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Abstract

For a fermion system, an operator theoretic renormalization group
method based on the smooth Feshbach map is constructed. By using the
fermionic renormalization group method, the closed operator of the form:
Hy(0) = Hs @ 1+ "1 ® Hy + Wy(0) is analyzed, where Hs is a self-
adjoint operator on a separable Hilbert space and bounded from below,
H; denotes the fermionic quantization of the one fermion kinetic energy
ck|”, k € R? (c,v > 0), Wy(0) is a small perturbation with respect to
Hs ® 1+ €1 ® Hy and 6 € C is a complex scaling parameter. The
constant g € R denotes a coupling constant such that Wy(0) — 0(g — 0)
in some sense. It is assumed that Hs has a discrete simple eigenvalue
E € o04(Hs), and proved that Hgy(f) has an eigenvalue Eq4(0) close to
E for a small coupling constant g. Moreover, the eigenvalue F4(6) and
the corresponding eigenvector ¥(0) is constructed by the process of the
operator theoretic renormalization group method.
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1 Introduction

In this paper, for a fermion system, we construct an operator theoretic renor-
malization group method proposed in [3].

We consider a system which a fermion field coupled to a quantum system S.
The Hilbert space of the total system is given by

H =Hs @ F, (1.1)

where Hg denotes the Hilbert space for the quantum system S which is a sepa-
rable Hilbert space, and F denotes the fermion Fock space:

F= é/n\L?(M),
n=0

where A" L?(M) denotes the n-fold antisymmetric tensor product of L?*(M) with
APL2(M) = C, M := R? x L is the momentum-spin arguments of a single fermion
with L := {—s,—s+1,...,5 — 1,s} and s denotes a non-negative half-integer.
The Hamiltonian of the system S is denoted by Hg which is a given self-adjoint
operator on Hg and bounded from below. Let b*(k),b(k), k € M be the kernels
of the fermion creation and annihilation operators, which obey the canonical
anticommutation relations:

{b(k), b* (k)} = 6,76(k = k), {b(k),b(k)} = {b"(k),b"(k)} =0, (1.2)
k= (k1), k= (k1) € M.

Let Q = (1,0,0,...) € F be the vacuum vector. The vacuum vector is specified
by the condition

b(k)Q2=0, keM. (1.3)
The free Hamiltonian of the fermion field Hy is defined by
H = / > w(k, )b* (k, Dbk, 1)dk,
R L

with the single free fermion energy w(k) = ck|”, k = (k,l) € M.
The operator for the coupled system is defined by

H,(0) = Hs ® 1+ 1 ® Hy + W, (0). (1.4)



Here, the operator W, (8) is the interaction Hamiltonian between the system S
and the fermion field, and 6 € C is a complex scaling parameter. We suppose
that the interaction W, (6) has the form

Wy0)= > ¢ NWan(6), (1.5)
M+N=1

War(6) = [ dkOINIGE) (KD) b () b (o )blFr) -+ b,
MM+N

(1.6)

where g € R is the coupling constant and

K(M’N) - (kh'" akMa];h"' 7];']\7) 6MM+N7

/ dKMN) = /dM N Y dky---dkydkgc-dky, (1)
M+N
MM+ RA(M+ )(ll’”"lM)e]LM,

(Zl,...,ZN)ELN

0 . . . . -
and Ggw) ~ are functions with values in operators on Hg. The precise conditions

for Gg\? y are written in the next section.

Suppose that Hg has a non-degenerate discrete eigenvalue E € oq(Hs).
Since the vacuum vector 2 is an eigenvector of Hy with eigenvalue 0, Hy(6) has
a eigenvalue E. We are interested in the fate of the eigenvalue E under influence
of the perturbation Wy ().

The fermionic renormalization group which we proposed in this paper is con-
structed for the operator (1.4), and under suitable conditions, it is proved that
H,(0) has an eigenvalue E4(6) closed to E for small g € R. The eigenvalue E4(6)
and the corresponding eigenvector W, (6) is constructed by the same process as
in [3].

The (bosonic) operator theoretic renormalization group was invented by V.
Bach, J. Frohlich, and I. M. Sigal [1, 2]. In [2], the operator of the similar form
(1.4)-(1.6) is considered, but boson is treated instead of fermionand M + N < 2
is assumed. They proved the existence of an eigenvalue of the (complex scaled)
Hamiltonian, and constructed the eignvalue and the corresponding eigenvector.
Moreover, they gave the range of the continuous spectrum which extended from
the eigenvalue.

In the paper [3], V. Bach, T. Chen, J. Frohlich, and I. M. Sigal introduced
the smooth Feshbach map and largely improved the proof of the convergence of
the renormalization group.

Our paper is based on the smooth Feshbach map and the improved renormal-
ization group method [3]. Our construction for the fermionic operator theoretic
renormalization group is similar as in [3] without the Wick ordering and its
related estimate.

The feature of this paper is that we can treat a large class of interactions.
In particular, the interaction Hamiltonian Wy (6) includes arbitrary order of the
creation and annihilation operators.

In the following Section 2, to explain the problem in detail, we give the
precise definitions of Hy(#). In order to explain and use the smooth Feshbach
map, we review it in Section 3.

Section 5 is devoted to the construction of the renormalization group.



The main originality of this paper is to procure the Wick ordering formula for
fermion. The Wick ordering formula for fermion and related formula is written
in the Appendix A.

2 Hypotheses and Main Results

Through this paper, we denote the inner product and the norm of a Hilbert
space X by (-,-)x and || - || respectively, where we use the convention that the
inner product is antilinear (respectively linear) in the first (respectively second)
variable. If there is no danger of confusion, then we omit the subscript X in
(,yx and || - ||]. For a linear operator T' on a Hilbert space, we denote its
domain, spectrum and resolvent by dom(T'), o(T') and Res(T'), respectively. If
T is densely defined, then the adjoint of 1" is denoted by 1.

One can identify a vector ¥ € F with a sequence (¥(™)°  of n-fermion
state (™) € A"L2(M) C L?>(M™). We observe that, for all ¢» € A™L?(M) and
T € Sy,

w(kw(l), cee ,k.,r(n)) = sgn(ﬂ')z,b(kl, cee ,kn), a.e. (2.1)

where S, is the group of permutations of n elements and sgn(7) the sign of the
permutation 7. The inner product of F is defined by

o0

n=0
for U, ® € F, where
(tIf(n)@(n))Anﬁ(M) :/ Hdquﬂn)(kl,... ,kn)*¢><n>(k1,... k). (2.3)
M 55

We define the free Hamiltonian of the fermion field Hy by

n=0

dom(Hy) := {xp €F f: |(Hp @)™ < oo} : (2.4)

(Hy®)™ (ky, - k) = zn:w(kj) T (ky, - k), neN (2.5)

j=1
(Hi®)\? =0, (2.6)
where
w(k) = ck|”, k=(k1)eM,

with a positive constant ¢, > 0. For a nonrelativistic fermion, the choice of the
constants ¢, v are ¢ = 1/2m and v = 2, where m denotes the mass of the fermion.
In this paper, for any ¥ € F, b(k)V is regarded as a x5, A" L?(M)-valued
function:

b(k) : M3 ks b(k)¥ € x A"LA(M), ae. (2.7)
n=0
(b)WY (k- k) = VR F 10O (K ky oo k), (2.8)



where the symbol “x” denotes the Cartesian product. We set
dom(b(k)) :=={¥ € F|b(k')¥ € F a.e.k’ € M}.

Note that dom(b(k)) is independent of k € M. We observe that, for all ¥ € F
and ® € dom(Hy),

) n+1
(W, He®) :Z/ [T k@D (- k)
n=0 /M G
n+1
X Z w(k;) \I’(H—H)(/ﬁ, o kng)
j=1

N T k. M) (oo k)
g/MXM”dkHdkj(b(k)\If) (ki) kn)

j=1

x w(k)(b(k)) ™ (ky,- - k) (2.9)

where we have used the antisymmetry (2.1). Hence we have
(U, Hy®) — / dkeo () (b(k) T, () D) (2.10)
M
and, in this sense, write symbolically
H; = / dkw(k)b* (k)b(k). (2.11)
M
In the same way as (2.11), the number operator, N¢, is defined by
Nt = / dkb* (k)b(k). (2.12)
M
We remark that
dom(H}'?), dom(N}?) C dom(b(k)), (2.13)
since, for all ¥ € dom(Hfl/2) and ¢ € dom(Nfl/2)7
22 = [ dko) o0 < oc,
M
N0 = [ dklb)]? < .
M
The (smeared) annihilation operator b(f) (f € L?(M)) defined by
) = [ bk (214)
M

and the adjoint b*(f), called the (smeared) creation operator, obey the canonical
anti-commutation relations (CAR):

{6(f),b(9)} = (f,9), {b(f),b(g)} ={b"(f),b"(9)} =0 (2.15)



for all f,g € L?>(M), where {X,Y} = XY + Y X.
The Hamiltonian of the total system is defined by

HgZ:HS®1+1®Hf+Wg7

where the symmetric operator Wy is of the form:

Wo= > " Wun, (2.16)
M+N=1

WM,N = / dK(M7N)GM7N(K(M’N)) ® b*(kl) cee b*(kM)b(ifl) cee b(lNCN),
MM +N
(2.17)
and

KMN) = By kg Ky, k) € MMAN

/ JK L) ::/ ST dkiee-dkydky - -dky. (2.18)
MMAN RA(MA+N)

(l},...7l£\4)€1LM7
(11,..4,ZN)€]LN

Here, for almost every K(M:N) € MM+N Gy N (KMN)) is a densely defined
closable operator on Hs. Hy := Hs ® 1+ 1® Hy is regarded to the unperturbed
Hamiltonian, and Wy, is regarded to the perturbation Hamiltonian.

In what follows we formulate hypotheses of main theorem and introduce
some objects.

Hypothesis 1. (spectrum) Assume that Hg has a non-degenerate isolate eigen-
value E € oq(Hg) such that

dist(E, o (Hs))\{E}) > 1. (2.19)

In general, if the operator Hg has a discrete eigenvalue E, it holds that
c1 := dist(E,o(Hs)\{E}) > 0 and dist(c; ' E, o(c; ' Hs))\{c; ' E} > 1. We can
assume (2.19) without loss of generality.

Since o(H) = [0,00), the spectrum of the unperturbed Hamiltonian is
o(Hy) = [Ep,o0) with Ey := info(Hg). The vector  is an eigenvector of
Hy with eigenvalue 0. Hence, Hy has an embedded eigenvalue E. In this paper,
we study the fate of E under the perturbation W, (). To analyze the perturbed
Hamiltonian Hy, for § € R, we introduce the family of operators H,(8) of the
form

Hy(0) = (1®Te)Hy(1®@T}) = Ho(0) + W,(6), (2.20)
where I, is the dilation operator, i.e.,
T,b(k, DI = p~2b(p 'k, 1), (2.21)
and
Ho(0) = Hs®1 + €1 ® H; (2.22)
Wy(0) = (1T 0)W,(1®T%) = i g W N (), (2.23)
M+N=1



WM,N(G) = Fee WN[’NI‘ZQ

- /MM+N Al MG (KOIN) @ b (ky) - b (kar)b(ky) - bkw),  (2.24)

Gg\(;)’N(K(M',N)) — ed(M-i—N)a/QGM’N(eGK(MJV))’ (2.25)
e KMN) . — (%%, 11;. .. €%k, Logs kily;. .. GGIN{N,ZN). (2.26)

Hypothesis 2. Assume that, for every 0 in some complex neighborhood of 0,
(i) Garn(e? KMN)Y s defined on dom(G s ) that contains dom(Hy(9)),
(11) For all M + N > 1, War,n(8) is relatively bounded with respect to Hy(0)

and

Yo dMMIWar N (O) V]| < ag(O)| Ho(0) || +by(O) W], (2.27)
M+N=1

for all ¥ € dom(Hy(0)), with some constants ay(8),by(0) > 0,
(1ii) Hgy(0) is an analytic family of type A [6] near 6 = 0.
(iv) aq(f) < 1.
(v) There exists a constant v > 1/2 such that
/ dK(M’N)
PN T wky) T, w(ky)

0 _
}M IG5 3 (KLY (Hy +1)7Y2, < oo,

holds for all M + N > 1.

By the hypothesis above, one can show that, H,(6) is closed operator with
the domain dom(Hy(#)) = dom(Hy). In particular, Hy is a self-adjoint operator
on dom(Hy).

By Hypothesis 2, we can consider the case § = —id/v (0 < 9 < 7/2). In
what follows, we set § = —i}/v and fix the parameter ¢ € (0,7/2) so that
Hypothesis 2 holds. Then, the spectrum o(Hy(—i/v)) contains separate rays
of continuous spectrum and the eigenvalue E of Hy(—id/v) are located at tip
of a branch of a continuous spectrum. Indeed, we observe

o(Ho(=i0/v)) = {1 4+ e x|\ € 0(Hs), \o € o(Hy)}
S{E+e X[ A€ [0,00)}.

In order to study the fate of £ under the perturbation of Wy, we introduce a
spectral parameter z € C, and define a family of operators H|[z] by

Hlz] = Hy(—i0/v) — E — 2, (2.28)

where 0 <9 < /2.

By using the fermionic renormalization group method established in this pa-
per, we will construct a constant ey(6) and a vector ¥, (6) € dom(Hy(—id/v))\
{0} such that

Hley(0)]W4(0) =0,
which implies that E,(6) := E+e4(0) is an eigenvalue of H,(—i/v) and ¥4(0)
is corresponding eigenvector.

The following theorem is our main result:



Theorem 2.1. There exists a constant go > 0 such that, for all g with |g| < go,
the limits

eq(0) = BILH;O e,p) = ﬁlggo Joy o Jdqy oo dizlo]eC (2.29)

and
\II(O,oo) P = Blllr;o Q(O)F;Q(l)l“; e Q(g,l)Q S Ranl[Hf<1] (2.30)

exist. Moreover, Wy(0) := Qx¢ ® V(g,o0) # 0 and
Hleg(0)]¥4(8) =0, (2.31)

where the functions Jig) and the operators Q gy are defined by (5.52) and (5.61),
respectively, and the operator Q is defined by

Qx =X — XHZ '[e(0,00)]X W4 (0)x

with x, X and H;l given by (4.1), (4.3), and (4.18), respectively.

3 Smooth Feshbach map

In this section we review the smooth Feshbach map [3]. The smooth Feshbach
map is the main ingredient to construct the operator theoretic renormalization
group. Let x be a bounded self-adjoint operator on a separable Hilbert space
‘H such that 0 < xy < 1. We set

Suppose that x and x are non-zero operators. Let T be a closed operator on H.
We assume that
xT' C T,

and hence YT' C Ty, which mean that x and x leave dom(7T) invariant and
commute with 7. Let H be a closed operator on H such that dom(H) = dom(7")
and we set

HX =T+ xWx, H)Z =T+ xWx,

where W := H —T. We observe that, by the assumptions, the operators W, H,
and Hy are defined on dom(7) and H, (resp. Hy) is reduced by Ran x (resp.
Ran x). We denote the projection onto Ran x (resp. Ran x) by P (resp. P) and
have

H, C PH,P + PtTP+, Hy C PHyP + P+TP*,

where P+ :=1— P (resp. P+ :=1— P) is the projection on ker x (resp. ker Y).
We now introduce the Feshbach triple (x,T, H) as follows:



Definition 3.1. Let x,T and H as above. Then, we call (x,H,T) a Feshbach
triple if Hy is bounded invertible on Rany and the following conditions hold:
the operators XW)ZH;lX and xW)ZH;l)ZWX extend to bounded operators from
‘H to Ran x and )‘(H{%‘(WX to bounded operators from H to Rany, where H){l
denotes the inverse operator of PHyP.

We remark that, if Hy is bounded invertible on Rany, then the operators
XW)ZH;IX, )’(H;:l)ZWX and XW)ZH;I)ZWX are defined on dom(T).

For a Feshbach triple (x, H,T), we denote the closures of the operators
XW)ZH){1>Z, XW)‘(Hgl)_(WX and )‘(H{l)ZWX by the same symbols.

The definition of the Feshbach triple as above implies

XW)’(H%%Z, XW)ZH){lXWX € B(H;Ran x), )’(Hgl)ZWX € B(H;Rany). (3.1)
For a Feshbach triple (x, H,T), we define the operator
F\(H,T):=H, — xWxXH;'xWx, (3.2)

acting on H. We observe, by the definition of the Feshbach triple, that F\ (H,T)
is defined on dom(T).
The map from Feshbach pairs to operators on H

is called the smooth Feshbach map (SFM). We remark that F), (H,T) is reduced
by Ran y and

F,(H,T) C PF\(H,T)P + P*TP+.
The SFM is an isospectral map in the sense of the following theorem.

Theorem 3.2. (SFM [3]) Let (x, H,T) be a Feshbach triple. Then the following
(i)-(v) hold:
(i) If T is bounded invertible on Ran X and H is bounded invertible on H then
F\ (H,T) is bounded invertible on H. In this case,

F(H, 7)™ = xH 'x+xT"'x. (3.4)

If F\,(H,T) is bounded invertible on Rany, then H is bounded invertible
on H. In this case,

H™' = Qy(H,T)F\(H,T)"'Q¥(H,T) + YH;'X, (3.5)

where we set
Qx(H,T) = x — xH;'XxWx € B(Ran x, H), (3.6)
Q¥ (H,T) == x — xWxH;'x € B(H,RanX). (3.7)

(i1) If ¢ € ker H \ {0}, then x¢ € ker F\ (H,T) \ {0}:

Fy(H, T)xt = 0. (3.8)
(iii) If ¢ € ker Py (H,T) \ {0}, then Q,(H,T)¢ € ker H:

HQ,(H,T)p =0. (3.9)

Assume, in addition that, T is bounded invertible on Rany. Then, ¢ €
Ran x \ {0} and Q\(H,T)¢ # 0.



(iv) If T is bounded invertible on Rany, then
dimker H = dimker F. (3.10)
Moreover, if dimker H < oo or dimker F) (H,T) < oo, then the maps
X : ker H — ker F\ (H,T)
and
Q\(H,T) : ker F,,(H,T) — ker H
are bijective.
(v) Assume that H and T are self-adjoint operator and set
M := H;'YWy € B(H,Rany)

and
N :=(1+M*M)"Y? c B(H).

If T' is bounded invertible on Ranx and H, is self-adjoint, then, for all

Y eH,
Hﬂ? Im (2, (H — ie)~1ep) = hfg Im(NQ*®, (NF\ (H,T) —ie) "NQ*¢)
(3.11)
and
lilrg Im(¢p, (NF\ (H,T)N —ie)~ ') = 11%1 Im(xN 14, (H —ie) "'y N~ 1.
(3.12)

4 First Reduction Step

We hereafter assume Hypotheses 1-2. By using the smooth Feshbach map, we
eliminate the degree of high energy fermion, and restrict the degree of the system
S to the eigenstate . Let

X := P ®sin {gz (Hf)} , (4.1)

where P is the orthogonal projection onto the eigenspace ker(Hg — F) and the
function = : R — [0, 1] is smooth in (0,1) and obeys

(T){l (0<r<32), w2

0 (r<0,7<7),

[1]

where 3/4 < 7 < 1. Then we have

Xi=1v1—x2=P®cos [gE(Hf)} +PLe1. (4.3)

Let
T[z] := Ho(—1¥/v) — E — 2 (4.4)

and
W = H[z] — T[z] = Wy(—id/v). (4.5)

It is evident that T'[z] is closed, commuting with y. Furthermore, we have the
following lemma.

10



Lemma 4.1. T[z] is bounded invertible on Ranx for all z with

|z| < min{3/4,sin(¥/v)}.

Proof. Let us first note that the orthogonal projection Py onto Ran is of the
following form

Py=P@1ly.a+ P oL, (4.6)
and hence
P;T[z)Py = L1 + Lo, (4.7)
where the function 14 is the indicator of a set A and
Li=P@1y.s (e Hi = 2) 1,9, (4.8)
Ly=P'(Hs-E)P*®1+P'® (e Hy - 2). (4.9)

We need only to prove L; and Lo are bounded invertible, i.e., z € Res(Ly) N
Res(L2), since, by (4.7), (4.8) and (4.9), PyT'[2| Py is reduced by Ran P®1 1)
and Ran P+ ® 1. Indeed, we observe z € Res(L;) and z € Res(Lz) provided
|z| < 3/4 and |z| < sin(¢/v), respectively. O

Let T71[2] be the inverse of P;yT[2]Py for all z with |z| < po:

Tz = (BT P) (410)
where we set
po := min {Z,sin(ﬁ/y)} . (4.11)
Then, we have, for all z with |z] < po/2,
Res(PyT[2]Pg) D D,, /2, (4.12)
where
D.:={ze€C||z| <€} (4.13)

for all € > 0. By Hypothesis 2, we have
[WxT ]|
< ag(=id/v) || Ho(~id /v) XT ™ 2Ix¥|| + by(—id/v) [|XT ™ [z]x¥||
< {ag(=i0/v) + (ag(=i9/V)|E + 2| + by (=i /v)) [T ||} Ix ¥, (4.14)

where ay(—i9/v) and by(—i¥/v) are defined by (2.27). We next require the
following.

Hypothesis 3. (Feshbach triple) The triple (H[z],T[z], x) is a Feshbach triple
and

2a,(—id/v) + % (| Elag(—it/v) + by(—it)/v)) < 1. (4.15)

Let
Hglz2] == T[z] + XWX (4.16)

Then we have the following lemma.

11



Lemma 4.2. Assume that Hypothesis 3. Then, for all z € D, 2,

Fy(H[2), T2]) = Tl + S (- D)E 5w (xT=xw) " x. (4.17)
L=1

Proof. We note that Hy|[z] is bounded invertible on Rany and the Neumann
series expansion of the inverse

oo

_ _ e L
H' ) = S~ ) (xWRT ' [2]) (4.18)
L=0
is norm convergent since, by Hypothesis 3 and (4.14), we have
|[WxT—*

[Z]HB(Ran)Z;]:) <L (419)

Then, by the definition of the Feshbach map (3.2) and (4.18), we obtain
Fy(H[2], T[2]) = T[z] + xWx — xWXHg ' [[]xWx

= T2] + xWx + > (~)EF W 2] (xWrT ' [2])" xWx

L=0

(oo}
N AR |
= T[]+ xWx + > _ (D" W (xT'[21xW) " x,

L=0

which is equivalent to (4.17). O

Let P, be the orthogonal projection onto Ran x:
Py =P & 1ip<r), (4.20)

where the constant 3/4 < 7 < 1 is defined in (4.2). According to Theorem 3.2
(iii), we need only to consider the spectrum of P, F (H|z],T[z]) Py since T~1[z]
is bounded invertible on Rany with z € D, ;2. We note that the operator
Hg)[z] on Ran 1y, ., can be defined by

P ® Hgl2) = P Fy (2], TI2)) Py (4.21)

since, by Hypothesis 1, the eigenvalue F is simple.
Let us next derive H gy from (4.21) and arrange the annihilation and creation
operators in order. We observe, from Lemma 4.2 and (4.1), that

Py F\(H[z], T[2]) Py

= P\ T[]P, + Z(_l)L_lpxXW ()ZT_l[Z]fCW) xPy

=P ®1g,er (¢ " Hr — 2) Ljp, o]

1 Z(_l)L—l Z gZits (MitNy)
L=1

M;+N;>1;l=1,--- ,L
X P @ g, <r) K (=0 /v {Mi, NiYiZ1 )P ® 1<), (4.22)

12



where
K (=it Jvi {My, Ni}iy)
= P@sin |3 (Hr)| War, v, (=0 /) RWag, v (i /v) R -

x RWar,_, ni_, (=i /) RWag, v, (=it /v) P @ sin {gz (Hf)} (4.23)

and
R:=xT7'[2]x. (4.24)

Lemma 4.3. (Wick ordering) Let ¢ be the eigenvector of P. Let sgn(---),
Kue, Kng, e, Z(l::f,m)) be symbols defined in Theorem A.3. Then

K (—=i9/v; {My, Ne}i_y)

L K
- XY sz ][am(g,, )

Im oSk INeCKN e (=1
(=1,...I.  0=1,..L

Kne
% ,
sen (ZN,e /CN,é\IN,e>

L L
(me) 47.(ne) * (1.(me)
x P@/MM}:{{dkz ! }gb (k™)

x { Dy [Hy: (W3 "R Y R

Me—myg,N¢—ny?

where

Dilry {Wy g™k Y R

Me—myg,Ng—nyg?

L-1
:=sin {gE(T + Fo)} <<p ® 0, { H Wﬁjiﬁuﬂrnz [k/émw; ]527”)]
=1
X R[Hy+71+Fo+ z(/;gm«m}

« JWmEene [kimL);%glL)]<p®Q> sin [gE(TJrTL)} )

Mp—mp,NL—nf,

and
W [kem);lz;é”)] = /Mern dx(m)d:i(")b+(a:(p))ngrp’nJrq[K(m”’”M)]b_ (3(9),

GS\?N[K(M,N)] — e_inM,N (e—w/zuK(M,N)> 7

R[r] == x[r](Hs + e "r — E — 2)"'x[r] ® 1.

Proof. Similar to the proof of Theorem A.3. O
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5 Renormalization group method

This section is devoted to the fermionic renormalization group method based
on the smooth Feshbach map [3]. In Section 4, the operator Hg)[z] on Hyeq :=
1g,<1)F is derived from the Feshbach map of the Hamiltonian H[z] on H. By
Theorem 3.2 and the simplicity of the eigenvalue E, we observe that H|[z] has
the eigenvalue 0 if Hg)[z] has the eigenvalue 0. By using the renormalization
group method, one can prove that there exists a complex number e ) € C
such that Hg)[e(,oc)] has the eigenvalue 0. Moreover, one can construct the
corresponding eigenvector Y (0,00):

Ho)le(0,00)]¥(0,00) = 0.

Hence, we obtain the eigenvalue E4(#) of the Hamiltonian Hy(0) by E4(6) =
E + e(0,00);, and, thanks to Theorem 3.2, reconstruct the eigenvector W, (¢) by
Qx? ® ¥ (0,00), Where @, is defined in Theorem 2.1.

The operator H(g)[z] indicates that one define a class of Hamiltonians H|[z] =
H[(wmnlz])mt+n>0] € B(Hrea) o1 Hyea of the form

Hz] = T(z Hy] = Elz] + W[(wm,n[2))msn>1], 2 € Dy,

where functions wy, »[7] : [0,1] x RA(m+n) , C are elements of Banach spaces
WE , (m+n > 1), woplz] : [0,1] — C an element of a Banach space W(?,éo and
denote T'[z;7] := wo o[z; 7] — wo,0[2; 0], E[2] :== —wo,0[2; 0] and

The operator norm of H|[z] is controlled by the norm of the Banach space Wxq
consisting of analytic functions w : D15 3 2z — w[z] = (Wmn[2])min>0. We
construct the renormalization transformation R, : Wx>g — W5 in subsection
5.3, via the renormalization map Rf : Wso — H[W>g], which is given by a
scaling transformation S, and the Feshbach map of the Hamiltonian H|[z], and
satisfy

Ry (w) = H[R,y(w)[]].

We show that the renormalization transformation R, has a contractivity in The-
orem 5.7. Let w(® satisfy Hp)[2] = H[w®)[z]]. Iterating the renormalization
transformation, we have a sequence (Rg‘@@)))gf:o, by which, together with
the contractivity of R,, one can construct the complex number e o) and the
eigenvector ¥ g o).

In this section, we review the renormalization group analysis based on the
smooth Feshbach map developed by [3] with a little modeification in order to
apply the method to our model. We refer the reader to [3] for details.

5.1 A Banach space of sequences of functions

We first define the Banach space Wfo = Dm0 Wit . as follows. Let WS% 0

be the function space C''([0,1]) of continuously differentiable functions on [0, 1]
with the norm

1= |wo,0[0]] + Sl[lp] |0y (wo,0[r] — wo,0[0])|, w00 € Wiy, (5.1)
re|0,1

[[wo,ol
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which is equivalent to the norm

lwo,ollct(o,a)y == sup |woolr]|+ sup |0rwoolr]|,
rel0,1] relo,1]
since
[wo,0[0]] < sup |woo[r]| < |wo,0[0]] +1 x sup [Orwolr]| = [lwo,oll,
ref0,1] rel0,1]

where we denote the derivative wg ¢ by 0,wp . In this sense, we write wg o €
ng o s
woolr] =T[r] — E, (5.2)

where E 1= —wg[0] and T[r] := wq[r] — wo0[0]; hence T € C*([0,1]) and
T[0] = 0.

For all m,n € Z with m+n > 1 and m,n > 0, Wﬁn denotes the Banach
space which consists of functions wy, , : [0,1] x (B; x L)™™" — C obeying
the following properties: (a) for a.e. K™ € (By x L), w, [ KM™™] €
C1([0,1]) is continuously differentiable, where B; denotes the unit ball in R%; (b)
for each r € [0, 1], wy, »[r; K ™™)] is antisymmetric with respect to the variables
Kmm) = (ky, ook Ky, -+ kn) € (By x )™ in the following sense; for all
permutations w € S, T € S,

W[ K] = sgn(m)sgn (7w [r; K], (5.3)

where we denote the group of permutations of n elements by S,, and

(myn) _ .
K7r777r - (kﬂ'(l)7 e 7kﬂ(m)7 kﬁ(l)7 e 7k77r(n))1

(c) for v > 0 fixed, wyy, ,, satisfies the following norm bound

[wimnll% = llwnr,nlly + 18w, w -y < oo, (5.4)
where
1/2
su Wan [ K ()] 2
lewmnlly = / |, dE ire“””' ;[ s (5.5)
(BuxLyme |:Hj:1 w(kj)szlw(kj)
We define the Banach space
wi,= @ wi, (5.6)
B m+n>0
with the norm
# ”wmnij:£ _ #
Jol#e = S0 Tt~ fwpnbmias €W, (5.T)

m—+n
m+n>1 5

where we fix vy >0 and 0 < £ < 1.
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5.2 Hamiltonians defined by an operator-valued function

Let Hyeq be the closed subspace of F given by
Hred := Ran 1g, 1) = L« F- (5.8)
For all w = (Wm.n)mtn>0 € W;&O we define a Hamiltonian H € B(H;eq) by
H=T[Hi)]|+W - E, (5.9)

where £ € C and T € C1(]0,1]) with T'[0] = 0 are given by (5.2) and hence
T[H¢] € B(Hyea) is defined by functional calculus. Here

W= Y Wnn (5.10)

m+n>1
and Wy, , € B(Hyeq) is given by
Wm,n = 7rL,n[w7n,n]

ey / AR (K Y, [He; K bR <y, (5.11)
(By xLym+n

where we denote
b (K™Y = b* (ky) - - - b* (k) b(E™) = b(k1) - b(ky,) (5.12)
for a.e. Kmm) = (k) MY = (ky - kp k1, kn) € (By x L)™+n,

Theorem 5.1. Fory >0, m,n >0 with m+n >1 and wy,, € Wﬁin

W lwmalllB(H,ea) < W (5.13)

Proof. Let us note that

Bk )1 (1 <1y |

Io(k"™ )1 5, <y <

- 2]
mym {Hj:l w(kj)}
which implies that
|<¢7 W'f”,n¢> ‘
< / dK ™™ gup [ W, [7; K(m’")“
(By xL)ym+n r€[0,1]

X Hb(k(m))l[HKl]wH Hb(k(m))l[Hf<1]¢H
1

= - o
mymnpmn (ByxL)ym+n [H;ﬂ:l w(kj) H?:I w(k‘j)

X Hb(k(m))l[HKlWH Hb(k(m))l[Hf<1]¢H
< ”wm,n||'me(7/1)1/QBn(¢)l/2

- mYmnpIn

)
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where

B () = / ak | T wks) | 1) gy
(ByxL)™ j=1

-m—l i
m— 1/2 m—
_ / dkm = | T @) | 126k ) 1y
(ByxL)ym—1 j=1
-m—l i
< / dk D | T wlky) | 6K D) P g, |2
(ByxL)ym—1 j=1

1/2 . m
= By (HPPa) < -+ < ||(Hy P )™ 1, <19

and Pé' denotes the orthogonal projection onto the orthogonal complement of
the linear span of the Fock vacuum.

O

Let
W§1: @ Wﬁm'

m+n>1

(5.14)

Theorem 5.2. For ally > 0 and 0 < £ < 1, the map H : Wfo — B(Hyea) is
injective and -

1 H [w][|5(r,0a) < W]l (5.15)
for all w = (Wn)mtn>0 € W;&O and
1H [w] | 50y < Ell0l7 (5.16)

fOT allw= (wm,n)m+n21 € W§1

5.3 Renormalization transformation

Let W>q be the Banach space of Wfo -valued analytic functions w on D/,
with the norm B

lwlly.e = sup Juwlz]]|7, (5.17)
z€Dq /2
and H[Ws>¢] the space of analytic functions H[w[-]] with w € Wxq:
H[w[] : D12 3 2 — Hlw[z]] € HWZ]. (5.18)
We construct the renormalization transformation R, as follows.
Let
U] := {z € D1ya|EL| < £} (5.19)

and

D(e, ) := {w € Wxo| sup ||T[z;7] —rll7 <€, sup |E[z] —z] <4,
Z€D1/2 Z€D1/2

sSup H(wm,n[z])ernZlHﬁg § ) (5.20)

ZEDl/g
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where [[fll7 := sup,co. || for £ € C1([0,1]).
We set

[T
Xplr] = sin [§:(r/p)} . (5.21)
Lemma 5.3. Let w € D(e,0) satisfy
46¢
.22
T3 <P (5.22)

with 0 < p,& < 1. Then (x,[Hi], Hw|z]], T[z; Hf] — E[2]) is a Feshbach triple
for all z € U[z]. In particular, if w € D(e, €) and

p
464 3p

then (x,[Hz), Hlw[z], T|z; Hi] — E[z]) is a Feshbach triple for all z € U[w].
By Lemma 5.3 we can define the Feshbach map of the triple (x,[H;], H[w[#]],
T[z; Hf| — E[z]) and have, in the same way as the proof of Lemma 4.2,

€<

(5.23)

B\ 1] (Hwl[z]], T[#; Hf) — E[2])

= T[z; Hy] - E|2] (5.24)

L—-1

XP[Hf]a

Xplr] := /1 — x,[r]? = cos [gE(r/p)} . (5.25)

By using of the Wick ordering formula, we find that, for each z € U[w], there
exists a w(z] € Wgo such that

+ 2 (DTN HAW 2] (3 [Hil (Tlz: Hi) = E[2]) ™ X, [HiW2])
L=1

where

Fy, g (H{wl2]], T(z; H] — El2]) = Hlw]z]] (5.26)
and hence define the map
U] 5 2 — Hlil2]) € HWE ). (5.27)

We next introduce a scaling transformation S, and define the map @[] €
Ws from (5.27). Let S, : B(F) — B(F) be the scaling transformation defined
by

1 *
S,(A) := ;Fpl/yAFpl/y, A e B(F), (5.28)
where I'y, (n > 0) is defined by (2.21) and satisfies
FanF;; = UVHf. (5.29)
We define the map s, : W§0 Sw s,(w) € W?O by
Sp(H[w]) =: Hlsp(w)], (5.30)
and denote, for w = {wm n tmtm>0,

sp((wm’n)ermZO) = (Sp(wm,n))ermZO-

18



By the definition, we observe that
$p (Wi ) [r; K] = pdmtm/ GOy e pH/Y KO mtn > 1 (5.31)

and

sp(wo,0)[r] = p~twoolpr] = p~' Tlpr] — p~' B, (5.32)

where we write
P VKT = (oY VEy o pY Y e pY Ry p VRN
and
Pk = (0" k1), Pk = (0 k. 1y).
Let us define the renormalized spectral parameter by
E, :Uw] > z— p 'E[z] € Dy s (5.33)
for w € Wo.
Lemma 5.4. Fiz 0 < p <1 and let 6 > 0 satisfy
p+26 <1. (5.34)

If w € D(¢,0), then E, is a surjection and

26
D) -1l L — . .
p0=Ep[2] = 1] < 1= ,—20) (5.35)
Assume, in addition, that |p0,E,[z] — 1| < 1. Then E, is an injection.
Assuming that, (5.34) and
26
—— <1 5.36
(1—p—25)2 (5.36)

hold with 0 < p < 1 fixed, by Lemma 5.4, E, : U[w] — Dy, is an analytic
bijection. Furthermore, assumet that €,0 > 0 satisfy (5.22). Then, by Lemma
5.3, (xp[Hs], H[w(?]], T[2; H¢] — E[2]) is a Feshbach triple for all w € (¢,6) and
z € Ulw].

Remark 5.1. Choosing, for example, ¢ = § = 1/16 and p = 1/3, €¢,6,p > 0
satisfy (5.23), (5.34) and (5.36).
Let R, : D(€,6) — Ws( be the renormalization map given by

Rp(w)[¢] = sp(@[E,'[C]), ¢ € D, (5.37)
where @ is defined in (5.26) such that

Ry (w)[C] = = Sp(Fy, prr) (H [wl2]], T[z; Hy] - E[2]))

= Sp(H[w[z]])
= H[R,(w)[¢]] (5.38)
with
(=E,[z] € Dij5, zecUw]. (5.39)
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Denoting

Wyl 2z ms km). IZ:(”)] =1g, <y / dz® 47D p* (:z:(p))
(B xL)rta

X Wyt pmtql2; 75 k(m)7 gc(p); ];(n)’ ‘%(q)]b(i'(q))l[Hf<l]
and
Wp,q[z? 7]

= 1{g, <y /B - dx(p)dia(q)b*(x(p))wp,q[z;7«;x(p);i(Q)]b(j‘j(Q))l[Hf<1]7
1 pPTq

we have, by Theorem A.3, the following theorem:

Theorem 5.5. Fiz 0 < p < 1 and let ( = Ep[z] € Dysp (2 € Uw]) and
w € D(e,0), where €,§ > 0 satisfy (5.22), (5.34) and (5.36). Then, R,(w) =:
w :)(wgs,yﬁn)m+n20 is given by

By G5 K] = p ™5 Z > (5.40)

mi+--+mp=m,
ni+-+nL=n

> sen({mudeys i) Vin,p,n, glzi s K]

p1,q120;
m+pr+mi+q>1,

=1,...,

(5.41)
form+n>1, and
wo,0[¢; 7] =p~ twoolz; pr] + Z Z V0.p.0,qlzi7]s  (5.42)
L=1 pL,q1 205
pitq>1,
1=1,...,L

where Wi denotes the antisymmetrization of Wy, rn;

AasyvaTaK m") - m'n' Z Z Sgn Sgn( )wm nKvT K(m n)]
TESm TESy

sen({mi s {ni}l,) is defined by (A.29), the quadruplet m.p.n.q € N§* and
the function Vin, p n,q are given by

4L
m.p.n.q=(my, -+, ML, P1, - ,PL, N1, " ,NL,q1," ,qr) € Ny
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and
Vm, p.N.q [Z§ T K(m’n)]

L—-1
= Xplr + Xl <Q { LT wyriir s He + p(r + N)s 07k ™5 ™)
=1

x( X2[Hy + plr + N)] )}
Tlz; He + p(r + \i)] — E[2]

W;ZLQZL [z; He + p(r + AL); 1/l/k(mL 1/u];_5:nL)]Q>Xp[p(T + S\L)],

VQJLQ:Q[Z;T]
) L1 | XA[He + pr]
= Xp[/””]<97 { 11;[1 Worarlz He + pr] (T[Z;Hf +pr] — EM) }

X Wy g0 2 He + PT}Q>XP[PT}

with
K = (k™R R RS € (B x L),
k(ml) (kiay .- kim,) € (Br x L)™,
k" = (ki ki) € (B1><]L)”l I=1,...,L—1,

-1 ny my
A ::ZZMU%VJ Z Z wkyj), 1=2,3,...,L—1,
U'=1j=1 U'=l+1j=1
L my L my Lol ~
Ao = Z Zw(kl,’j)’ AL = ZZW kl’ j AL = Z Zw(kl/,j)a
Ir=1j=1 =2j=1 I'=1j=1

5\1 :Z)\l—I-Zw(];‘lJ), l=1,...,L—1,

L ny
Xo=Xo, Api= > wlky)
r=1j=1
Remark 5.2. By (A.29), we observe
L
mp + n; +
jsen({mite s i} )| <H<l M. e

Lemma 5.6. There exists some constant C' > 1 independent of L > 1 and
m,p.n.q € N§ such that

A mn)—
p3 M Vin, p.on, g[2] 1%
"
wm n
<L 4 1)CEH ) (r1/2)- LH I ’Z,ﬁ;qgf;’[ My (5.44)
=1
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5.4 Construction of the eigenvalue and the eigenstate

Theorem 5.7. (Codimension-1 contractivity) Let 0 < p < 1, 0 < & < 1/2,
€ > 0 and 6 > 0 satisfy the conditions in Theorem 5.5. Assume that

e o)

Bl = 7 < 1, BQ = m < ].7 (545)
and let
_20(3-2B)B} _ ACp /2By (2 — By)
Al = W, AQ = Imax Al, (1 — BQ)Q . (546)

Then, for all w € D(e,d),
Roluw] € Dle + Ay, &) (5.47)

Remark 5.3. Fizing p > 0 and setting v = p + 1/2, by Theorem 5.7, if
0<p<l,eg>0and& >0 Then, for all 0 < e,0 < €,

R, :D(e,0) = D (e + g, g) . (5.48)

Let 0 < p < 1, g and £ > 0 be sufficiently small such that D(e, €g) satisfy
the conditions in Theorem 5.5 and, for all 0 < €,6 < €, (5.48) follows. Fix
w € D(eg/2,€0/2), and set

w® = RE(w) € D((27 42724427 1), 27 1eg) C D (60, ;%) (5.49)

for all j € N with w(® := w. Let w) = (w%?7l)m+n20 and set

Eylz] = fyé%) [2;0] (5.50)
Uy = U] = {z € Dy | B2l < 2} (5.51)
and
Jia) Uy 3 2+ p_lE(a) [2] € Dy 5. (5.52)
By Lemma 5.4, J(,) (o € Np) are analytic bijections. Let
€(a,8) = J(—ag 0---0 J(;;[O] (5.53)
for all 0 < a < B with e(q,0) = J(;l) [0].
Lemma 5.8. Let 0 < p <1 and €y be as above and
260
dy = ———= (<1). 5.54
S p—rap Y 554
Assume that p
<1 5.55
T d (5.55)
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Then, there exist the limits
€(a,00) i= ,@IEI;O €(a,8) (5.56)

for all a € Ny.
Let us assume that the limits e(q ) (a € No) exist and

Ha) == T(o)[Ht] = E(a) + Wi(a)

i= H(w')[e(,00)); (5.57)
where
Toy[r] 1= w5 [ea,00)i 7] — w0 [ ao0): 0], (5.58)
Elay = w3 [e(00)3 0] = E(ay (a0 (5.59)
Wy = D Winn[w[e(a,00)])- (5.60)
mtn>1

Moreover, we define the operators Q) by

Qo) = Q1) (H(o), T [Hi] — Ea))

= Xp[Hi] = Xp[Hi] (T [Hi] = o) + Xp[He]Wia) Xp[Hi]) ™ Xp[Hf]W(a)ﬁp[Hf])
5.61

and let

V(o) = Qa3 Qasr ) - Qs—1)Q (5.62)
for all 0 < o < B with W, o) 1= .

Theorem 5.9. Fiz v =p+1/2 with p > 0. Let 0 < p<1,0< & < 1/2 and
€0 > 0 be sufficiently small such that D(eo, €o) satisfy (5.55) and the conditions
in Theorem 5.5. Assume that, for all 0 < €,0 < €, (5.48) follows. If w €
D(eo/2,¢€0/2), then the limits of ¥, gy as § — oo for all o € Ny such that

V(o) = Jim (o) #0, (5.63)
and
H(wle(,00)]) ¥ (0,00) = 0. (5.64)

Remark 5.4. The equation (5.64) means that the complex number Ele(g o] 15
an eigenvalue of T[Ht]|+W and the vector ¥ o ) the eigenvector of Ele( o)]-

A Wick ordering

In this section, we give the Wick’s theorem for fermion. Let b+ (k), b= (k), k € M
be the kernels of the fermion creation and annihilation operators, respectively.
For N':={1,...,N} and (01,09,...,0n) € {—1,+1}", we denote

T 57 (kj) = b7 (k1 )b72 (ko) - - 07N (o). (A1)
JEN
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For any subset Z C N, we denote

[0 (k) =[] xG € D9 (ky),

JET JEN

where x(j € Z) is the characteristic function of Z. For Z C N, we set T4 :=
{j € I|oj = £1}. The Wick-ordered product of [];.7 b%7 (k;) is defined by

s[Jeri k) o= T 0 ) | | TT b (k)
JjeT JET+ JeT-
For (o1,...,0n) € {—1,1} and any subset Z € N, we define

sen(N\ ;745 7-)

- 1 . N

=\wW\7 7, 7_

(12 0 K K41 o K4L KE+L+1 -+ N

=% Ji1 Je -+ Jk  Jrk+1 - JK+L  JKk+L41 - JN)’
where

{41,525, Jx} =N\ Z, with j; < jo < - - < jn,
{Uk+1,- - drr} =1y, with  jri1 <Jjrye - <Jk+r,
{Jk+p41,-- N} =1, with  jrir41 < Jryr2 < - <Jn.

The Wick-ordering of the Fermion product (A.1) is given by the following The-
orem:

Theorem A.l. For any (01,...,0n) € {+1, -1}V, the formula

[T 67 (k) = > sen(N\ ;7,5 7-) <Q 11 b“f(kj)9> [T v7 (k) -

JEN ICN JEN\T jeT
(A.2)

holds.

Proof. We prove the theorem by induction with respect to N € N. For N =1,
(A.2) is trivial. Assume that (A.2) is true for all products with up to N factors,
for some N > 1, and consider the product of N + 1-factors. We set N+ 1 :=
N U{N +1}. For simplicity we write b]’ := b7 (k;). In the case oy 41 = —1,
we have

H b’ = H b7 bn

JEN+1 JEN
=Y sen(M\I;Zy;7) <Q 11 bij> 3 SRR
ICN FEN\T JET
= Z sgn(M\Z;Z;7-) <Q7 H b;jQ> : Hb?jb;fﬂ :.
ICN JEN\T JET
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On the other hand, for 7/ C N +1,

sgn((N + D)\Z'; 70 ;7)) <Q, H b‘;JQ> H b by (A.3)

JENFINT jer

vanishes if N +1 € (N +1)\Z'. In the case N + 1 € Z’, we have

(A.3)=sgn(N\I;I+;I_)<Q, H b}’”ﬂ> Hb byt b

JEN\T JET

with Z = Z'\{N + 1}, where we use the fact that sgn((N + 1)\Z"; 7, ;7" ) =
sgn(N\Z;Z4;Z_). Hence, we obtain

I v = ngn<<fv+1>\z;z+;z><ﬂ, 11 b0j<kj>ﬂ>=Hb”f<kj>
Je(

JEN+1 ICN+1 EN+\Z JET
Next we consider the case o1 = +1. By the CAR, we have
{07,657} = (2,07°677 Q).

1 07
By using this relation and the induction hypothesis, we have

N

IT 5 =S @agng,) TI o + 0, [0

JEN+1 k=1 JEN\{k} JEN

N
=S DN, Q) Y sen(MNED\T T4 Z0)
k=

1 TCN\{k}

<Q, b‘”Q> A S
FEW\{E\T jez
(—

DYo% o JT 07
JjEN

+

We note that N
> Y FkIT)=) Y F(kI), (A.4)
k=1TCN\{k} ICN keN\T

for any function F(k,Z). By using (A.4), we observe

I => > - Q674081 Q) sgn(M\{E\T; 743 7-)
JEN+1 ICN keEN\Z
x <Q 11 b‘jTjQ> 3 S (A5)
JEN\{KINT jeT
DNk, [ 07 (A.6)
JEN

For T C N\{k}, we set

K= 1= [N\ EIN\T.
{61,...,61(,1}2: (./\[\{k})\:[, with 1 < -+ < lg_1.
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Let {jx+1,---,jn} be indexes such that

N
jre1 <o <jn, and ][0T = T b7,

JET s=K+1
namely,
K-1 N
<Q, 11 b;’fQ> L5 = <Q 11 bZ:jQ> |
FJEWN{LI\T JET j=1 s=K+1
The sign in Eq. (A.6) can be written as
sgn((M{FI\L: 743 7-)
sn(l oo k-1 k k+1 -+ K—-1 K K+1
s\ v by bk by ... Ax—o fx_1 Jrk+1

For each fixed k € N\Z, we set
n:=max{s € {1,...,K — 1}|{;, < k}
Then we have

(—1)* "sgn((M\{EI\T; 7457

<1~-~n—1 n n+l -+ k k+l- K K+1-~-N>
= sen iy )

El... Enfl k En Ek,1 Ek EK,1 jK+1

Note that
< o <lpa<k<l,<- - <lg_.

By changing the names
(gla s 7€n717k7‘€n7‘ .. aekflv cee 7€K71)
H(jla v 7jn—17jn7jn+17- .. 7jk7' .. ajK—1)7

we obtain that

sgn((M\{R\Z; 71572 ) =(=1)""sgn (]11 gv)

=(—1)F""sgn(N\T; T4 7).
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")
JN

(A.8)

(A.9)
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y (A.7),(A.8), and (A.10), we have

=3 > (DN sgn (M Ty 7o) (9, 0740h 4, Q)

ICN keN\T
N
<Q Hbg”ﬂ>: H b;fljl :
e I=K+1
K K
=Y sen(MZ; L 7o) Y (=D, b, Q) <Q Hb;“Q>
ICN n=1 i
N
H bjz“:
I=K+1
N
=Y sen(M\T;Zy; T <Q [105 5.0 > N | BOSE
ICN I=K+1
= Z sgn((N +1\Z;Z4;7-) <Q7 H > Hbaj :;, (A1)
ICN je(/\/’+1)\I JET

where we use the equation

XK:( DN, b7 b, 0 <Q Hb"m>

n=1 [
(@IS v, 9), K s oad,
0 K is even.

Similarly, we have
(A6) = > sgn((N + D\T'; T/ I’)<Q 11 b;.'fQ>: 17 (A12)
ICN EWNHIN\T JET'
where 7/ :=Z U {N + 1}. By (A.11), (A.12), we obtain the desired result:
II 7= > sen(W\T;Z4570) <Q 11 bij> A S
JEN+1 ICN+1 JEWH\T JjET
O

Lemma A.2. Let f;[r] : M — Ry, j=1,...,N be Borel measurable functions.
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Then

H{b f] Hf]}
= Z sen(M\Z,: 7T :) H bt (k;)
ICN Jelt

ers S 35 o o)

<Q H { (677 (k) VET] £,

1,61', =€ ! r:Hf
< I b~ (k)
jeT_
where [b% R XUET) = p75 (k) for j ¢ T and [b79 (k)| XUEH =1 for j € T.
Proof. Similar to the proof of [2, Lemma A.3]. O
Let
Wt (Ry) xM™ xM® - C, m,n € Ny, (A.13)

be measurable functions. In the following, we use the notations
ET = (ky, .. k) €M™ kM = (ky,... k) € M™.
We assume that each function wy, ,, [r; k™); l;(”)] is antisymmetric with respect
to k™) e M™, k(") e M™, respectively, i.e.,
Wi [ K5 RV = {3 KO3 OO
:ﬁ Z Z sgn (7)sgn (7 )W n [ £ I%T(}n)],
TES,, TES,

where

B = (kr(1ys s kngmy)s B = (Rr(rys- s bnn))-

For L € Ny, we consider the operator

JolHpIWar, ny frlH Wty Ny -+ - fr—1[HpIWarg, Ny, fL[Hy]- (A.14)
We set
K:=M+N,
L L
M:=Y M, N:=Y N,. (A.15)
=1 =1

Corresponding to (A.15), we set

kMOYE, € MM x - MM

ki, .. ki ko, ko skoas oo koo ),

=(

(
kN (k(Ne))l%:l e MM x ... x MNE
(

Eiay o king ko, kangg ko, ko)
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We define

K:={1,...,K},
-1 -1
Knne =Y (Mj+Nj)+1,...,3 (M;+N;)+ M p,
j=1 j=1

{—1
Kne= Y (Mj+Nj)+M;+1,....> (Nj+M;)p, £=1,... L
j=1

Clearly,

L

U U Kpue

0=1 p=M,N
={Km1,Kn1: Kn2: Kny2, - K, Ko}

A
|

For m,n,p,q € Ng with m +n+p+ ¢ > 1, we define
W rs k), k(")]

::/ @) Db (2P Yy alr K, 2P B30 (3@,
M

p+q

The Wick ordering formula for the operator (A.14) is given by the following
result:

Theorem A.3. Let L € N be a number. Suppose that M, € Ny, Ny € Ny
are numbers such that My + Ny > 1. Let {w, n, Y, be functions defined in
(A.13). Then,

JolH )W, vy frlHpIWany Ny -+ fr— 1[Hf]WML,NLfL[Hf]

= Z Z SgH(IC\I I H sgi (IM Vi ’CJ\jVIZZ\IM €>

I, eCRM e INeCKN e
0=1,....L  0=1,..L

L
X dk(me)dk(nl) mz)
s (ZN,e Kn é\IN e) /Mm+n H } 1;[

x {DL [Hf {W]T/In;mvfuz,Nz—ne; kémz); lgénZ)}t%:l; {fé}ZL 0 } H k(ng
(=1

~

(A.16)
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where

Dy[r; {Wyo" '@mdé%m)}fﬂ; {feYiz

My—mp,Ng—ny?

L—-1

= folr +f0]<9, { H
=1

sz[Hf+r+7’e]}

me,ne
War, -

[Hf+71+ 74 E{me) l%é"“)]

me,Neg—nyg

x WmL.nt [rJrrL;k(LmL);l;(L"L)]Q>fL[?"+fL]a

Mp—mp,NL—nf,

and

K
K\ Ui I Uy ZNJ)

o= ST DD SR 6=23 L1,

=1 I=0+1

L

L-1
To = ZE[kl(ml)], T = ZZ[le(ml)], T = Z Z[i;il(nl)],
=1

J4 L

=2

o=y S+ YD Sk, e=1,...L-1.

L
fo = > S[E™], 7w =Y SE™),
=1

mye = Zare|, ne:=|Inyl,

L L
m = g me, N := g ny.
=1 =1

Here, ©[s™)] := 2?21 w(k;), (k= ki, l;:l)

Proof. By the definition of Wy, n,, we have

(L.H.S. of (A.16))

it

Jj=1

N,
dke; [ [ dke,j} folHy]
j=1

b (R Ywag, vy [Hys k5 R0~ (R 1 [y
b (kS Yway vy [Hys kS5 kY10~ (RSY)) fo [ Hy

X oee e

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)
(A.22)
(A.23)

(A.24)

b (R NYwar, vy [Hys kD RN D07 (RS ) £ [Hy)

X b+(k2ML))wML,NL [Hf;

k'ng)

RSNk £ HY).
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By using Lemma (A.2), we have

(L.H.S. of (A.16))

/MKH{ﬁdkadkzg} Z Z sgn(C\Z,: 7 :)

Inmy CRMe IN,CKN e
¢=1,...L ¢=1,..,.L

X [H II b+(1%-)] X folr + Ao

L=1j€Tn e

{ < 11 b+(/€z’j)>wM£’Nk[Hf‘i-?“-i-Ae;kéIww;iféNe)}

JERM, e\ e

11 (k/])>f/[Hf+r+A,;+ dow ’%}}

FER M, e\T e JEINe

( \
< H (kL7-j)>wML,NL |:Hf+7"—|—AL’k(ML) k,NL j|
JERM,L\TMm,L

11 (IZ:L7J-)>Q> fr [r+AL+ doow m]
JERM, L\TM, L r=H;

JEIN,L
1%)] (A.25)

where

-1
Api=>" 3" wlly) + Z > wlkiy), £=23,...,L-1,

I=1j€In, I=+1jE€Tnr,

L _
Ap=>" 3" wiky), M :_Z > w(ky), Z Z w(ky ).

I=1j€Tn, 1=2 jE€Tn, I=1 jETM

Next, we move the integral in the variables KCas ¢ \Zas,e, Kn,¢\Zn ¢ to the inside
of the inner product (€, ---Q):

(L.H.S. of (A.16))

3 > sen(K\Z,: 7 /M WH{ I dkes T1 dke]}

InmyCM, e IN,CKN,e JE€IMm,e JEIN,
¢=1,... {=1,..L

L ~ L
< |TT I vo*(kes) G[T;{{kz,j}jezM,w{ke,j}jeIN,e}[_J
| (=17€Tn 0 = r=Hj
L ~
< |\ TT TI o Gees)| (A.26)
| (=1jETn
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where

G [7’; {{ke,j Viezu o {hesYiezn. };1 ]
f[r+Ao< {H/[ I e 11 di%gyj]

JERM e \Tn,e JEKN\INe

x ( I1 b+(kg,j)> X wary, v, [Hp 7+ A kM N

JEK M, e \IM e

X( I1 b(kgj)>fz[Hf+r+Af+Z km}}

JEKXN e \INe JEIN.

x/l H dky, j H dkp,; < H b+(kL,j)>
JEKM,L\TMm,L

JERM,L\TMm,L JEKN,L\IN,L
X W, N, |:Hf —|—7‘+AL;]€(LML);];‘5:NL)} ( H b(/;L,j)>Q>
JERM, L\Tnm,L

< frlr+Ap+ > wikry)
JEIN,L
Here we used the fact that A,, £ =1,...,Land } ;7

of ke j(j € Kare\Tare), ke j(j € Kne\In.). We rename the variables in (A.25)
as follows

w(ky ;) are independent

kej— wej, € Kne\Iue,
kej — Zoj, J€KNNIN

Then we have

WM,,N, [7‘; kéMe); ];IENZ)]

ke =05, JERM T 0
ke j=%0,5,J€EKXN \IN,¢

= Sgn ICM’Z Sgn ’CN’Z
Tae Kune\Iue Ine Kno\Ing

X WM,,N, [T§ {kf,j}jGIM.w {xeaj}jeK:M.,l\ZM,Z

{k&j }jGIN,/zv {i’fJ }jEKN,E\IN,E:| )

and

/ l I ks 11 df%e,jK 11 b*(ke,»)

JEK M, e\ e JEKN e \IN e JERM, e \Tn e

X WM, N, [Hf +T+Ag;kéMe);]:3§NZ)} ( H b(lzig’j)>

JEKN\INe

Kare Kn.e
= Sgn ’ Sen ’
& (IM ¢ Kme\Tume & Ine Kno\Ine

X WAL, e, Ne—ne [Hf 1t A ke tieta s {k&j}jGIN,g} ,
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where
my ‘= |IM7g‘, |’rlg‘ = |IN75‘, éil,...,L.

Hence we have

B L
¢ {r? {{k&j Vietu {keitietn. }2:1 ]

L
Kt KN
N ’ ’ A
[H A <IM=€ ’CM»f\IMA’) el (IN,e K:N,Z\IN,Z> Jolr+ o]

L-1
X <Q, H
=1

xfl{Hf+r+Ae+ > wlke, H

JEIN e

W e No—ns [Hf + 74 Aes {kej Yiezu o {i%,j}jezw}

WI\??ZZL Np—ng |:T +Ar; {kLyj}jeZIW,L; {kL»j}jEIN,L:| Q>

X fr lr+Ap+ Z kLJ . (A27)

JEIN,L

By changing the names of the variables {k; ;}jecz,,,, {];’g)j}jeINl in (A.26) with
(A.27):

kémé)

{kejtietar, — , AkeiYiern., — ky

we have
(L.H.S. of (A.16))

= Z Z sgn(C\Z,: 7 2)

Ir,eCKMe INeCKNe
(=1, L 0=1,.L

] Kn e
% Sgh (IN,z ]CN,E\IN,Z>

« DL [Hf {Wm/,’rw k(me) k TIZ)}E D{fi} i|

me,Ne—ng’

vy, ’CM FAVAVY.

L
| T {awoai)

(k).

I
I

Finally, by using this fact and the anticommutativity of b=, bT, we obtain the
formula (A.16). O

> Wan.

N+M>1

We set

Theorem A.4. Let W be a operator defined above. We write as

foW AW - W fr, = H[w], (A.28)
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where W = (Wi n)mtn>0- Then

Enalr K= 3N stma ()
mi+-+mp=m pe,qe>0
nit+FnL=n mydp,tnetqe>1
4

=1,...,

L L
/Mm+ H {dkgmz)d];é"z)} HbJr(kéme))
=1

m n Sym
x {DL[Hf {szd?e7k K k’( N {f e 0]}
L ~
x JJom &),
=1
where Dp[---] is the function defined in Theorem A.3,
sgn({me}izy; {ne}izy)
= Z Z sgn(K\Z,: T :)
I, e CKMe INeCKNe
WM:\IM,H ne=|In,e|
(=1,..,L  t=1,..,L
K Kn.e
y : ’ , A.29
H et (IMe ICM,Z\IM,Z) el <IN,12 Kn,e\In. (4.29)

=1
and sgn(K\Z,: T :) is a constant defined in Theorem A.3.
Proof. Note that

(L.H.S.of (A28)) = > -+ > (Al6). (A.30)
Mi+N1>1 Np+Mp>1
It is easy to see that, forall / =1,...,L,

IS

Me+Ne21Zn e CKM e INeCKNe

My Ny
DR IPD DD D (A.31)
Mp+Ne>1me=0n,=0Tp ¢ CKne IN,eCKnN,e
|Zarel=me  |Inel=ne

Furthermore, for any function X|---], we have
My Ny
E E E X (Mg, Noymy,ng) = E X (Mg, Noymy,ny)
Mo+ Ng>1m=0n=0 (M¢,Ny,mg,ne)ENg
Me>me>0; Ny>ng >0
My+Ng>1

= Z X (me + pe,ne + qe, me, ng).

(Pe,qesme,ne) ENG
Petqetme+ng>1

(A.32)

By connecting (A.30)-(A.32) with Theorem A.3, one can obtain the desired
result. O
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