Invariant Subspaces In The Bidisc And Wandering Subspaces

By

Takahiko Nakazi*

[^0]Abstract. Let M be a forward shift invariant subspace and N a backward shift invariant subspace in the Hardy space H^{2} on the bidisc. We assume that $H^{2}=N \oplus M$. Using the wandering subspace of M and N, we study the relations between M and N. Moreover we study M and N using several natural operators which are defined by shift operators on H^{2}.

§1. Introduction

Let T^{2} be the torus that is the Cartesian product of two unit circles T in \mathbb{C}. Let $p=2$ or $p=\infty$. The usual Lebesgue spaces, with respect to the Haar measure m on T^{2}, are denoted by $L^{p}=L^{p}\left(T^{2}\right)$, and $H^{p}=H^{p}\left(T^{2}\right)$ is the space of all f in L^{p} whose Fourier coefficients

$$
\hat{f}(j, \ell)=\int_{T^{2}} f(z, w) \bar{z}^{j} \bar{w}^{\ell} d m(z, w)
$$

are 0 as soon as at least one component of (j, ℓ) is negative. Then H^{p} is called the Hardy space. As $T^{2}=(z, T) \times(w, T), H^{p}(z, T)$ and $H^{p}(w, T)$ denote the one variable Hardy spaces.

Let $P_{H^{2}}$ be the orthogonal projection from L^{2} onto H^{2}. For ϕ in L^{∞}, the Toeplitz operator T_{ϕ} is defined by

$$
T_{\phi} f=P_{H^{2}}(\phi f) \quad\left(f \in H^{2}\right) .
$$

A closed subspace M of H^{2} is said to be forward shift invariant if $T_{z} M \subset M$ and $T_{w} M \subset$ M, and a closed subspace N of H^{2} is said to be backward shift invariant if $T_{z}^{*} N \subset N$ and $T_{w}^{*} N \subset N$. Let P_{M} and P_{N} be the orthogonal projections from H^{2} onto M and N, respectively. In this paper, we assume that $M \oplus N=H^{2}$, that is, $P_{M}+P_{N}=I$ where I is the identity operator on H^{2}. Let

$$
A=P_{M} T_{z} P_{N} \text { and } B=P_{N} T_{w}^{*} P_{M}
$$

For ϕ in H^{∞}

$$
V_{\phi} f=P_{M}(\phi f) \quad(f \in M)
$$

and

$$
S_{\phi} f=P_{N}(\phi f) \quad(f \in N)
$$

Suppose that

$$
\mathcal{V}=V_{z} V_{w}^{*}-V_{w}^{*} V_{z} \text { and } \mathcal{S}=S_{z} S_{w}^{*}-S_{w}^{*} S_{z}
$$

It is known [4] that $A B \mid M=\mathcal{V}$ and $B A \mid N=\mathcal{S}$. K.Guo and R.Yang [3] showed that $A B$ is Hilbert-Schmidt under some mild condition. In this paper, we study M or N when $A, B, A B$ or $B A$ is of finite rank. K.Izuchi and T.Nakazi [4] described an invariant subspace M or N with $A=0$ or $B=0$. V.Mandrekar [6], P.Ghatage and V.Mandrekar [2], and T.Nakazi ([7], [8]) described an invariant subspace M with $A B=0$. K.Izuchi and T.Nakazi [4] and K.Izuchi, T.Nakazi and M.Seto [5] described an invariant subspace N with $B A=0$.

For a forward shift invariant subspace M, put

$$
M_{1}=\operatorname{ker} V_{z}^{*}, M_{2}=\operatorname{ker} V_{w}^{*} \text { and } M_{0}=M_{1} \cap M_{2}
$$

then these are called wandering subspaces for M. For a backward shift invariant subspace N, with $M=H^{2} \ominus N$, put

$$
N_{1}=\left[T_{z}^{*} M_{1}\right]_{2}, N_{2}=\left[T_{w}^{*} M_{2}\right]_{2} \text { and } N_{0}=N_{1} \cap N_{2}
$$

then these should be called wandering subspaces for N.
In $\S 2$ we decompose and study M and N using wandering subspaces M_{1}, M_{2}, N_{1} and N_{2}. In $\S 3$ we study M and N when A or B is of finite rank. For an operator $K, r(K)$ denotes the rank of K. In $\S 4$ we show that $r(A B)=\operatorname{dim} N_{1} \cap N_{2}$ in general and $r(B A)=\operatorname{dim} M_{1} \cap M_{2}$ under some mild conditions.

§2. Wandering subspace

Let M be a forward shift invariant subspace and N be a backward shift invariant subspace with $H^{2}=M \oplus N$. Put

$$
M_{z}^{\infty}=\bigcap_{n=1}^{\infty}\left\{f \in M ; \bar{z}^{n} f \in M\right\} \text { and } M_{w}^{\infty}=\bigcap_{n=1}^{\infty}\left\{f \in M ; \bar{w}^{n} f \in M\right\}
$$

, and

$$
N_{z}^{\infty}=\bigcap_{n=1}^{\infty}\left\{f \in N ; z^{n} f \in N\right\} \text { and } N_{w}^{\infty}=\bigcap_{n=1}^{\infty}\left\{f \in N ; w^{n} f \in N\right\} .
$$

In the case of one variable, $M_{z}^{\infty}=N_{z}^{\infty}=\{0\}$. In the case of two variables, M_{z}^{∞} is also always $\{0\}$ but N_{z}^{∞} may not be $\{0\}$. In fact, if $N \supset q_{1} H^{2}(z, T)$ then $N_{z}^{\infty} \supset q_{1} H^{2}(z, T)$ where $q_{1}=q_{1}(z)$ is one variable inner function.

Theorem 1. Let N be a backward shift invariant subspace and $M=H^{2} \ominus N$.
(1) $M_{z}^{\infty}=M_{w}^{\infty}=\{0\}$ and $M=\sum_{n=0}^{\infty} \oplus T_{z}^{n} M_{1}=\sum_{n=0}^{\infty} \oplus T_{w}^{n} M_{2}$.
(2) $N=\left[\bigcup_{n=0}^{\infty} T_{z}^{* n} N_{1}\right]_{2} \oplus N_{z}^{\infty}=\left[\bigcup_{n=0}^{\infty} T_{w}^{* n} N_{2}\right]_{2} \oplus N_{w}^{\infty}$.

Proof. (1) is well known. (2) If $f \in N_{z}^{\infty}$ then by deffinition $z^{n} f \in N$ for any $n \geq 1$ and hence f is orthogonal to $\left[\bigcup_{n=0}^{\infty} T_{z}^{* n} N_{1}\right]_{2}$. Conversely suppose that f is orthogonal to $\bigcup_{n=0}^{\infty} T_{z}^{* n} N_{1}$. Since $f \perp N_{1}, z f$ is orthogonal to $M_{1}+z M$ because $N_{1}=T_{z}^{*} M_{1}$ and $f \in N$. Hence $z f \in N$. Since $f \perp T_{z}^{*} N_{1}, z^{2} f$ is orthogonal to $M_{1}+z M$ because $T_{z}^{*} N_{1}=T_{z}^{* 2} M_{1}$ and $z f \in N$. Hence $z^{2} f \in N$. By repeating the same argument, we can show that $z^{n} f$ belongs to N for any $n \geq 1$. This implies (2).

Corollary 1. Let N be a backward shift invariant subspace.
(1) $N=N_{z}^{\infty}$ if and only if $N=H^{2}(z, T) \otimes\left(H^{2}(w, T) \ominus q_{2} H^{2}(w, T)\right)$ where $q_{2}=q_{2}(w)$ is a one variable inner function.
(2) $N=\left[\bigcup_{n=0}^{\infty} T_{z}^{* n} N_{1}\right]_{2}$ if and only if for each nonzero f in N there exists $n \geq 1$ such that $z^{n} f \notin N$.

Proof (1) If $N=N_{z}^{\infty}$ then $N_{1}=0$ and so $T_{z}^{*} M_{1}=0$. Hence $M_{1} \subset H^{2}(w, T)$ and so $M_{1}=q_{2} H^{2}(w, T)$ by a well known theorem of A.Beurling [1]. Therefore $M=q_{2} H^{2}$ and so $N=H^{2}(z, T) \otimes\left(H^{2}(w, T) \ominus q_{2} H^{2}(w, T)\right)$. Conversely if $M=q_{2} H^{2}$ then $M_{1}=$ $q_{2} H^{2}(w, T)$ and so $N_{1}=T_{z}^{*} M_{1}=0$. (2) is clear by (2) of Theorem 1.

By (1) of Theorem 1, both M_{1} and M_{2} are cyclic subspaces for T_{z} and T_{w}, that is,

$$
\left[\bigcup_{(n, m) \geq(0,0)} T_{z}^{n} T_{w}^{m} M_{j}\right]_{2}=M \text { for } j=1,2
$$

It may happen that $\left[\bigcup_{(n, m) \geq(0,0)} T_{z}^{n} T_{w}^{m} M_{0}\right]_{2}=M$ where $M_{0}=M_{1} \cap M_{2}$. By (2) of Theorem 1,if $N_{z}^{\infty}=\{0\}$ or $N_{w}^{\infty}=\{0\}$ then N_{1} or N_{2} is a cyclic subspace for T_{z}^{*} and T_{w}^{*}, that is,

$$
\left[\bigcup_{(n, m) \geq(0,0)} T_{z}^{* n} T_{w}^{* m} N_{j}\right]_{2}=N \text { for } j=1,2 .
$$

In general, N_{0} may not be a cyclic subspace because $N_{0}=\langle 0\rangle$ may happen. We can ask whether $T_{z}^{*} M_{0}$ or $T_{w}^{*} M_{0}$ is a cyclic subspace for T_{z}^{*} and T_{w}^{*} because $N_{1} \supset T_{z}^{*} M_{0}$ and $N_{2} \supset T_{w}^{*} M_{0}$. However this is not true. If $M=z H^{2}$ then $N=H^{2}(w, T)$ and $M_{0}=\langle z\rangle$. Then $T_{w}^{*} M_{0}=\langle 0\rangle$ and $T_{z}^{*} M_{0}=\langle 1\rangle$.

Example 1. Let $N=H^{2}(z, T)+H^{2}(w, T)$. Then the following (1) ~ (3) are valid.

> (1) $N_{1}=w H^{2}(w, T), N_{2}=z H^{2}(z, T)$ and $N_{0}=\langle 0\rangle$.
> (2) $\left[\bigcup_{n \geq 0} T_{z}^{* n} N_{1}\right]_{2}=w H^{2}(w, T),\left[\bigcup_{n \geq 0} T_{w}^{* n} N_{2}\right]_{2}=z H^{2}(z, T)$ and $\left[\bigcup_{(n, m) \geq 0} T_{z}^{* n} T_{w}^{* m} N_{0}\right]_{2}=\langle 0\rangle$.
(3) $N_{z}^{\infty}=H^{2}(z, T)$ and $N_{w}^{\infty}=H^{2}(w, T)$

Example 2. Let $N=\varnothing$ and $M=z H^{2}+w H^{2}$. Then the following (1) ~ (3) are valid.
(1) $N_{1}=N_{2}=N_{0}=\varnothing$.
(2) $\left[\bigcup_{n \geq 0} T_{z}^{* n} N_{1}\right]_{2}=\left[\bigcup_{n \geq 0} T_{w}^{* n} N_{2}\right]_{2}=\left[\underset{(n, m) \geq(0,0)}{\bigcup} T_{z}^{* n} T_{w}^{* m} N_{0}\right]_{2}=N$.
(3) $N_{z}^{\infty}=N_{w}^{\infty}=\langle 0\rangle$.

Example 3. Let $N=\left(H^{2}(z, T) \ominus q_{1} H^{2}(z, T)\right) \otimes\left(H^{2}(w, T) \ominus q_{2} H^{2}(w, T)\right)$ and $M=q_{1} H^{2}+q_{2} H^{2}$ where $q_{1}=q_{1}(z)$ and $q_{2}=q_{2}(w)$ are one variable inner functions.
(1) $M_{1}=q_{1}\left(H^{2}(w, T) \ominus q_{2} H^{2}(w, T)\right) \oplus q_{2} H^{2}(w, T)$ and $M_{2}=q_{2}\left(H^{2}(z, T) \ominus\right.$ $\left.q_{1} H^{2}(z, T)\right) \oplus q_{1} H^{2}(z, T)$.
(2) $N_{1}=\left(T_{z}^{*} q_{1}\right)\left(H^{2}(w, T) \ominus q_{2} H^{2}(w, T)\right), N_{2}=\left(T_{w}^{*} q_{2}\right)\left(H^{2}(z, T) \ominus q_{1} H^{2}(z, T)\right)$ and $N_{0}=\left\langle\left(T_{z}^{*} q_{1}\right)\left(T_{w}^{*} q_{2}\right)\right\rangle$.
(3) $\left[\bigcup_{n \geq 0} T_{z}^{* n} N_{1}\right]_{2}=\left[\bigcup_{n \geq 0} T_{w}^{* n} N_{2}\right]_{2}=\left[\bigcup_{(n, m) \geq(0,0)} T_{z}^{* n} T_{w}^{* m} N_{0}\right]_{2}=N$.

Proof. (2) and (3) follow from (1). It is known [4] that $M=q_{2} H^{2} \oplus q_{1}\left(H^{2} \ominus\right.$ $\left.q_{2} H^{2}\right)=\left(H^{2}(z, T) \otimes q_{2} H^{2}(w, T)\right) \oplus\left\{q_{1} H^{2}(z, T) \otimes\left(H^{2}(w, T) \ominus q_{2} H^{2}(w, T)\right)\right\}$. Hence (1) follows.
§3. $r(A)<\infty$ or $r(B)<\infty$
Recall that $A=P_{M} T_{z} P_{N}$ and $B=P_{N} T_{w}^{*} P_{M}$ (see Introduction). In this section, we are interested in when A or B is of finite rank. We know a characterization of $A=0$ or $B=0$ (see [3]). In fact $A=0$ if and only if $N=H^{2}$ or $N=H^{2} \ominus q H^{2}$ where $q=q(w)$ is a one variable inner function, and $B=0$ if and only if $M=\{0\}$ or $M=q H^{2}$ where $q=q(z)$ is a one variable functon. In one variable Hardy space, A is of rank one for any N or B is of rank one for any M.

Lemma 1. Let M be a forward shift invariant subspace of H^{2} and $N=H^{2} \ominus M$.
(1) $[\operatorname{ran} A]_{2} \subseteq M_{1}$ and $\operatorname{ker} A=\left\{f \in N ; T_{z} f \in N\right\} \oplus M$.
(2) $\left[\operatorname{ran} A^{*}\right]_{2}=N_{1}$ and $\operatorname{ker} A^{*}=\left\{f \in M ; T_{z}^{*} f \in M\right\} \oplus N$.
(3) $M_{1}=[\operatorname{ran} A]_{2} \oplus\left\{\operatorname{ker} A^{*} \ominus\left(T_{z} M \oplus N\right)\right\}$.
(4) $M=[\operatorname{ran} A]_{2} \oplus\left(\operatorname{ker} A^{*} \ominus N\right)$ and $N=\left[\operatorname{ran} A^{*}\right]_{2} \oplus(\operatorname{ker} A \ominus M)$.

Proof. (1) By definitions, $[\operatorname{ran} A]_{2}=\left[P T_{z} N\right]_{2} \subseteq M_{1}$ because $T_{z} N$ is orthogonal to $T_{z} M$ and $\operatorname{ker} A=\left\{f \in N ; T_{z} f \in N\right\} \oplus M$. (2) Since $T_{z}^{*} M=T_{z}^{*} M_{1} \oplus M$, $\left[\operatorname{ran} A^{*}\right]_{2}=$ $\left[T_{z}^{*} M_{1}\right]_{2}=N_{1}$. By definition, $\operatorname{ker} A^{*}=\left\{f \in M ; T_{z}^{*} f \in M\right\} \oplus N$. (3) is clear by (1) and that $H^{2}=[\operatorname{ran} A]_{2} \oplus \operatorname{ker} A^{*}$. (4) is clear by (1),(2) and that $H^{2}=\left[\operatorname{ran} A^{*}\right]_{2} \oplus \operatorname{ker} A$.

Lemma 2. Let M be a forward shift invariant subspace of H^{2} and $N=H^{2} \ominus M$.
(1) $[\operatorname{ran} A]_{2}=M_{1} \ominus\left(M_{1} \cap \operatorname{ker} T_{z}^{*}\right)$.
(2) $\operatorname{ker} A^{*}=\left(M_{1} \cap \operatorname{ker} T_{z}^{*}\right) \oplus T_{z} M \oplus N$.

Proof.(1) Since $T_{z} N \perp \operatorname{ker} T_{z}^{*}, T_{z} N \perp M_{1} \cap \operatorname{ker} T_{z}^{*}$ and so $P_{M} T_{z} N \perp M_{1} \cap \operatorname{ker} T_{z}^{*}$. Hence by (1) of Lemma $1[\operatorname{ran} A]_{2} \subseteq M_{1} \ominus\left(M_{1} \cap \operatorname{ker} T_{z}^{*}\right)$. If $f \in M_{1}$ and $f \perp \operatorname{ran} A$, then
$f \perp T_{z} N$ and so $T_{z}^{*} f \perp N$. Hence $T_{z}^{*} f \in N \cap M$ because $T_{z}^{*} M_{1} \perp M$. Hence $T_{z}^{*} f=0$. (2) is a result of (1) by (2) of Lemma 1.

Lemma 3. Let M be a forward shift invariant subspace of H^{2}. Then if $[\operatorname{ran} A]_{2} \neq$ M_{1} then $M_{1}=[\operatorname{ran} A]_{2} \oplus q_{2} H^{2}(w, T)$.

Proof. By Lemma 2, $M_{1} \ominus[\operatorname{ran} A]_{2}=M_{1} \cap \operatorname{ker} T_{z}^{*}$ and $M_{1} \cap \operatorname{ker} T_{z}^{*} \subset H^{2}(w, T)$ because ker $T_{z}^{*}=H^{2}(w, T)$. Hence $w\left(M_{1} \cap \operatorname{ker} T_{z}^{*}\right) \perp z M$ and so $w\left(M_{1} \cap \operatorname{ker} T_{z}^{*}\right) \subseteq M_{1} \cap$ $\operatorname{ker} T_{z}^{*}$. By a theorem of Beurling [1] $M_{1} \ominus[\operatorname{ran} A]_{2}=q_{2} H^{2}(w, T)$ for some one variable inner function $q_{2}=q_{2}(w)$.

Theorem 2. Let M be a nonzero forward shift invariant subspace.
(1) If $r(A)<\infty$ then $M_{1}=\operatorname{ran} A \oplus q_{2} H^{2}(w, T)$ and $M=q_{2} H^{2} \oplus\left\{\sum_{j=0}^{\infty} \oplus(\operatorname{ran} A) z^{j}\right\}$ where $q_{2}=q_{2}(w)$ is a one variable inner function.
(2) If $r(B)<\infty$ then $M_{2}=\operatorname{ran} B^{*} \oplus q_{1} H^{2}(z, T)$ and $M=q_{1} H^{2} \oplus\left\{\sum_{j=0}^{\infty} \oplus\left(\operatorname{ran} B^{*}\right) w^{j}\right\}$ where $q_{1}=q_{1}(z)$ is a one variable inner function.
(3) If $r(A)<\infty$ and $r(B)<\infty$ then there exist two inner functions $q_{1}=q_{1}(z)$ and $q_{2}=q_{2}(w)$ such that $q_{1} H^{2}+q_{2} H^{2}$ is a closed forward shift invariant subspace, $M \supseteq$ $q_{1} H^{2}+q_{2} H^{2}$ and $\operatorname{dim}\left\{M_{1}+M_{2}\right\} /\left\{q_{1} H^{2}(z, T)+q_{2} H^{2}(w, T)\right\} \leq r(A)+r(B)$.

Proof. Since $\operatorname{dim} M_{1}=\infty$ by [7, Theorem 3], if $r(A)<\infty$ then $[\operatorname{ran} A]_{2} \neq M_{1}$ and so by Lemm $3 M_{1}=[\operatorname{ran} A]_{2} \oplus q_{2} H^{2}(w, T)$ for some one variable inner function $q_{2}=q_{2}(w)$. This implies (1). If $r(B)<\infty$ then $r\left(B^{*}\right)<\infty$. Since $B^{*}=P_{M} T_{w} P_{N}$, (1) implies (2). If $r(A)<\infty$ and $r(B)<\infty$, (1) and (2) imply (3)because it is known [4] that $q_{1} H^{2}+q_{2} H^{2}$ is closed.

Corollary 2. (1) If $A=0$ then $M=\{0\}$ or $M=q_{2} H^{2}$ for some one variable inner function $q_{2}=q_{2}(w)$.
(2) If $B=0$ then $M=\{0\}$ or $M=q_{1} H^{2}$ for some one variable inner function $q_{1}=q_{1}(z)$.

Corollary 3. (1) If $0 \leq n \leq \infty$ and $0 \leq m \leq \infty$, then there exist invariant subspaces M and N such that $r(A)=n$ and $r(B)=m$.
(2) If $r(B)=0$ then $r(A)=0$ or $r(A)=\infty$. If $r(A)=0$ then $r(B)=0$ or $r(B)=\infty$.

Proof. (1) Let $1 \leq n<\infty$ and $1 \leq m<\infty$. Suppose that $M=z^{m} H^{2}+w^{n} H^{2}$, then $M_{1}=w^{n} H^{2}(w, T)+\left\langle 1, w, \cdots, w^{n}\right\rangle z^{m}$ and $M_{2}=z^{m} H^{2}(z, T)+\left\langle 1, z, \cdots, z^{m}\right\rangle w^{n}$. By (1) and (2) of Theorem 2, $r(A)=n$ and $r(B)=m$.
(2) If $r(B)=0$, then by (2) of Corollary $2 M=\{0\}$ or $M=q_{1} H^{2}$ where $q_{1}=q_{1}(z)$ is a one variable inner function. If $M=\{0\}$ then $r(A)=0$ by definition. If $M=q_{1} H^{2}$
then $M_{1}=q_{1} H^{2}(w, T)$ and so if $r(A)<\infty$ then by (1) of Theorem $2 M_{1} \supset q_{2} H^{2}(w, T)$ for some one variable inner function $q_{2}=q_{2}(w)$. This implies that q_{1} is constant. Hence $M=H^{2}$ and so $A=0$.

Corollary 4. If $M=q_{1} H^{2}+q_{2} H^{2}$ where $q_{1}=q_{1}(z)$ and $q_{2}=q_{2}(w)$ are one variable inner functions, then $[\operatorname{ran} A]_{2}=q_{1}\left(H^{2}(w, T) \ominus q_{2} H^{2}(w, T)\right)$ and $\left[\operatorname{ran} B^{*}\right]_{2}=$ $q_{2}\left(H^{2}(z, T) \ominus q_{1} H^{2}(z, T)\right)$. If $r(A)<\infty$ and $r(B)<\infty$ then $r(A)=\operatorname{deg} q_{2}$ and $r(B)=\operatorname{deg} q_{1}$.

Corollary 5. Let M be a forward shift invariant subspace. If M is of finite co-dimension n then $r(A) \leq n, r(B) \leq n$ and $M \supseteq q_{1} H^{2}+q_{2} H^{2}$ where $q_{1}=q_{1}(z)$ and $q_{2}=q_{2}(w)$ are one variable finite Blaschke products.

Proof. By the definitions of A and B, it is clear that $r(A) \leq n$ and $r(B) \leq n$. The second statement follows from (3) of Theorem 2.

Proposition 1. Let M be a forward shift invariant subspace. Then $M \supseteq q_{1} H^{2}+$ $q_{2} H^{2}$ for some one variable inner functions $q_{1}=q_{1}(z)$ and $q_{2}=q_{2}(w)$ if and only if $[\operatorname{ran} A]_{2} \neq M_{1}$ and $\left[\operatorname{ran} B^{*}\right]_{2} \neq M_{2}$.

Proof. The 'if' part is clear by Lemma 3. If $M \supseteq q_{1} H^{2}$ then $q_{1} H^{2}(z, T)$ is orthognal to $w M$ and so $q_{1} H^{2}(z, T) \subseteq M_{2}$. Hence Lemma 2 implies that $\left[\operatorname{ran} B^{*}\right]_{2} \neq M_{2}$. Similarly we can prove that if $M \supseteq q_{2} H^{2}$ then $[\operatorname{ran} A]_{2} \neq M_{1}$.

Proposition 2. $N_{1}=\left[\operatorname{ran} A^{*}\right]_{2}$ and $N_{2}=[\operatorname{ran} B]_{2}$. Hence $\operatorname{dim} N_{1}=r(A)$ and $\operatorname{dim} N_{2}=r(B)$.

Proof. It is a result of (2) of Lemma 1.
§4. $r(A B)<\infty$ or $r(B A)<\infty$
Let M be a forward shift invariant subspace and $N=H^{2} \ominus M$. Recall the definitions of \mathcal{V} and \mathcal{S} in Introduction. It is known [4] that $A B \mid M=\mathcal{V}$ and $B A \mid$ $N=\mathcal{S}$. Then $A B=0$ if and only if $\mathcal{V}=0$, and $B A=0$ if and only if $\mathcal{S}=0$. We know the characterization of an invariant subspace such that $A B=0$ or $B A=0$. In fact, it is known (cf. [6],[7],[8]) that $A B=0$ if and only if $M=q H^{2}$ for some inner function q. Recently it was proved (cf. [4],[5]) that $B A=0$ if and only if $N=$ $\left(H^{2}(z, T) \ominus q_{1} H^{2}(z, T)\right) \otimes\left(H^{2}(w, T) \ominus q_{2} H^{2}(w, T)\right), N=\left(H^{2}(z, T) \ominus q_{1} H^{2}(z, T)\right) \otimes H^{2}(w, T)$ or $N=H^{2}(z, T) \otimes\left(H^{2}(w, T) \ominus q_{2} H^{2}(w, T)\right)$, where $q_{1}=q_{1}(z)$ and $q_{2}=q_{2}(w)$ are one variable inner functions. In this section, we study invariant subspaces such that $r(A B)<\infty$ or $r(B A)<\infty$.

Lemma 4. Let M be a forward shift invariant subspace and $N=H^{2} \ominus M$.
(1) $r(B A)=\operatorname{dim}\left(\left[P_{M} T_{z} N\right]_{2} \cap\left[P_{M} T_{w} N\right]_{2}\right)$.
(2) $r(A B)=\operatorname{dim}\left(\left[P_{N} T_{z}^{*} M\right]_{2} \cap\left[P_{N} T_{w}^{*} M\right]_{2}\right)$.

Proof. (1) Since $\left[B A H^{2}\right]_{2}=\left[B[\operatorname{ran} A]_{2}\right]_{2}, r(B A)=\operatorname{dim}\left((\operatorname{ker} B)^{\perp} \cap[\operatorname{ran} A]_{2}\right)$. This implies (1) because $(\operatorname{ker} B)^{\perp}=\left[\operatorname{ran} B^{*}\right]_{2}=\left[P_{M} T_{w} N\right]_{2}$ and $[\operatorname{ran} A]_{2}=\left[P_{M} T_{z} N\right]_{2}$. Similarly, (2) can be proved.

Theorem 3. Let M be a forward shift invariant subspace of H^{2} and $N=H^{2} \ominus M$. (1) If $M_{1} \cap \operatorname{ker} T_{z}^{*}=\{0\}$ and $M_{2} \cap \operatorname{ker} T_{w}^{*}=\{0\}$ then $r(B A)=\operatorname{dim} M_{1} \cap M_{2}$.
(2) $r(A B)=\operatorname{dim} N_{1} \cap N_{2}$.

Proof. (1) By (1) and (2) of Lemma 1, $[\operatorname{ran} A]_{2}=\left[P_{M} T_{z} N\right]_{2} \subseteq M_{1}$ and $\left[\operatorname{ran} B^{*}\right]_{2}=\left[P_{M} T_{w} N\right]_{2} \subseteq M_{2}$. By Lemma 2, if $M_{1} \cap \operatorname{ker} T_{z}^{*}=\{0\}$ then $\left[P_{M} T_{z} N\right]_{2}=M_{1}$ and if $M_{2} \cap \operatorname{ker} T_{w}^{*}=\{0\}$ then $\left[P_{M} T_{w} N\right]_{2}=M_{2}$. Hence $r(B A)=\operatorname{dim} M_{1} \cap M_{2}$ by Lemma 4.
(2) Since $\left[P_{N} T_{z}^{*} M\right]_{2}=\left[P_{N} T_{z}^{*} M_{1}\right]_{2}=N_{1}$ and $\left[P_{N} T_{w}^{*} M\right]_{2}=\left[P_{N} T_{w}^{*} M_{2}\right]=N_{2}$, by Lemma $4 r(A B)=\operatorname{dim} N_{1} \cap N_{2}$.

In (1) of Theorem 3, we need the condition : $M_{1} \cap \operatorname{ker} T_{z}^{*}=M_{2} \cap \operatorname{ker} T_{w}^{*}=\{0\}$. In fact, $M_{1} \cap M_{2}$ is always not trivial but $B A$ may be zero.

References

1. A.Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81(1949), 239-255.
2. P.Ghatage and V.Mandrekar, On Beurling type invariant subspaces of $L^{2}\left(\mathbf{T}^{2}\right)$ and their equivalence, J.Operator Theory, 20(1988), 31-38.
3. K.Guo and R.Yang, The core function of submodules over the bidisk, in preprint.
4. K.Izuchi and T.Nakazi, Backward shift invariant subspaces in the bidisc, Hokkaido Math.J.XXXV@(2004), 247-254.
5. K.Izuchi, T.Nakazi and M.Seto, Backward shift invariant subspaces in the bidisc U. J.Operator Th. 51(2004), 361-376.
6. V.Mandrekar, The validity of Beurling theorems in polydiscs, Proc. Amer. Math.Soc. 103(1988), 145-148.
7. T.Nakazi, Certain invariant subspaces of H^{2} and L^{2} on a bidisc, Canad. J. Math. XL(1988), 1272-1280.
8. T.Nakazi, Invariant Subspaces in the bidisc and commutators, J. Austral. Math. Soc. 56(1994), 232-242.
9. T.Nakazi, Homogeneous polynomials and invariant subspaces in the polydiscs, Arch. Math. 58(1992), 56-63.

[^0]: * This research was partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science

 2000 Mathematics Subject Classification : Primary 47 A 15, 46 J 15 ; Secondary 47 A 20

