for all (t, s) ∈ Z(σ, T ), where Im z denotes the imaginary part of a complex
number z.

Thus we have

∥f(t, s)∥FM ≤∥dive(t−s)∆∥FM→FM∥P∥FM→FM∥e−(t−s)ΩS(um ⊗ um)∥FM

≤C∗∥dive(t−s)∆∥FM→FM∥(um ⊗ um)∥FM .

Since F [∂xj
et∆g] = ĝ · iξje

−t|ξ|2 for g ∈ FM , we have
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∥∂xj
et∆g∥FM = ∥iξje

−t|ξ|2∥L∞∥g∥FM

≤ sup
|ξ|≥0

∣∣∣∣|ξ|e−Ret|ξ|2
∣∣∣∣∥g∥FM ≤ 1

(2(Re t)e)
1
2

∥g∥FM

(cf.[12]). Therefore we obtain

∥f(t, s)∥FM ≤ C∗

(2(Re(t − s))e)
1
2

∥um ⊗ um∥FM ≤ C∗

(2(Re(t − s))e)
1
2

∥um∥2
FM .

Thus, we have the desired estimate with C = C∗
√

2e
.

Proof of Theorem 1.1.

We use successive approximation method. Let {um}m∈N be as follows ;

u1(t) = e−tA(Ω)u0,

um+1(t) = u1(t) −
∫ t

0
e−(t−s)A(Ω)Pdiv(um ⊗ um)(s)ds.

First, we prove um ∈ H∞(S(T, σ), FM0) by induction on m.
Since e−tA(Ω) is an analytic semigroup, u1 ∈ H∞(S(T, σ), FM0). Assume that
um ∈ H∞(S(T, σ), FM0), then it follows immediately from Theorem 3.1 and
Lemma 3.2 that um+1 ∈ H∞(S(T, σ), FM0).

Next, we prove {um}m∈N becomes a Cauchy sequence for sufficiently small T0.
We now define

Km(T0) = sup
s∈S(T0,σ)

∥um(s)∥FM , Lm(T0) = sup
s∈S(T0,σ)

∥um(s) − um−1(s)∥FM .

Applying the above estimates, we have

Km+1(T0) ≤ C∗∥u0∥FM +
∣∣∣∣ ∫ t

0

C

(Re(t − s))
1
2

∥um∥2
FMds

∣∣∣∣.
Since ∣∣∣∣ ∫ t

0

ds

(Re(t − s))
1
2

∣∣∣∣ =
2|t|

(Ret)
1
2

<
2T

1
2
0

cos σ
,

we obtain Km+1(T0) ≤ C∗∥u0∥FM + C ′K2
m , where C ′ =

2T
1
2
0

cos σ
C∗. Now, we

take T0 so small that both C∗ ≤ 3
2

and C ′ ≤ 1
6∥u0∥FM

holds. Under these
assumptions, we have

Km+1(T0) ≤
3

2
∥u0∥FM +

(Km(T0))
2

6∥u0∥FM
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and one can easily check that Km(T0) ≤ 3∥u0∥FM holds for all m ∈ N.

Next, we estimate ∥um+1 − um∥FM . By the similar argument together with
the uniform boundedness, we obtain

Lm+1(T0) ≤
36T

1
2

0 C∗

cos σ
∥u0∥FMLm(T0).

It follows that if we take T0 so small that
36T

1
2
0 C∗

cos σ
∥u0∥FM < 1, then {um}m∈N

becomes a Cauchy sequence in H∞(S(T0, σ), FM0).

Since the solution in [0, T0] is unique, this implies that u is analytic with
values in FM0. Since u(s) ∈ FM0 for all s ∈ (0, T ), starting from u(s) and
conclude that u is analytic in some open interval (s, s + T0). Since u can be
taken anbitrary, this implies that u is analytic in (0, T ). (Note that we need
not to assume that u is continuous up to t = 0 and t = T . We may replace
[0, T ] by (0, T ) to get analyticity in (0, T ). )

Proof of Theorem 1.2

It suffices to prove that the statement of Lemma 3.2 still holds even if we
replace FM by BUC provided that we assume Ω = 0. (The semigruop etS

is not bounded in BUC.) The analyticity of f(t, s) easily follows from the
analyticity of the semigroup et∆ in BUC. To prove (10) we need an estimate
for ∇et∆P which is proved in the Appendix. The remaining proof is the same
as that of Theorem 1.1.

Appendix.

We give a short direct proof of the key estimate for the derivative of the heat
semigroup in the proof of Theorem 1.2.

Lemma A. There is a universal constant C such that

∥∇et∆Pf∥∞ ≤ C (Re t)−1/2∥f∥∞

for all f ∈ L∞(Rn) and t ∈ C with Re t > 0.

Proof. It suffices to prove that

∥∂ke
t∆RiRjf∥∞ ≤ C(Re t)−1/2∥f∥∞, (1 ≤ i, j, k ≤ n),

13



where Rj = ∂j(−∆)−1/2 is the Riesz operator and ∂k = ∂/∂xk. Since

RiRj = ∂i∂j(−∆)−1 = ∂i∂j

∫ ∞

0
es∆ds,

we observe that

∂ke
t∆RiRjf = et∆

∫ ∞

Re t
∂k∂i∂je

s∆dsf + ∂k∂i∂je
t∆

∫ Re t

0
es∆dsf.

Since

∥∂k∂i∂je
t∆f∥∞ ≤ C1(Re t)−3/2∥f∥∞, ∥et∆f∥∞ ≤ ∥f∥∞ for Re t > 0

with some C1 independent of t and f ∈ L∞(Rn), we have

∥∂ke
t∆RiRjf∥≤C1

∫ ∞

Re t
s−3/2ds∥f∥∞ + C1(Re t)−3/2(Re t)∥f∥∞

≤ 3C1(Re t)−1/2∥f∥∞.

2

Remark. Lemma A for t > 0 is proved in [10] by using a Hardy space
estimate of the Gauss kernel found by Carpio [6]. A direct proof estimating
integral kernels is found by Shibata and Shimizu [21]. The proof above is very
short and elementary.
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