SOBOLEV INEQUALITIES WITH SYMMETRY

YONGGEUN CHO AND TOHRU OZAWA

ABSTRACT. In this paper we derive some Sobolev inequalities for radially symmetric

functions in H*® with % < s < 5. We show the end point case s = % on the homogeneous

.1

Besov space By ;. These results are extensions of the well-known Strauss’ inequality [11].
Also non-radial extensions are given, which show that compact embeddings are possible
in some L? spaces if a suitable angular regularity is imposed.

1. INTRODUCTION

In this paper we derive Sobolev inequalities with symmetry. We first consider several
Sobolev inequalities for radially symmetric functions in H* (R™) with % < s < §. There is
a sharp result by Sickel and Skrzypczak [8], although the argument below is much simpler
and direct and a constant in the inequality in Proposition 1 below is given explicitly in

terms of s.

Definition 1.
HEy={uec H*(R") : wu is radially symmetric }, s > 0.
';7q7rad ={ue B;”q(R") . w is radially symmetric}, s >0, 1 <p,q < oc.

The inhomogeneous spaces of radially symmetric functions are defined by the same way

with spaces H® and B, ,.

Proposition 1.  Let n > 2 and let s satisfy 1/2 < s < n/2.

Then
sup |z["2 7% |u(@)] < C(n, s)[[(—A)"?ul| 2 (1)
z€R™\ {0}

for allu € Hsad, where

T,

I'2s—-1I(5 —s)I'(5)

1/2
C(n,s) = <2257rn/2p(8)2r(’21 -1+ s))

and I is the gamma function.

Remark 1. For s =1 with n > 3, the inequality (1) reduces to Ni’s inequality [6, 7].

Remark 2. The restriction 1/2 < s < n/2 is necessary for C(n,s) to be finite.
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Remark 3.  The inequality (1) fails for s = n/2. Indeed, u(z) = F~1

1
((1+|£|)"(1+10g(1+|£|)))
satisfies u € H;;/dQ, and u € L> where F is the Fourier transform [12] and F 1 is its inverse.

Remark 4. The inequality (1) fails if 0 < s < 1/2 and n > 3. Indeed, u =
fﬁl(J%_l(]f\)\f\*”/Z) satisfies u € H?, and u(x) = oo for all z € S"!, where we note
that u € H? ; if and only if 1 —n/2 < s < 1/2, since

I(=2)"2ulf?. = c”/o | Ja1(p)*p*~ dp

and that by the asymptotic behavior of Bessel function (10)

u@ = [ ga(Pdp=so, wesm
0

See also the proof of Proposition 1 below.
In the endpoint case s = 1/2, we have the following propostion.

Proposition 2. Let n > 2. Then there exists a constant C such that

sup 2| u(@)| < Cllul| g2 (2)
zeR™\{0} 2,1
for allu e B;frad.
Remark 5.  The inhomogeneous version of (2) has been given in [8] whose proof is

based on the atomic decomposition.

Proposition 3.  Letn > 2 and let s satisfy 1/2 < s < 1. Then there exists C' such that
for allu e Hrlad

sup [a]"2*u()| < Cln,s) ull 5| Vull5s. (3)
z€R"\ {0}

Remark 6. For s = 1/2, the inequality (3) reduces to Strauss’ inequality [11].

Remark 7. For s = 0, the inequality (3) holds for nonincreasing functions in |z| [2].
For s = 1, the inequality (3) holds for n > 3 and fails for n = 2. See Proposition 1 and
Remark 2.

Now we extend the results above on radial functions to the non-radial functions with
additional angular regularity. For details, let us define function spaces H."" and B;:’ﬁd,

s> 0,m > 0 as follows.
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Definition 2.

m
2

Hy™ = {ue B Jull gz = (1 - Au) Fullue < oo},

m
2

1
B, = {ue Bh lullgy =10 - 80 Fulag, <o),

where A, is the Laplace-Beltrami operator on S™.

The homogeneous spaces H5™ and B;;nw is similarly defined by the definition of H®

and Bgl Then we have the following.

Proposition 4. (1) If1/2 < s <n/2 and m > n — 1 — s, then there exists a constant
C such that for any w € HS™

sup [z ~*Ju()| < C|lull jyem. (4)
R™\{0}

1
(2) If m >n — %, then there exists a constant C such that for any u € Bflnz)

sup || 2fu(z)] < Cllull g - (5)
R\ {0} Bj

1w

1

Remark 8. HJ™ and B;lnl are closed subspaces of H* and B3 ;, respectively and they
1

contain H ; and B22717rad naturally, respectively. We can identify the spaces H® with

1
2.

1
(1—A,)™2HZ™ and also B | with (1 — A,)™2Bj7 .

Remark 9. HJ™ is a Hilbert space with the same inner product as L? space and its

dual space is given by Hy,* ™.
1
From the decay at infinity we deduce compact embeddings of H;"™ and 3221”; into some
LP spaces as follows. See [2, 3, 4, 8, 9] for the radial case.
Corollary 1.  The embedding H; ™ — LP is compact for 1/2 <s<n/2, m>n—1—s

and 2 < p < 2n/(n—2s).

1
Corollary 2. The embedding BQZITZ — LP is compact for m > n —3/2 and 2 < p <
2n/(n —1).

2. PROOFS

2.1. Proof of Proposition 1. We use the following Fourier representation for radially

symmetric functions as

) = o= [ 51 lalpyato)o’ dp. (©)

where J, is the Bessel function of order v, @ is the Fourier transform normalized as

(€)= (2n) "2 [ e Eula)da,
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and we have identified radially symmetric functions on R™ with the corresponding functions
on (0,00).

By the Cauchy-Schwarz inequality and the Plancherel formula, we have

n__
]2 ™" u(z)]

) 1/2 00 1/2
<ol ([ 1atallea0) ([T R )

* 2 125 ) (B [ epsiaierpae) "
= ([T 1smrtza) (552 e )
0 ™
= C(n, 5)||(=A)*u|l 2,
as required.
2.2. Proof of Proposition 2. We use the following estimates on Bessel functions:
sup [T 1 (r)] < 1. (8)
r>0
supr!/2|J;_1(r)] < C. )

The first inequality (8) follows from the integral representation (see [13])

9 /2
Jn_q1(r)? = / Jn—2(2r cos9)db,
2 m 0
1 2m
I (t) = / cos(mf — tsin0)df, m € Z.
2 0

The second inequality (9) follows from the first and the well-known asymptotics (see [10])

Ty () ~ \/Zcos (7‘ - W) as T — oo. (10)

We apply the Littlewood-Paley decomposition {¢;},cz on R™ \ {0} to (4) to obtain

) = o783 [ s (o) ol (0o R, (11)

JEZ

where 1; = ©j_1 + ¢; + p;+1 and supp p; C {2971 < p < 29H1,
As in (7), we have

[ D2 u(z)|

00 1/2
< ol 2sup ([ 173l )

Jj€

S ([ torsa) "

jEz
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By (9), we estimate

. 1/2
o 2sup ([ 193 s(elo)P o0

JEZ
o0 1 1/2
< Csup </ ¢j(ﬁ)2dl)> (12)
jez \Jo P
2742 | 1/2
< C'sup (/ dp) <C
JEZ 21-2 P

This proves (2) since

Z (/OOO |<Pj(p)ﬂ(p)‘2pndp> 1/2

JEZ

. . . 51/2
is equivalent to the seminorm on 32/1 rad

2.3. Proof of Proposition 3. If we use Cauchy-Schwartz inequality as in (7), we have

for any M > 0

’x‘n/Z s’u :L'

1—s M\x| 1/2 M‘m|/\ 2 n—1
< [T 1 (Jelo) P pdp /0 [@(p) 20" dp
1/2 - 1/2

1—s 1 -~ 2 n+l
el ( [, 7alele dp) (/M||u<p>p dp>

1/2
grxs( s (r rdr) Jull 2

0o 1/2
el = ([ g a0 ) ol

From (8) and (9) we deduce that sup,>g |7“1*3J%_1(7")] < C for any & < s < 1. Hence we
have for any M > 0

1/2

™2 ()|

M 3
< ol ( / |J;_1<r>\2rdr> ol
. :
el ([P tar) (9l
M

< Ol = M>|lull 2 + |2 =M =0 V| 2.

The minimization of the RHS of the last inequality with respect to M yields Proposition
3.
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2.4. Proofs of Proposition 4 and Corollaries. The proof for (4) follows from the one
of Proposition 1 and the spherical harmonic expansion of functions in HZ™ [5, 10]. In
fact, if we write u(rw) = 3 4502 1<i<qq) fr1(1)Yei(w), where d(k) is the dimension of

space of spherical harmonic functions of degree k and

d(k) < Ck™2 for large k. (13)
Then we have
ol E = uole) = e Sl [ T (i) anato)dpVia (). (14)
k.l

where w € S"7L, v(k) = 22Z=2 and ml(pw) = gk,1(p) Y (w). Here

o0 n—2
ara(p) = cu /0 Fea ()= (rp) =T T, o (rp) -

The absolute value of ¢, j is bounded by a constant depending only on n. See [10] for this.

Using the Cauchy-Schwarz inequality as in (7), we have

n__
|2~ u(|z|w)|
1

> 2 10\ ([ 5 2ein_14 )2
<O Wil (s (/0 oy (1) P S) </0 lgka(p) P07~ dp>

kil

n=2 v(k)+1—y5) o i 3
< C'Zk ( O ) </O gkt (p) 20" 1dﬂ> 1Yl £2(sn-1y-

Here we used the inequality that ||}~ < Ck"z |Yitllz2 (see for instance [10]). Using

the Stirling’s formula for gamma function that I'(¢) ~ =36~ (=D for large ¢ (for instance,
see [1]) and the fact —A,Y} ; = k(k + n — 2)Y}, ;, we have from (13)

n__
]2~ u(|z|w)|

n—2 1 (v(k)+1—ys)
<0k “d(k ( <u<k>+s>>

N

1
2

Z / |gkl 2 2s+n 1d,0||Ykl||L2 Sn—1)

1<I<d(k

5
<C (Z kQ(n—g—s—m)> Zk2m/ |gkl )‘ p
k

[NIES

2
B (Sn—l)

1
2

<o g / / F(feaYia) (o) 22 dpdeo
k:,l 0 Sn—l
1
. 2
<o | S [T [ Fa- a0t i) 2 i
k1l 70 "

< Cllullysm.
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where F is the Fourier transform. This proves part (1).

For the part (2), if we use the Littlewood-Paley decomposition {¢;} ez as in the proof

of Proposition 2, the we have

(e —%ZZ!%P/ Tty (1210)p2 i ()2 (P)gha (P)dpYea(w),  (15)

JEZ k|l

Since m > n — 3/2, by (12) we deduce that

n—1
|z u(|z|w)]

1
2
<SS ([T do) Wil

JET K,

=

<0 (Zk” . ””) S8 [ leieona o) dolVeal s
JEZ K, 0
< OY 28 jp;F((1 - Ay Fw)lpe = Clul
2,1,w

JET

To show Corollary 1 we use the fact that H;"" is a Hilbert space. Hence any bounded

2" satisfies u;(z) — 0 as |z| — oo uniformly and has a subsequence

sequence {u;} in Hy
converges to u in Hy ™ weakly. Let us denote the subsequence by u;, .

Now choose a smooth function ¢ supported in the ball of radius R + 1 and with value
1 in the ball of radius R. By the standard argument one can easily show that for each R

the mapping u +— ou is compact from H? to H it < . By the compactness above and

Sobolev embedding we may assume that the sequence gu;, satisfies that for 2 < ¢ < ngs
llouj, —pullra — 0 as k — oo. (16)
Thus we have
g, —ullze < llo(ug, —w)llze + 11 = @) (uj, — w)lle = I + i

with I, — 0 as k — oo by (16) since . From the uniform convergence that

luj, ()| + [u(z)] — 0 as x| — oo it follows that

p—2

lim sup ITj, < sup l|lwj, — uHL?,Q(‘wbR) — 0 as R — oo.
k—o0

This proves the compactness of the embedding HJ"™ «— LP.
Since 32 1w < H2"", one can adapt the same arguments (compactness of cut-off map-
ping and uniform convergence at infinity) as above except for weak-* convergence of u;,

1 1
to u in B3 1”2; for the compactness of embedding By {’ZJ to LP. This completes the proof.
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