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Abstract. Let M be a forward shift invariant subspace and N a backward shift
invariant subspace in the Hardy space H? on the bidisc. We assume that H?> = N & M.
Using the wandering subspace of M and N, we study the relations between M and N.
Moreover we study M and N using several natural operators which are defined by shift
operators on H?2.



§1. Introduction

Let T be the torus that is the Cartesian product of two unit circles T in ¢'. Let
p =2 or p=oco. The usual Lebesgue spaces, with respect to the Haar measure m on T2,
are denoted by L = LP(T?), and H? = H?(T?) is the space of all f in L? whose Fourier
coefficients

~

£6,0) = /T flz w)Patdm(z,w)

are 0 as soon as at least one component of (7, ¢) is negative. Then H? is called the Hardy
space. As T? = (2,T) x (w,T), H?(2,T) and HP(w,T) denote the one variable Hardy
spaces.

Let Py be the orthogonal projection from L? onto H?. For ¢ in L™, the Toeplitz
operator T} is defined by

Tpf = Pu2(0f) (f € H?).

A closed subspace M of H? is said to be forward shift invariant if 7,M C M and T,,M C
M, and a closed subspace N of H? is said to be backward shift invariant if TN C N
and T>N C N. Let Py and Py be the orthogonal projections from H? onto M and N,
respectively. In this paper, we assume that M & N = H?, that is, Py + Py = I where
is the identity operator on H?. Let

A= PMTZPN and B = PNTJ)PM

For ¢ in H*
Vof = Pu(of) (f €M)
and

Sef = Pn(of) (f€N).

Suppose that
V=V,V, —V:V,and § =S.S,, — S, S..

It is known [4] that AB | M =V and BA | N = §. K.Guo and R.Yang [3] showed
that AB is Hilbert-Schmidt under some mild condition. In this paper, we study M or N
when A, B, AB or BA is of finite rank. K.Izuchi and T.Nakazi [4] described an invariant
subspace M or N with A =0 or B = 0. V.Mandrekar [6], P.Ghatage and V.Mandrekar
2], and T.Nakazi ([7], [8]) described an invariant subspace M with AB = 0. K.Izuchi
and T.Nakazi [4] and K.Izuchi, T.Nakazi and M.Seto [5] described an invariant subspace
N with BA = 0.
For a forward shift invariant subspace M, put

My =ker V', My = ker V,; and My = M; N Ms.

then these are called wandering subspaces for M. For a backward shift invariant subspace
N, with M = H>© N, put

N1 = [T;Ml]Q,NQ = [T;]Mg]g and NQ = Nl N Ng,
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then these should be called wandering subspaces for N.

In §2 we decompose and study M and N using wandering subspaces My, My, Ny
and No. In §3 we study M and N when A or B is of finite rank. For an operator
K, r(K) denotes the rank of K. In §4 we show that r(AB) = dim N; N N, in general and
r(BA) = dim M; N My under some mild conditions.

§2. Wandering subspace

Let M be a forward shift invariant subspace and N be a backward shift invariant
subspace with H?> = M @ N. Put

M = ﬁ{fGM; Z'f e M} and Mfuozﬁ{fEM; w"f e M}
n=1 n=1

, and

N = ﬁ{fEN; 2"fe€ N} and NP = ﬁ{fEN; w"f e N}.
n=1 n=1

In the case of one variable, M>® = N> = {0}. In the case of two variables, M° is also
always {0} but N> may not be {0}. In fact, if N D ¢ H?*(2,T) then N>* D ¢ H*(2,T)
where ¢; = ¢1(z) is one variable inner function.

Theorem 1. Let N be a backward shift invariant subspace and M = H?> & N.
(1) M* = M ={0} and M =Y @ T My =Y @® Ty M.

n=0 n=0
(2) N = [UT;”]\G] B N>® = [UT;;”NQ] & N
n=0 2 n=0 2

Proof. (1) is well known. (2) If f € N2° then by deffinition 2"f € N for any

n > 1 and hence f is orthogonal to [U T an} . Conversely suppose that f is orthogonal
n=0 2

to UTZ*”]Vl. Since f LNy, zf is orthogonal to M; + zM because Ny =T M; and f € N.
n=0

Hence zf € N. Since f1T*N;, z2f is orthogonal to M; + zM because TNy = T*?M,

and zf € N. Hence 22f € N. By repeating the same argument, we can show that 2" f

belongs to N for any n > 1. This implies (2).

Corollary 1. Let N be a backward shift invariant subspace.
(1) N = N> if and only if N = H?*(2,T) @ (H*(w,T) © qoH?*(w,T)) where
G2 = q2(w) is a one variable inner function.



(2) N = lUTZ*"]\G] if and only if for each nonzero f in N there exists n > 1
n=0
such that 2" f ¢ N. i
Proof (1) If N = N then N; = 0 and so T M; = 0. Hence M, C H?*(w,T) and
so My = qH?*(w,T) by a well known theorem of A.Beurling [1]. Therefore M = ¢, H?
and so N = H?(2,T) @ (H*(w,T) & qoH?*(w,T)). Conversely if M = goH? then M, =
q@H?*(w,T) and so Ny = TFM; = 0. (2) is clear by (2) of Theorem 1.

By (1) of Theorem 1, both M; and M, are cyclic subspaces for T, and T, that
is,
=M for j=1,2.
2

-y mm
(

n,m)>(0,0)

It may happen that [ U 17T My| = M where My = My N M. By (2) of Theorem
(n,m)>(0,0)

2
Lif N2° = {0} or N2° = {0} then N; or Ny is a cyclic subspace for T and T, that is,

[ U T"Ty"N;| =N for j=1,2.

(n,m)>(0,0)

2

In general, Ny may not be a cyclic subspace because Ny = (0) may happen. We can
ask whether 17 M, or T; M, is a cyclic subspace for 77 and T because N; D T} M, and
Ny D T#M,. However this is not true. If M = zH? then N = H*(w,T) and M, = (z).
Then Ty My = (0) and T M, = (1).

Example 1. Let N = H*(z,T) + H*(w,T). Then the following (1) ~ (3) are
valid.
(1) Ny = wH?*(w,T), Ny =2H?(2,T) and Ny = (0).

(2) UTZ*”N1] =wH*(w,T), || JT,'N2| =zH*(2,T) and

n>0 2 n>0 2

{UTwwmlﬂm
(n,m)>0

2
(3) N> = H?*2,T) and N = H*(w,T)

Example 2. Let N = ¢ and M = zH? + wH?. Then the following (1) ~ (3)
are valid.

(1) Ny =Noy=Ny= (.

n>0 2 n>0

:[ U TﬁﬂTNJ =N.
(

2 TLJ”)Z(O:O) 2



(3) N = N2 = (0).

Example 3. Let N = (H*(2,T) © H*(2,T)) @ (H*(w,T) & ¢oH?*(w,T)) and
M = qH? + ¢oH? where q; = q1(2) and go = go(w) are one variable inner functions.

(1) My = q(H*(w,T) © 2H*(w, T)) ® qoH*(w, T) and My = q2(H?(2,T) ©
QIH2(Z7T)) @ QIHZ(ZaT)'

(2) Ny = (Trq)(H2(w,T) © uH*(w, T)), Ny = (Togo)(H(2,T) & quH* (5, T)
and No = (TZq1)(T542))-

(3) | TNy = [T N,

n>0 2 n>0

U T2T™No

(n,m)=(0,0)

=N.
2 2

Proof. (2) and (3) follow from (1). It is known [4] that M = ¢.H? & ¢;(H?* &
@H?) = (H*(2,T) @ 2 H*(w, T)) ® {1 H*(2,T) ® (H*(w,T) & qoH?*(w, T))}. Hence (1)
follows.

§3. r(A) < oo or r(B) <

Recall that A = Py/T,Py and B = PyT) Py (see Introduction). In this section,
we are interested in when A or B is of finite rank. We know a characterization of A =0
or B =0 (see [3]). In fact A =0 if and only if N = H? or N = H? & qH? where ¢ = q(w)
is a one variable inner function, and B = 0 if and only if M = {0} or M = qH? where
g = q(z) is a one variable functon. In one variable Hardy space, A is of rank one for any
N or B is of rank one for any M.

Lemma 1. Let M be a forward shift invariant subspace of H?> and N = H?> S M.
(1) ranA]s C M; andker A={f e N ; T.f e N} & M.

(2) ranA*|y = Ny and ker A* ={f e M ; T)fe M} & N.

(3) My = [ranA]y ® {ker A* © (.M ® N)}.

(4) M = [ranA]y & (ker A* © N) and N = [ranA*|y & (ker A© M).

Proof. (1) By definitions, [ranA|, = [PT.N]|o, € M; because T, N is orthogonal
toT,M andker A={feN; T.f € N} & M. (2) Since T;M =T;M, & M, [ranA*|, =
[T M)y = Ny. By definition, ker A* ={f e M ; TSf € M} & N. (3) is clear by (1) and
that H? = [ranA], @ ker A*. (4) is clear by (1),(2) and that H? = [ranA*], @ ker A.

Lemma 2. Let M be a forward shift invariant subspace of H?> and N = H?> S M.

(1) [ranA]s = My © (M Nker T7Y).

(2) ker A* = (M, Nker T*) & T.M @ N.

Proof.(1) Since T,N Lker T}, T,NLM; NkerT; and so PyT,N_LM; NkerT}.
Hence by (1) of Lemma 1 [ranA], C M; & (M; NkerTY). If f € My and flranA, then
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fLT,N and so T fLN. Hence T f € NN M because TM; LM. Hence T f = 0. (2) is
a result of (1) by (2) of Lemma 1.

Lemma 3. Let M be a forward shift invariant subspace of H. Then if [ranA], #
M, then My = [ranA]y ® ¢ H?*(w, T).

Proof. By Lemma 2, M; & [ranA], = M; Nker T} and M, Nker T C H*(w,T)
because ker T = H?(w,T). Hence w(M; Nker TF)LzM and so w(M; Nker T) C M; N
ker TF. By a theorem of Beurling [1] M; & [ranA]s = ¢ H?(w,T) for some one variable
inner function gs = go(w).

Theorem 2. Let M be a nonzero forward shift invariant subspace.

(1) Ifr(A) < oo then My = ranA®q H*(w,T) and M = q2H2@{Z ® (ranA)zj}
=0
where g3 = go(w) is a one variable inner function.

(2) If r(B) < oo then My = ranB*®q, H*(2,T) and M = quQEB{Z o, (ranB*)wj}
i=0

where ¢ = q1(z) s a one variable inner function.

(3) If r(A) < 0o and r(B) < oo then there exist two inner functions ¢1 = q1(z)
and qy = qo(w) such that qt H* + quH? is a closed forward shift invariant subspace, M 2
@ H? + uH? and dim{M, + My} /{q:H?*(2,T) + ¢oH?*(w, T)} < r(A) + r(B).

Proof. Since dim M; = oo by [7, Theorem 3], if r(A) < oo then [ranA], # M; and
so by Lemm 3 M, = [ranA],® ¢ H?(w, T') for some one variable inner function g, = ga(w).
This implies (1). If (B) < oo then r(B*) < co. Since B* = PyT,,Py, (1) implies (2). If
r(A) < oo and r(B) < oo, (1) and (2) imply (3)because it is known [4] that ¢, H? + go H?
is closed.

Corollary 2. (1) If A =0 then M = {0} or M = g, H? for some one variable
inner function g = go(w).

(2) If B =0 then M = {0} or M = q,H?* for some one variable inner function
@ = q1(2)-

Corollary 3. (1) If 0 < n < oo and 0 < m < oo, then there exist invariant
subspaces M and N such that r(A) =n and r(B) = m.

(2) If r(B) = 0 then r(A) = 0 or r(A) = co. If r(A) = 0 then r(B) = 0 or
r(B) = oc.
Proof. (1) Let 1 <n < co and 1 < m < oco. Suppose that M = z™H? + w"H?,
then My = w"H?(w,T) + (1,w, -, w™)z™ and My = 2™H?*(2,T) + (1, z,--+,2™)w". By
(1) and (2) of Theorem 2, r(A) = n and r(B) = m.

(2) If r(B) = 0, then by (2) of Corollary 2 M = {0} or M = q; H*> where ¢; = ¢(2)
is a one variable inner function. If M = {0} then r(A) = 0 by definition. If M = ¢, H*



then M; = ¢y H*(w,T) and so if r(A) < oo then by (1) of Theorem 2 M; D ¢ H?*(w, T)
for some one variable inner function go = ¢a(w). This implies that ¢; is constant. Hence
M = H? and so A = 0.

Corollary 4. If M = qH? + quH? where ¢ = q1(2) and ¢ = q2(w) are one
variable inner functions, then [ranAly = q(H?*(w,T) © ¢H?*(w,T)) and [ranB*|, =
@(H*(2,T) & ¢iH*(2,T)). If r(A) < oo and r(B) < oo then r(A) = degqy and
r(B) = degq.

Corollary 5. Let M be a forward shift invariant subspace. If M is of finite
co-dimension n then r(A) <n, r(B) <n and M 2 qH*+ ¢H? where q; = q1(2) and
G2 = q2(w) are one variable finite Blaschke products.

Proof. By the definitions of A and B, it is clear that r(A) < n and r(B) < n.
The second statement follows from (3) of Theorem 2.

Proposition 1. Let M be a forward shift invariant subspace. Then M O g, H?+
g H? for some one variable inner functions i = q1(z) and q¢o = q(w) if and only if
[ranA]s # M, and [ranB*|y # M.

Proof. The ‘if’ part is clear by Lemma 3. If M O ¢ H? then ¢ H?*(2,T) is
orthognal to wM and so q; H*(z,T) C M,. Hence Lemma 2 implies that [ranB*]y # Ms.
Similarly we can prove that if M 2 guH? then [ranA]y # M;.

Proposition 2. N; = [ranA*|y and Ny = [ranB|s. Hence dim Ny = r(A) and
dim Ny = r(B).
Proof. It is a result of (2) of Lemma 1.

§4. r(AB) < 0o or 7(BA) < o0

Let M be a forward shift invariant subspace and N = H? © M. Recall the
definitions of V and § in Introduction. It is known [4] that AB | M = V and BA |
N = S. Then AB = 0 if and only if ¥V = 0, and BA = 0 if and only if S = 0.
We know the characterization of an invariant subspace such that AB = 0 or BA = 0.
In fact, it is known (cf. [6],[7],[8]) that AB = 0 if and only if M = ¢H? for some
inner function ¢. Recently it was proved (cf. [4],[5]) that BA = 0 if and only if N =
(HZ(Z,T)@Q1H2(Z,T))@(HZ(IU,T)@(th(w,T)),N = (H2(Z’T)QQIH2(Z7T>>®H2(va>
or N = H?(2,T) @ (H*(w,T) © ¢xH*(w,T)), where ¢ = q1(z) and ¢ = q2(w) are
one variable inner functions. In this section, we study invariant subspaces such that
r(AB) < oo or r(BA) < 0.



Lemma 4. Let M be a forward shift invariant subspace and N = H* & M.

(1) r(BA) = dim([PyT.N]s N [PyTyNls).

Proof. (1) Since [BAH?]; = [B[ranAls)s, r(BA) = dim((ker B)* N[ranA],). This
implies (1) because (ker B)* = [ranB*|, = [Py/T,,N]» and [ranA]y = [Py/T. N],. Similarly,
(2) can be proved.

Theorem 3. Let M be a forward shift invariant subspace of H* and N = H?>SM.

(1) If My Nker T = {0} and My Nker T = {0} then r(BA) = dim M; N Ms.

(2) r(AB) = dim N, N Ny,

Proof. (1) By (1) and (2) of Lemma 1, [ranA|y = [PyT,N]y C M; and
[ranB*|y = [Py TwN]2 € My. By Lemma 2, if My Nker T = {0} then [PyT.N]s = M,
and if My Nker T = {0} then [Py T, N]s = Ms. Hence r(BA) = dim M; N M, by Lemma
4.

(2) Since [PyTX M|y = [PNT:Mi]s = Ny and [PyT;M]e = [PyTMs] = No, by
Lemma 4 r(AB) = dim Ny N Na.

In (1) of Theorem 3, we need the condition : M; Nker T = M, Nker T = {0}.
In fact, My N M, is always not trivial but BA may be zero.
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