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Abstract. Axisymmetric or non-axisymmetric Burgers vortices have been stud-
ied numerically as a model of concentrated vorticity fields. Recently, it is rigor-
ously proved that non-axisymmetric Burgers vortices exist for all values of the
vortex Reynolds number if an asymmetric parameter is sufficiently small. On the
other hand, several numerical results suggest that Burgers vortices have simpler
structures if the vortex Reynolds number is large, even when the asymmetric
parameter is not small. In this paper we give a rigorous explanation for this
numerical observation and extend the existence results for high vortex Reynolds
numbers.

1. Introduction

In 1948 Burgers [1] found an exact solution to the three dimensional stationary
Navier-Stokes equations for viscous incompressible fluids as follows. We consider a
two dimensional perturbation of a background straining flow whose velocity is of the
form:

(1.1) U(x1, x2, x3) = us(x1, x2, x3) + u(x1, x2),

where us represents a given background straining flow with a nonnegative asymmetric
parameter λ, and u is an unknown two dimensional perturbation, i.e.,

us(x1, x2, x3) = (−1 + λ

2
x1, −1 − λ

2
x2, x3),(1.2)

u(x1, x2) = (u1(x1, x2), u2(x1, x2), 0)(1.3)

with ∂1u1 + ∂2u2 = 0.
Taking rotation of the velocity U , we find that the vorticity vector has only one

component depending only on two spatial variables:

(1.4) ∇× U = (0, 0, ω(x1, x2))

where ω = ∂1u2 − ∂2u1. Assuming that U satisfies the three dimensional stationary
Navier-Stokes equations for viscous incompressible fluids, we obtain the equations for
ω as follows:

(Bλ,α)















Lω = (u,∇)ω − λMω, x ∈ R
2,

u = K ∗ ω,
∫

R2

ω(x)dx = α.
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Here the operators L and M are given by

L = ∆ +
x

2
· ∇ + 1,(1.5)

M =
1

2
(x1∂1 − x2∂2).(1.6)

The relation between the velocity field u and the vorticity ω is called the Biot-
Savart law, and the convolution kernel K is given by

(1.7) K(x) =
1

2π

x⊥

|x|2 , x⊥ = (−x2, x1).

The value α represents the total circulation, and |α| is the vortex Reynolds number
since the viscosity coefficient is normalized to one in our case. We call a solution to
the equation (Bλ,α) the Burgers vortex.

Let G be the two dimensional Gauss kernel:

(1.8) G(x) =
1

4π
e−

|x|2

4 .

Then by direct calculations, we see that G satisfies

LG = 0, (K ∗ G,∇)G = 0.

Thus αG solves the equation (Bλ,α) for λ = 0. This is the exact solution Burgers
found, and it is called the axisymmetric Burgers vortex. The stability of the axisym-
metric Burgers vortices was firstly discussed by Y. Giga and T. Kambe [7] for small
|α| (see also the related work by A. Carpio [2]), and this smallness assumption was
removed by Th. Gallay and C. E. Wayne [4].

The case λ 6= 0 is called non-axisymmetric. In this case, the equation (Bλ,α)
has not yet been studied much. As far as the author knows, the only mathematical
results are the results by Th. Gallay and C. E. Wayne [5], [6]. In [5] they constructed
solutions to the equations (Bλ,α) in the Gaussian weighted L2 space for any Reynolds
numbers |α| when the asymmetric parameter λ is sufficiently small (λ << 1

2 ). They
also recovered the large-Reynolds-number asymptotics of H. K. Moffatt, S. Kida, and
K. Okhitani [10] in this case. For not sufficiently small λ, the existence and uniqueness
of the Burgers vortex are obtained only when the Reynolds number |α| is sufficiently
small (the smallness of |α| depends on λ ∈ [0, 1)); see [6]. Roughly speaking, the
term λMω leads to the slow spatial decay in x2 direction, which causes difficulties in
controlling the nonlinear term.

The Burgers vortex, or the equation (Bλ,α), has been used as a model which
describes local structures of intensed vorticity fields in turbulence. Although there
are only a few mathematical results, the Burgers vortices have been well studied
numerically; see A. C. Robinson and P. G. Saffman [14], S. Kida and K. Ohkitani
[8], H. K. Moffat, S. Kida, and K. Ohkitani [10], A. Prochazka and D. I. Pullin
[12], and A. Prochazka and D. I. Pullin [13]. From physical motivations, the case
of high Reynolds numbers is mainly investigated. The interesting feature of their
results is that the Burgers vortex has simpler structures and better stability when the
Reynolds number |α| is large. Especially, it is numerically shown that the shape of
the isovorticity contour becomes more circular as the Reynolds number is increasing.
In the previous work [11] the author studied a linearized operator for the equation
(Bλ,α) and obtained some estimates and spectrum behavior for this operator which
are compatible with the numerical results.

In the present paper we consider the equation (Bλ,α) when the Reynolds number
|α| is large, and the asymmetric parameter λ is less than 1

2 .
To state our results precisely, let us introduce function spaces.
Let X, Y be the real Hilbert spaces defined as follows.
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X = {w ∈ L2(R2) | G− 1
2 w ∈ L2(R2),

∫

R2

wdx = 0,(1.9)

< w1, w2 >X=

∫

R2

G−1(x)w1(x)w2(x)dx},

Y = {w ∈ X | ∂iw ∈ X, i = 1, 2,(1.10)

< w1, w2 >Y =

∫

R2

G−1(x)
(

w1(x)w2(x) + ∇w1(x) · ∇w2(x)
)

dx.}

We also define the subspace of X

W = {w ∈ X | , G− 1
2 xiw ∈ L2(R2) i = 1, 2,(1.11)

< w1, w2 >W =

∫

R2

G−1(x)
(

w1(x)w2(x) + |x|2w1(x)w2(x)
)

dx.}

Clearly the closed subspace Y ∩ W (equipped with the natural scalar product) is
compactly embedded in X . Motivated by [11], we set PSX as the space of all radially
symmetric functions in X , i.e.,

(1.12) PSX = {f ∈ X | f(Rx) = f(x) a.e. x ∈ R
2 for all orthogonal matrix R}.

Let PS⊥X be the orthogonal complement of PSX in X and let w∞ ∈ Y ∩W ∩PS⊥X

be the function which satisfies the equation

(1.13) MG = Λw∞.

The existence of w∞ is obtained in [5] (see also [10]). In fact, w∞ is uniquely deter-
mined in PS⊥X ; see Section 2. We are now in position to state our main result.

Theorem 1.1. Let λ ∈ [0, 1
2 ). Then there is a number R(λ) ≥ 0 such that for any

α ∈ R with |α| ≥ R(λ) , there exists a solution ωα,λ of the equation (Bλ,α) such that
ωα,λ − αG ∈ Y ∩ W ,

∫

R2 xiωα,λdx = 0, i = 1, 2, and

(1.14) ||ωα,λ − αG − λw∞||Y ∩W ≤ Cλ

(1 − 2λ)(1 + |α|)
where the constant C is independent of α and λ. The constant R(λ) is taken as

lim
λ→ 1

2

R(λ) = ∞.(1.15)

This solution is unique in the following closed ball in X:

{f ∈ X |
∫

R2

xif(x)dx = 0, i = 1, 2, ||f − αG − λw∞||Y ∩W ≤ Cλ

(1 − 2λ)(1 + R(λ))
}.

Remark 1.1. It is not difficult to see that the constant R(λ) can be taken as zero
for sufficiently small λ. So the above theorem improves the existence result obtained
by Th. Gallay and C. E. Wayne [5]. In [6] the solution of (Bλ,α) is obtained in
the polynomial weighted L2 space for λ ∈ [0, 1) when the Reynolds number |α| is
sufficiently small. In particular, the solution is constructed near αGλ where

(1.16) Gλ(x) =

√
1 − λ2

4π
e−

1+λ
4

x2
1−

1−λ
4

x2
2 .

Note that Gλ is a solution of (L + λM)Gλ = 0. The above result shows that the
dynamics of the Burgers vortex depends on the Reynolds number and has simpler
structures as |α| is increasing, which gives the rigorous explanation for the numerical
observation for λ ∈ [0, 1

2 ).
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Remark 1.2. In [5] the asymptotic estimate of ωα,λ at large Reynolds numbers (1.14)
is obtained by establishing the uniform estimates for the operator (L − αΛG)−1 (see
(1.17) for the definition of ΛG) and using the smallness of λ(<< 1

2 ). In our proof we
use the advantage of the equation at large Reynolds numbers instead of the smallness
of λ. In particular, it is revealed that how the radially or non-radially symmetric parts
of the Burgers vortex are influenced by the value of the Reynolds numbers. We note
that the estimate (1.14) shows the validity of the formal asymptotic expansion by H.
K. Moffat, S. Kida, and K. Ohkitani [10].

Remark 1.3. The restriction λ < 1
2 seems to be essential if we try to find the Burgers

vortex in the Gaussian weighted L2 space X; see (1.14) and the estimates in Lemma
3.1. We also note that the function Gλ belongs to X if and only if λ < 1

2 .

In order to prove the main theorem, we expand the equation (Bλ,α) around αG +
λw∞. Then we get the equation for w = ω − αG − λw∞:

(1.17) (L − αΛG + λM)w = B(w, w) + λΛw∞w + λfλ,

where

B(f, h) = (K ∗ f,∇)h(1.18)

Λhf = B(h, f) + B(f, h),(1.19)

for h, f ∈ Y .
The function fλ is defined as

(1.20) fλ = −Lw∞ + λ
(

B(w∞, w∞) −Mw∞

)

.

To derive the function fλ from the equation (Bλ,α), we used the definition of w∞,
and the facts that LG = 0, B(f, g) = 0 for f, g ∈ Y ∩ PSX . By direct calculations,
we can check that the functions w∞, B(w∞, w∞), and Mw∞ belongs to PS⊥ X ; see
Section 2. Hence the function fλ also belongs to PS⊥X .

In general, the integro-differential operator Λh is not a closed operator in X . To
avoid this inconvenience, as in [11], we consider the closure of ΛG instead of ΛG itself.
For simplicity, we write

Λ = ΛG; the closure of ΛG in X, Λ1 = Λw∞ .(1.21)

Let X1 be the closed subspace of X defined by

(1.22) X1 = {f ∈ X |
∫

R2

xif(x)dx = 0, i = 1, 2}.

Then we see that the equation for w = ω−αG−λw∞ is also invariant in X1. Thus
we consider the equation

(B̃λ,α)







(L − αΛ + λM)w = B(w, w) + λΛ1w + fλ, x ∈ R
2,

∫

R2

w(x)dx =

∫

R2

xiw(x)dx = 0, i = 1, 2.

The reason why we consider the equation in X1 instead of X is that the kernel of
Λ coincides with PSX1(= PSX) in this space by [11]; see Section 2.

We shall construct a solution of (B̃λ,α) by the Schauder fixed point theorem. And
then, we shall show the uniqueness of solutions under the assumptions of the theorem.

Let us state what is the difficulty and how we overcome it. The main difficulty
appears when we deal with the term λMw. In [5] this term is treated as the per-
turbation. However, since Mw is not a lower order term, we cannot regard the term
λMw as the perturbation if λ is not sufficiently small.

In [11] it is shown that the operator norm of the inverse of Lα := (L − αΛ)|P
S⊥X

in X is small when |α| is large. But this is still not enough to control the term λMw.
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We note that if ||L−1
α ∇||X→Y is small when |α| is large, then we could regard λMw

as the perturbation. But it seems that the smallness of ||L−1
α ∇||X→Y is not true. So

far, we only know ||L−1
α ∇||X→Y is uniformly bounded with respect to |α| by [5].

The above observation implies that we should treat the term λMw as the main part
of the equation when λ is not small. That is, we regard the term (L−αΛ+λM)w as
the principal term. Thus the most important step is to establish the estimates for the
operator (L−αΛ+λM)−1 in X1. We note that even the existence of (L−αΛ+λM)−1

is not trivial. The estimates for L−1
α suggest that (L − αΛ + λM)−1 have better

estimates if it acts on PS⊥X1 (the orthogonal complement of PSX1 in X1) and |α| is
large. This is shown to be true, but we need more complicated steps to prove this,
since the term λMw leads to the slow spatial decay in x2 direction and also gives
rise to the interaction between different Fourier modes with respect to the angular
variable in polar coordinates. For example, we can easily see that the space PSX1 or
PS⊥X1 is not invariant under the action of the operator L−αΛ + λM. With careful
analyses of the interaction between the radially symmetric part and the non-radially
symmetric part, we establish the required estimates for (L−αΛ+λM)−1; see Section
3 for details.

We construct solutions of (B̃λ,α) based on the estimates for the operator (L−αΛ+
λM)−1. To make use of the advantage at large Reynolds numbers, we decompose a

solution of (B̃λ,α) into the radially symmetric part and non-radially symmetric part.
For the non-radially symmetric part, we obtain better estimates when |α| is large. On
the other hand, we do not have any advantage in the estimates of (L− αΛ + λM)−1

for the radially symmetric part. However, from the structure of the equation, we
see that the radially symmetric part of solutions is essentially expressed by the non-
radially symmetric part of them. This enables us to obtain the desired estimates also
for the radially symmetric part of solutions. The asymptotic estimates of solutions at
large Reynolds numbers directly follow from the estimates of the function (L− αΛ +
λM)−1fλ.

This paper is organized as follows. In Section 2, we summarize the known results
for some linear operators obtained in [4], [5], and [11]. We also prove some properties
of the bilinear form B(f, h) and the function w∞. In Section 3, we establish the
estimates for the operator (L − αΛ + λM)−1, which is the core of this paper. In

Section 4, we construct a solution of the equation (B̃λ,α) which gives the proof of the
former part of Theorem 1.1. In Section 5, we give the asymptotic estimates (1.14) by
deriving the estimates of the function (L − αΛ + λM)−1fλ.

2. Preliminaries

2.1. Known results for some linear operators. In this section we recall the
several known properties for some linear operators we consider in this paper.

First of all, it is well known that the operator L is self-adjoint in X and its spectrum
consists of eigenvalues {−n

2 | n = 1, 2, · · · }. The associated eigenfunctions for −n
2 are

the Hermite functions {∂β1

1 ∂
β2

2 G} with β1 + β2 = n. So the subspace X1 is nothing
but the orthogonal complement of {β1∂1G + β2∂2G | βi ∈ R} in X .

In [5] and [6] Th. Gallay and C. E. Wayne proved the following lemma for the
operators ΛG and L − αΛG.

Lemma 2.1 ([5], [6]).

(1) (−L)−
1
2 is bounded from X into Y ∩ W .

(2) ΛG is bounded from Y into X.
(3) ΛG is skew-symmetric: for any w1, w2 ∈ Y , we have < ΛGw1, w2 >X + <

w1, ΛGw2 >X= 0.
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(4) (L − αΛG)−1 is compact in X and bounded from X into Y . Moreover, its
operator norm is bounded uniformly in α.

In [11] the operator Λ (the closure of ΛG in X) and L−αΛ are studied. As stated
in [11], the operator Λ is expressed in terms of polar coordinates and the Fourier series
expansion with respect to the angular variable. We omit the details here. We only
state the results in [11] without proofs.

Lemma 2.2 ([11]). The kernel of Λ in X is given by

(2.1) Ker Λ = PSX ⊕ {β1∂1G + β2∂2G | βi ∈ R}.
Moreover, let Lα := (L − αΛ)|Ran Λ : D(L) ∩ Ran Λ → Ran Λ. Then we have

(2.2) lim
|α|→∞

sup
µ∈σ(Lα)

Re (µ) = −∞.

Here, σ(Lα) is the spectrum of Lα and Re (µ) is the real part of µ.

The above characterization of Ker Λ shows that Ker Λ = PSX1 if Λ is restricted
on X1. This fact is essentially used in this paper.

2.2. The properties of the bilinear form and the function w∞. The bilinear
form B(f, h) = (K ∗ f,∇)h plays important roles in the study of Burgers vortices.
We start from the following proposition.

Proposition 2.1. Let 2 < r < 3 and p = r
2r−3 . Let f ∈ Lr(R2)∩Lp(R2) and h ∈ Y .

Then we have

||B(f, h)||X ≤ C||f ||
1
4

Lp ||f ||
3
4

Lr ||h||Y ,(2.3)

||(−L)−
1
2 B(f, h)||X ≤ C||f ||

1
4

Lp ||f ||
3
4

Lr ||h||X .(2.4)

Proof. We first note that by the Gagliardo-Nirenberg inequality, we have

||K ∗ f ||L∞ ≤ C||K ∗ f ||
1
4

Lq ||∇K ∗ f ||
3
4

Lr ,

where 1
3q

= 1
2 − 1

r
. We note that 2 < q < ∞ from the condition 2 < r < 3. Then by

the Hardy-Littlewood-Sobolev inequality and the Calderón-Zygmund inequality, we
see

(2.5) ||K ∗ f ||L∞ ≤ C||f ||
1
4

Lp ||f ||
3
4

Lr ,

since 1
p

= 1
q

+ 1
2 . Thus

||B(f, h)||X = ||G− 1
2 (K ∗ f,∇)h||L2

≤ ||K ∗ f ||L∞ ||G− 1
2∇h||L2

≤ C||f ||
1
4

Lp ||f ||
3
4

Lr ||h||Y .

This proves the estimate (2.3).
To show the estimate (2.4), we prove the estimate

(2.6) ||(−L)−
1
2 ∂iw||X ≤ C||w||X , i = 1, 2,

for w ∈ X . This estimate is obtained by the duality argument. Indeed, we have for
any h ∈ X ,

< (−L)−
1
2 ∂iw, h >X = < ∂iw, (−L)−

1
2 h >X

= −1

2
< w, xi(−L)−

1
2 h >X − < w, ∂i(−L)−

1
2 h >X .

Since (−L)−
1
2 is bounded from X into Y ∩ W , we have

| < (−L)−
1
2 ∂iw, h >X | ≤ C||w||X ||h||X ,
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this proves (2.6). Now the estimate (2.4) immediately follows from B(f, h) = ∇ ·
(h K ∗ f) and the estimate (2.5). The proof of the proposition is completed.

From the above proposition, we can obtain the estimates for the integro-differential

operator Λh. We set A = (−L)
1
2 . Then A is sectorial; for example, see [3, Section

II, Corollary 4.7]. Since A has a bounded inverse, we set the norm on D(Aγ) for
γ ∈ [0, 1] as

(2.7) ||f ||D(Aγ) = ||Aγf ||X ,

instead of the usual graph norm. By the interpolation arguments, we have the fol-
lowing corollary.

Corollary 2.1. Let γ1, γ2 ∈ (0, 1]. Let f ∈ D(Aγ1) and h ∈ D(Aγ2). Then we have

(2.8) ||(−L)−
1
2 Λhf ||X ≤ C(||h||D(Aγ2 )||f ||X + ||f ||D(Aγ1 )||h||X),

where C depends only on γ1 and γ2.

Proof. Let 2 < r < 3. Then by the Gagliardo-Nirenberg inequality, we have

||f ||Lr ≤ C||f ||1−σ
L2 ||∇f ||σL2 ,

for σ = 1 − 2
r
. Thus ||f ||Lr ≤ C||f ||1−σ

X ||Af ||σX and this shows that

(2.9) ||f ||Lr ≤ C||f ||(X,D(A))σ,1
≤ C||f ||D(Aσ′ ),

for σ < σ′; see [9, Section 2.2] for details. We note that if 2 < r < 3, then p = r
2r−3 ∈

(1, 2). Hence

||f ||Lp = ||G 1
2 G− 1

2 f ||Lp ≤ C||f ||X ,

by the Hölder inequality. Combining these, by choosing suitable r in the estimate
(2.4), we obtain the estimate (2.8).

To see the qualitative properties of the bilinear form B(f, h), we consider the
representation of B(f, h) in terms of polar coordinates.

Let n ∈ Z and let Pn be the orthogonal projection defined by

Pnw = wn(r)einθ ,

wn(r) =
1

2π

∫ 2π

0

w(r cos θ, r sin θ)e−inθdθ.

We set

(2.10) PnX = {Pnw | w ∈ X}.

Then we have the following proposition for B(f, h).

Proposition 2.2. Let f ∈ Y ∩ PnX and h ∈ Y ∩ PmX. Then B(f, h) ∈ Pn+mX.

Proof. We recall the argument of [4, Lemma 4.4]. Let f = fn(r)einθ and h =

hm(r)eimθ in polar coordinates. We set vf = (v
(1)
f , v

(2)
f ) = K ∗ f . We write v

(1)
f =

vr cos θ − vθ sin θ and v
(2)
f = vr sin θ + vθ cos θ where vr = vr(r)e

inθ and vθ = vθe
inθ.
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Then from div vf = 0 and rot vf = f , we obtain the linear ordinary differential
equations for vr(r) and vθ(r)

v′r +
vr

r
+ in

vθ

r
= 0,(2.11)

v′θ +
vθ

r
− in

vr

r
= fn.(2.12)

When n 6= 0, by eliminating vθ, we obtain the equation for Ωn = 1
2in

rvr

(2.13) −1

r
(rΩ′

n)′ +
n2

r2
Ωn − 1

2
fn = 0.

By the decay at infinity and the local integrability conditions, solution of the above
equation is written by

(2.14) Ωn(fn)(r) =
1

4|n|
(

∫ r

0

(
s

r
)|n|sfn(s)ds +

∫ ∞

r

(
r

s
)|n|sfn(s)ds

)

.

The function vθ is obtained by vr. From the uniqueness of the equation

∆vf = ∇⊥f = (−∂2f, ∂1f),

we see that vf is indeed expressed by the above vr and vθ.

Now by using the relation ∂1 = cos θ∂r − sin θ
r

∂θ and ∂2 = sin θ∂r + cos θ
r

∂θ, we
obtain

B(f, h) =
(

vrh
′
m +

im

r
vθhm

)

ei(n+m)θ.(2.15)

When n = 0, again by the decay at infinity and the local integrability conditions,
we see that vr = 0 and vθ(r) =

∫ ∞

r
r
s
fn(s)ds from (2.11), (2.12). Thus

(2.16) B(f, h) =
im

r
vθhmeimθ.

This completes the proof.

Corollary 2.2. If h ∈ Y ∩ PSX, then Λhf ∈ PS⊥X for any f ∈ Y ∩ PS⊥X.

Proof. Since PSX = P0X , the assertion immediately follows from the above propo-
sition.

Corollary 2.3. The function fλ belongs to PS⊥X.

Proof. We recall that

fλ = −Lw∞ + λ(B(w∞, w∞) −Mw∞).

In [5, Proposition 3.1] w∞ is obtained as w∞ = w(r) sin 2θ for some function w(r).
Note that from the characterization of Ker Λ, this is uniquely determined in PS⊥X .

Since PS⊥X is invariant under the action of L, we have Lw∞ ∈ PS⊥X . By direct
calculations, we also have Mw∞ ∈ PS⊥X . Moreover, from the above proposition and

w∞ = w(r) sin 2θ = w(r) ei2θ−e−i2θ

2i
, it is not difficult to see B(w∞, w∞) ∈ PS⊥X .

This completes the proof.

Finally, we remark the following simple proposition, which guarantees that the
space X1 is invariant under the equation (B̃λ,α).

Proposition 2.3. Let f, h ∈ Y . Then Λhf ∈ X1.
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Proof. We set vf = (v
(1)
f , v

(2)
f ) = K ∗ f and vh = (v

(1)
h , v

(2)
h ) = K ∗ h. The proof is

given by the integration by parts. Indeed, by the definition of Λh, we have

∫

R2

x1Λhfdx =

∫

R2

x1∇ · (vhf + vfh)dx

= −
∫

R2

(v
(1)
h f + v

(1)
f h)dx

=

∫

R2

−v
(1)
h (−∂2v

(1)
f + ∂1v

(2)
f ) − v

(1)
f (−∂2v

(1)
h + ∂1v

(2)
h )dx

=

∫

R2

(−∂2v
(1)
h v

(1)
f + ∂1v

(1)
h v

(2)
f + v

(1)
f ∂2v

(1)
h + ∂1v

(1)
f v

(2)
h )dx

= −
∫

R2

(∂2v
(2)
h v

(2)
f + ∂2v

(2)
f v

(2)
h )dx

= 0.

Similarly, we have
∫

R2 x2Λhfdx = 0. It is obvious that
∫

R2 Λhfdx = 0. Now the
proof is completed.

3. The estimates for the linearized operator

In this section, we establish the estimates for the linearized operator L−αΛ+λM.

The following lemma is the core of this paper. We recall that A = (−L)
1
2 .

Lemma 3.1. Let λ ∈ [0, 1
2 ) and γ ∈ [0, 1). Then there is some R1(λ) ≥ 0 independent

of γ such that for any α with |α| ≥ R1(λ) and f ∈ X1, we have

(3.1)

||(L − αΛ + λM)−1f ||Y ∩W ≤ K1

1 − 2λ
||(−L)−

1
2 f ||X

(3.2)

||PS⊥(L − αΛ + λM)−1f ||D(Aγ) ≤ δ1(|α|, γ)

(

||PS⊥(−L)−
1
2 f ||X +

K1λ

1 − 2λ
||(−L)−

1
2 f ||X

)

(3.3)

||PS(L − αΛ + λM)−1f ||D(Aγ) ≤ (1 + λ)||PS(−L)−
1
2 f ||X

+λ(1 + λ)δ2(|α|, γ)

(

||PS⊥(−L)−
1
2 f ||X +

K2K1λ

1 − 2λ
||(−L)−

1
2 f ||X

)

.

Here, the constants K1 and K2 are independent of λ, γ, and α with |α| ≥ R1(λ).
The constants δ1(|α|, γ) and δ2(|α|, γ) are bounded with respect to |α| ∈ [R1(λ),∞)
and γ ∈ [0, 1), and satisfy that

(3.4) lim
|α|→∞

δ1(|α|, γ) = lim
|α|→∞

δ2(|α|, γ) = 0.

Remark 3.1. It is not difficult to see that the norm of Y ∩ W is equivalent with
|| · ||D(A). So the estimate (3.1) is a special case of (3.2) and (3.3). However, we do
not have the property (3.4) in this case.

To prove the above lemma, we first consider the operator L−αΛ+λM−λI . Since
L is self-adjoint and −L ≥ 1 in X1, we can write

L − αΛ + λM− λI = −(−L)
1
2 (I + αΣ − λΠ + λ(−L)−1)(−L)

1
2 ,

where

Σ = (−L)−
1
2 Λ(−L)−

1
2 ,(3.5)

Π = (−L)−
1
2M(−L)−

1
2 .(3.6)
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By the results in [5], we already know that Σ is compact and skew-symmetric in
X and Π is bounded in X . We shall show the following proposition.

Proposition 3.1. Let λ ∈ [0, 1
2 ). Then the operator (I + αΣ − λΠ + λ(−L)−1) has

a bounded inverse in X satisfying the estimate

(3.7) ||(I + αΣ − λΠ + λ(−L)−1)−1f ||X ≤ 1

1 − 2λ
||f ||X .

Proof of Proposition 3.1. Let Qα,λ be a bilinear form on X defined by

(3.8) Qα,λ(f, h) =< (I + αΣ − λΠ + λ(−L)−1)f, h >X .

Clearly, Qα,λ is bounded, i.e., there is some constant K such that |Qα,λ(f, h)| ≤
K||f ||X ||h||X for all f, h ∈ X . Since Σ is skew-symmetric, we have < Σf, f >X= 0.
We also recall the equality

||(−L)
1
2 h||2X = < h, (−L)h >X

=

∫

R2

|∇(G− 1
2 (x)h(x))|2dx +

1

16
|||x|h||2X − 1

2
||h||2X ,

which leads to the inequality

(3.9) ||(−L)−
1
2 f ||2X ≥ 1

8
|||x|(−L)−

1
2 f ||2X − 2||f ||2X .

Combining these, we have

Qα,λ(f, f) = < (I + αΣ − λΠ + λ(−L)−1)f, f >X

≥ ||f ||2X − λ < (−L)−
1
2M(−L)−

1
2 f, f >X +

λ

8
|||x|(−L)−

1
2 f ||2X − 2λ||f ||2X

= ||f ||2X − λ < M(−L)−
1
2 f, (−L)−

1
2 f >X +

λ

8
|||x|(−L)−

1
2 f ||2X − 2λ||f ||2X

= ||f ||2X − λ

8
|||x|(−L)−

1
2 f ||2X +

λ

8
|||x|(−L)−

1
2 f ||2X − 2λ||f ||2X

= (1 − 2λ)||f ||2X ,

thus Qα,λ is coercive. By the Lax-Milgram theorem, (I + αΣ − λΠ + λ(−L)−1)
is invertible in X , and the estimate (3.7) follows from the above inequality. This
completes the proof of the proposition.

From Proposition 3.1, we see that L− αΛ + λM− λI is invertible and its inverse
(L − αΛ + λM − λI)−1 = −(−L)−

1
2 (I + αΣ − λΠ + λ(−L)−1)−1(−L)−

1
2 has the

estimates

||(L − αΛ + λM− λI)−1f ||X ≤ 1

1 − 2λ
||f ||X(3.10)

||(L − αΛ + λM− λI)−1f ||Y ∩W ≤ C

1 − 2λ
||f ||X .(3.11)

Next we improve the above estimates for large |α|. We set h = (L − αΛ + λM−
λI)−1f . Then h ∈ Y ∩ W and we have

(I + αΣ − λΠ + λ(−L)−1)(−L)
1
2 h = −(−L)−

1
2 f,

so

(I + αΣ + λ(−L)−1)(−L)
1
2 h = −(−L)−

1
2 f + λΠ(−L)

1
2 h

= −(−L)−
1
2 f + λ(−L)−

1
2Mh.
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Thus we have the relation

h = −(−L)−
1
2 Γ−1

α,λ(−L)−
1
2 f(3.12)

+λ(−L)−
1
2 Γ−1

α,λ(−L)−
1
2Mh,

where

(3.13) Γα,λ = I + αΣ + λ(−L)−1.

Let PS be the projection from X1 onto PSX1; the closed subspace of all radially
symmetric functions in X1. Let PS⊥ = I − PS . We note that the projection PS

commutes with the operators (−L)−
1
2 , Σ. In fact, we have PSΣ = 0. Hence we can

verify

PS⊥h = −(−L)−
1
2 Γ−1

α,λPS⊥(−L)−
1
2 f(3.14)

+λ(−L)−
1
2 Γ−1

α,λPS⊥(−L)−
1
2Mh,

PSh = −(−L)−
1
2 Γ−1

0,λPS(−L)−
1
2 f(3.15)

+λ(−L)−
1
2 Γ−1

0,λPS(−L)−
1
2MPS⊥h.

In the last line, we used the fact that

Γ−1
α,λPS = (I + αΣ + λ(−L)−1)−1

PS = (I + λ(−L)−1)−1
PS ,

and PS(−L)−
1
2Mh = PS(−L)−

1
2MPS⊥h for h with PS⊥h ∈ Y ∩ W ∩ PS⊥X . Note

that PS⊥h ∈ Y ∩ W ∩ PS⊥X follows from the representation (3.14), since (−L)−
1
2M

is bounded from Y ∩ W to X .
The following lemma is crucial.

Lemma 3.2. Let λ ≥ 0 and γ ∈ [0, 1). Then we have for any f ∈ X1,

||(−L)−
1
2 Γ−1

0,λPSf ||D(Aγ) ≤ ||f ||X ,(3.16)

||(−L)−
1
2 Γ−1

α,λPS⊥f ||D(Aγ) ≤ ε1(|α|, γ)||f ||X ,(3.17)

||(−L)−
1
2 Γ−1

0,λPS(−L)−
1
2M(−L)−

1
2 Γ−1

α,λPS⊥f ||D(Aγ) ≤ ε2(|α|, γ)||f ||X .(3.18)

Here, ε1(|α|, γ) and ε2(|α|, γ) are uniformly bounded with respect to |α| ≥ 0, γ ∈ [0, 1),
and λ ≥ 0. Moreover, they satisfy that

(3.19) lim
|α|→∞

εi(|α|, γ) = 0, i = 1, 2.

Proof of Lemma 3.2. First we note that

(3.20) ||Γ−1
α,λf ||X ≤ ||f ||X .

Indeed, we have

||Γα,λf ||X ≤ (1 + α + λ)C||f ||X ,

and

< Γα,λf, f >X = < f + αΣf + λ(−L)−1f, f >X

= ||f ||2X + λ||(−L)−
1
2 f ||2X

≥ ||f ||2X .
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These estimates give (3.20) by the Lax-Milgram theorem. From the estimate (3.20)
we obtain

||(−L)−
1
2 Γ−1

0,λPSf ||D(Aγ) ≤ ||f ||X ,

||(−L)−
1
2 Γ−1

α,λPS⊥f ||D(Aγ) ≤ ||f ||X ,

||(−L)−
1
2 Γ−1

0,λPS(−L)−
1
2M(−L)−

1
2 Γ−1

α,λPS⊥f ||D(Aγ) ≤ C ′||f ||X ,

where C ′ = ||(−L)−
1
2M(−L)−

1
2 ||X→X . Here we used the estimate ||(−L)−

1
2 f ||D(Aγ) ≤

||f ||X for f ∈ X1.
We prove the estimates (3.17) and (3.18) by deriving a contradiction. Without loss

of generality, we may assume that α > 0. Set ε1(α, γ) := ||(−L)−
1
2 Γ−1

α,λPS⊥ ||X→D(Aγ).

We assume that lim supα→∞ ε1(α, γ) > 0.

Then, there exists a sequence {αi}i∈N, αi → ∞ as i → ∞, such that ε1 =
inf i∈N ε1(αi) > 0.

Then we have a sequence of functions {fi}i∈N with ||fi||X = 1 such that

||(−L)−
1
2 Γ−1

α,λPS⊥fi||D(Aγ ) = ||(−L)
−1+γ

2 Γ−1
α,λPS⊥fi||X ≥ ε1(αi)

2
||fi||X ≥ ε1

2
> 0.

We set hi = (−L)
−1+γ

2 Γ−1
α,λPS⊥fi ∈ PS⊥X1.

Since (−L)
−1+γ

2 is compact (because (L)−
1
2 is compact) and {Γ−1

α,λPS⊥fi} is bounded

in X , we have a subsequence {hj} of {hi} such that hj converges to a function h∞ ∈
PS⊥X1 strongly in X1. Then h∞ satisfies (−L)

1−γ
2 h∞ ∈ X1 and ||h∞||X ≥ ε1

2 > 0.
On the other hand, for any f ∈ X1, we see

< (−L)−
1
2 Λ(−L)−

γ
2 h∞, f >X

= − < (−L)−
γ
2 h∞, Λ(−L)−

1
2 f >X

= − lim
j→∞

< (−L)−
γ
2 hj , Λ(−L)−

1
2 f >X

= lim
j→∞

< (−L)−
1
2 Λ(−L)−

γ
2 hj , f >X

= lim
j→∞

1

αj

(< Γαj ,λ(−L)
1−γ
2 hj , f >X − < (−L)

1−γ
2 hj , f >X −λ < (−L)−

1+γ
2 hj , f >X)

= lim
j→∞

1

αj

(< PS⊥fj , f >X − < (−L)
1−γ

2 hj , f >X −λ < (−L)−
1+γ
2 hj , f >X)

= 0.

Thus (−L)−
1
2 Λ(−L)−

γ
2 h∞ = 0, that is , Λ(−L)−

γ
2 h∞ = 0. However, since

Ker Λ = PSX1 and h∞ ∈ PS⊥X1 (and thus (−L)−
γ
2 h∞ ∈ PS⊥X1), we must have

(−L)−
γ
2 h∞ = 0. Hence h∞ = 0. This contradicts with ||h∞||X > 0. Now the

estimate (3.17) has been proved.
From the estimate (3.17), we have the following claim:

Let {fi}i∈N be any bounded sequence in X1. Then for any sequence {αi}i∈N in R

such that αi → ∞ as i → ∞, the sequence hi = Γ−1
αi,λ

PS⊥fi weakly converges to 0 in
X1.

Indeed, for any f ∈ X1 ∩ D(L), we have

lim
i→∞

< hi, f >X = lim
i→∞

< hi, (−L)
−1+γ

2 (−L)
1−γ

2 f >X

= lim
i→∞

< (−L)
−1+γ

2 hi, (−L)
1−γ

2 f >X

= 0.
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Since D(L) is dense in X1 and hi is bounded in X by the estimate (3.17), we have
the claim.

The estimate (3.18) is shown by the above claim. We set

ε2(α, γ) = ||(−L)−
1
2 Γ−1

0,λPS(−L)−
1
2M(−L)−

1
2 Γ−1

α,λPS⊥ ||X→D(Aγ)

= ||(−L)
−1+γ

2 Γ−1
0,λPS(−L)−

1
2M(−L)−

1
2 Γ−1

α,λPS⊥ ||X→X .

Again we assume that there exists a sequence {αi}i∈N, αi → ∞ as i → ∞, satisfying
ε2 = inf i∈N αi > 0. Then we have {fi}i∈N with ||fi||X = 1 such that

hi = (−L)
−1+γ

2 Γ−1
0,λPS(−L)−

1
2M(−L)−

1
2 Γ−1

αi,λ
PS⊥fi

satisfies inf i∈N ||hi||X ≥ ε2
2 > 0.

Since (−L)−
1
2M(−L)−

1
2 Γ−1

αi,λ
PS⊥ is bounded in X (note that (−L)−

1
2 xi is bounded

in X which is obtained in [5]), we have a subsequence {hj}j∈N of {hi}i∈N such that
hj strongly converges to a nontrivial function h∞ in X1. Now for any f ∈ X1,

< h∞, f >X

= lim
j→∞

< hj , f >X

= lim
j→∞

< (−L)
−1+γ

2 Γ−1
0,λPS(−L)−

1
2M(−L)−

1
2 Γ−1

αj ,λPS⊥fj , f >X

= lim
j→∞

< M(−L)−
1
2 Γ−1

αj ,λPS⊥fj , (−L)−
1
2 PSΓ−1

0,λ(−L)
−1+γ

2 f >X

= −1

2
lim

j→∞
< (−L)−

1
2 Γ−1

αj ,λPS⊥fj , (x
2
1 − x2

2)(−L)−
1
2 PSΓ−1

0,λ(−L)
−1+γ

2 f >X

− lim
j→∞

< (−L)−
1
2 Γ−1

αj ,λPS⊥fj ,M(−L)−
1
2 PSΓ−1

0,λ(−L)
−1+γ

2 f >X

= −1

2
lim

j→∞
< Γ−1

αj ,λPS⊥fj , (−L)−
1
2 (x2

1 − x2
2)(−L)−

1
2 PSΓ−1

0,λ(−L)
−1+γ

2 f >X

− lim
j→∞

< Γ−1
αj ,λPS⊥fj , (−L)−

1
2M(−L)−

1
2 PSΓ−1

0,λ(−L)
−1+γ

2 f >X

= 0,

by the above claim. This implies h∞ = 0, which leads to a contradiction. Now the
proof of the lemma is completed.

Proof of Lemma 3.1. Let f̃ ∈ X1. We consider a solution h of the equation

(L − αΛ + λM)h = f̃ .

Then, h satisfies the equation

(3.21) (L − αΛ + λM− λI)h = f̃ − λh.

Thus, from the estimate (3.11) for f = f̃ − λh, we have the estimate

||h||Y ∩W ≤ C

1 − 2λ
||(−L)−

1
2 (f̃ − λh)||X

≤ C

1 − 2λ
||(−L)−

1
2 f̃ ||X +

Cλ

1− 2λ
(||PS⊥h||X + ||PSh||X).(3.22)

For simplicity, we write ε1 = ε1(|α|, γ), ε2 = ε2(|α|, γ) in Lemma 3.2. We apply
Lemma 3.2 to the expression (3.14). Then we have

||PS⊥h||D(Aγ) ≤ ε1(||PS⊥(−L)−
1
2 f̃ ||X + λ||PS⊥(−L)−

1
2 h||X)

+λε1||PS⊥(−L)−
1
2Mh||X

≤ ε1(||PS⊥(−L)−
1
2 f̃ ||X + λ||PS⊥h||X) + Cλε1||h||Y ,
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so

(3.23) ||PS⊥h||D(Aγ) ≤ 2ε1||PS⊥(−L)−
1
2 f̃ ||X + 2Cλε1||h||Y ,

if |α| is sufficiently large or λ is sufficiently small.
We also have from (3.15) and Lemma 3.2,

||PSh||D(Aγ) ≤ ||PS(−L)−
1
2 f̃ ||X + λ||(−L)−

1
2 Γ−1

0,λPS(−L)−
1
2 h||X

+λ||(−L)−
1
2 Γ−1

0,λPS(−L)−
1
2M(−L)−

1
2 Γ−1

α,λPS⊥(−L)−
1
2 (−f̃ + λMh)||X

≤ ||PS(−L)−
1
2 f̃ ||X + λ||(−L)−

1
2 Γ−1

0,λPS(−L)−
1
2 h||X

+λε2||PS⊥(−L)−
1
2 f̃ ||X + λ2ε2||PS⊥(−L)−

1
2Mh||X

≤ ||PS(−L)−
1
2 f̃ ||X + λ||(−L)−

1
2 Γ−1

0,λPS(−L)−
1
2 h||X

+λε2||PS⊥(−L)−
1
2 f̃ ||X + Cλ2ε2||h||Y .

By the relation

< (−L + λI)h, h >X≥ (1 + λ)||h||2X ,

we see that

λ||(−L)−
1
2 Γ−1

0,λPS(−L)−
1
2 h||X = λ||(−L + λI)−1

PSh||X(3.24)

≤ λ

1 + λ
||PSh||X

=
λ

1 + λ
||(−L)−

γ
2 (−L)

γ
2 PSh||X

≤ λ

1 + λ
||PSh||D(Aγ).

Hence we obtain

(3.25)

||PSh||D(Aγ) ≤ (1 + λ)

(

||PS(−L)−
1
2 f̃ ||X + λε2||PS⊥(−L)−

1
2 f̃ ||X + Cλ2ε2||h||Y

)

.

Combining the estimates (3.23) and (3.25) for γ = 0, we have

||PS⊥h||X + ||PS⊥h||X
≤ (1 + λ)||PS(−L)−

1
2 f̃ ||X +

(

2ε1 + λ(1 + λ)ε2
)

||PS⊥(−L)−
1
2 f̃ ||X

+
(

2ε1λ + C(1 + λ)λ2ε2
)

||h||Y ,

thus substituting this into (3.22), we get

||h||Y ∩W ≤ 2
( C

1 − 2λ
+ (1 + λ)

)

||PS(−L)−
1
2 f̃ ||X

+2
( C

1 − 2λ
+ 2ε1 + λ(1 + λ)ε2

)

||PS⊥(−L)−
1
2 f̃ ||X ,

≤ K1

1 − 2λ
||(−L)−

1
2 f̃ ||X ,(3.26)

if |α| is sufficiently large or λ is sufficiently small. This estimate proves the existence
and boundedness of (L − αΛ + λM)−1 by the Fredholm alternative.
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By substituting (3.26) into (3.23) and (3.25), we finally obtain

||PS⊥h||D(Aγ) ≤ 2ε1

(

||PS⊥(−L)−
1
2 f̃ ||X +

K1λ

1 − 2λ
||(−L)−

1
2 f̃ ||X

)

(3.27)

||PSh||D(Aγ) ≤ (1 + λ)||PS(−L)−
1
2 f̃ ||X(3.28)

+λ(1 + λ)ε2

(

||PS⊥(−L)−
1
2 f̃ ||X +

K1K2λ

1 − 2λ
||(−L)−

1
2 f̃ ||X

)

.

The proof of Lemma 3.1 is now completed.

4. Construction of solutions

In this section we construct a solution of the equation

(4.1) w = (L − αΛ + λM)−1
(

B(w, w) + λΛ1w + λfλ

)

,

where Λ1 and fλ are given by (1.21) and (1.20).
In order to use the estimates in Lemma 3.1 effectively, we decompose the equation

into the radially symmetric part and the non-radially symmetric part. That is, we
construct a solution of the form

w = wS + wS⊥ , wS ∈ Y ∩ W ∩ PSX1, wS⊥ ∈ Y ∩ W ∩ PS⊥X1.

Then we see

B(w, w) = B(wS , wS⊥) + B(wS⊥ , wS) + B(wS⊥ , wS⊥)

= ΛwS
wS⊥ +

1

2
Λw

S⊥
wS⊥ ,

Λ1w = Λ1wS + Λ1wS⊥ .

Note that the functions ΛwS
wS⊥ , Λ1wS , and fλ belong to PS⊥X1.

We identify D(Aγ) in X1 with PSD(Aγ)× PS⊥D(Aγ). Here PSD(Aγ) = D(Aγ) ∩
PSX1 and PS⊥D(Aγ) = D(Aγ) ∩ PS⊥X1.

For (f, h) ∈ PSD(Aγ) × PS⊥D(Aγ), we set

H1(f, h) = (L − αΛ + λM)−1Λfh,(4.2)

H2(f, h) =
1

2
(L − αΛ + λM)−1Λhh,(4.3)

H3(f, h) = λ(L − αΛ + λM)−1Λ1f,(4.4)

H4(f, h) = λ(L − αΛ + λM)−1Λ1h,(4.5)

Fα,λ = λ(L − αΛ + λM)−1fλ,(4.6)

and

(4.7) Hα,λ(f, h) =
4

∑

i=1

Hi(f, h) + Fα,λ.

The term (L−αΛ+λM)−1Λfh makes sense for any f, h ∈ D(Aγ) with γ ∈ (0, 1].
Indeed, by Lemma 3.1 and (2.8), we have

||(L − αΛ + λM)−1Λfh||Y ∩W ≤ K1

1 − 2λ
||(−L)−

1
2 Λfh||X

≤ CK1

1 − 2λ
(||h||D(Aγ)||f ||X + ||f ||D(Aγ)||h||X).

Thus the above Hα,λ maps PSD(Aγ)×PS⊥D(Aγ) into Y ∩W∩X1 for any γ ∈ (0, 1].
We fix γ ∈ (0, 1) and write DS = PSD(Aγ), DS⊥ = PS⊥D(Aγ) for simplicity.
Now we define the map Φα,λ on DS × DS⊥ by
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(4.8) Φα,λ(f, h) = (PSHα,λ(f, h), PS⊥Hα,λ(f, h)).

By Lemma 3.1, this map Φα,λ is well-defined. Let κ1, κ2 > 0 and let Xκ1,κ2
be a

closed convex subset in DS × DS⊥ such that

(4.9) Xκ1,κ2
= {(f, h) ∈ DS × DS⊥ | ||f ||D(Aγ) ≤ κ1, ||h||D(Aγ) ≤ κ2}.

The following proposition leads to Theorem 1.1.

Proposition 4.1. Let λ ∈ [0, 1
2 ). Then there exist κ1(λ), κ2(λ), and R2(λ) ≥ 0

such that for any α with |α| ≥ R2(λ), the above Φα,λ has a unique fixed point in
Xκ1(λ),κ2(λ).

Proof. First we show that Φα,λ is a compact mapping on Xκ1(λ),κ2(λ) into itself for
suitable κ1(λ), κ2(λ), and R1(λ) ≥ 0. By Lemma 3.1, we have

||PSH1(f, h)||D(Aγ) ≤ λ(1 + λ)δ2

(

||PS⊥(−L)−
1
2 Λfh||X

+
K2K1λ

1 − 2λ
||(−L)−

1
2 Λfh||X

)

≤ Cλ(1 + λ)(1 +
λ

1 − 2λ
)δ2(||f ||X ||h||D(Aγ) + ||f ||D(Aγ)||h||X).

Here, we used the estimates (2.8). Similarly, we obtain from Lemma 3.1,

||PS⊥H1(f, h)||D(Aγ ) ≤ C(1 +
λ

1 − 2λ
)δ1(||f ||X ||h||D(Aγ) + ||f ||D(Aγ)||h||X),

||PSH2(f, h)||D(Aγ) ≤ C(1 + λ)
(

1 + λ(1 +
λ

1 − 2λ
)δ2

)

||h||X ||h||D(Aγ),

||PS⊥H2(f, h)||D(Aγ ) ≤ C(1 +
λ

1 − 2λ
)δ1||h||X ||h||D(Aγ),

||PSH3(f, h)||D(Aγ) ≤ Cλ2(1 + λ)(1 +
λ

1 − 2λ
)δ2||f ||D(Aγ),

||PS⊥H3(f, h)||D(Aγ ) ≤ Cλ(1 +
λ

1 − 2λ
)δ1||f ||D(Aγ),

||PSH4(f, h)||D(Aγ) ≤ Cλ(1 + λ)
(

1 + λ(1 +
λ

1 − 2λ
)δ2

)

||h||D(Aγ),

||PS⊥H4(f, h)||D(Aγ ) ≤ Cλ(1 +
λ

1 − 2λ
)δ1||h||D(Aγ).

In the estimates for H3, we used the fact that Λ1f ∈ PS⊥X1 by Corollary 2.2. We
also remark that the estimates for ||PSH2(f, h)||D(Aγ ) and ||PSH4(f, h)||D(Aγ) imply
that we potentially require the smallness of ||h||D(Aγ) itself. Especially, the fact that
the term PSH4(f, h) does not depend on f is crucial, since the prefactor constant is
not sufficiently small when λ is not small enough.

The estimate for Fα,λ is

||PSFα,λ||D(Aγ) ≤ Cλ2(1 + λ)(1 +
λ

1 − 2λ
)δ2||(−L)−

1
2 fλ||X ,

||PS⊥Fα,λ||D(Aγ) ≤ Cλ(1 +
λ

1 − 2λ
)δ1||(−L)−

1
2 fλ||X ,

hence especially we have

(4.10) lim
|α|→∞

||Fα,λ||D(Aγ) = 0.
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We also note that ||Fα,λ||D(Aγ) is sufficiently small uniformly in |α| if λ is sufficiently
small. Combining these above, we obtain

(4.11)

||PSH(f, h)||D(Aγ) ≤ C0λ(1 + λ)(1 +
λ

1 − 2λ
)δ2

{

||f ||X ||h||D(Aγ) + ||f ||D(Aγ)||h||X

+||h||X ||h||D(Aγ) + λ
(

||f ||D(Aγ) + ||h||D(Aγ )

)

}

+C0(1 + λ)
{

||h||X ||h||D(Aγ) + λ||h||D(Aγ)

}

+ ||PSFα,λ||D(Aγ),

(4.12)

||PS⊥H(f, h)||D(Aγ) ≤ C0(1 +
λ

1 − 2λ
)δ1

{

||f ||X ||h||D(Aγ) + ||f ||D(Aγ)||h||X

+||h||X ||h||D(Aγ) + λ(||f ||D(Aγ) + ||h||D(Aγ))

}

+ ||PS⊥Fα,λ||D(Aγ).

Here C0 is a numerical constant.
Let κ2 ≤ κ1 ≤ 1. We take |α| sufficiently large (or λ sufficiently small) enough to

satisfy

(4.13) C0λ(1 + λ)(1 +
λ

1 − 2λ
)δ2 ≤ 1

N
,

where N ≥ 100 is determined later. Then for (f, h) ∈ Xκ1,κ2
, we have

||PSH(f, h)||D(Aγ) ≤
1

4
κ1 + C0(1 + λ)(κ2

2 + λκ2) + ||PSFα,λ||D(Aγ).

Next we consider the estimate of (4.12). If λ is not small, then we take |α| suffi-
ciently large enough to satisfy

(4.14) C0(1 +
λ

1 − 2λ
)δ1 ≤ 1

N
.

If λ is sufficiently small enough to satisfy

(4.15) C0λ(1 +
λ

1 − 2λ
) sup

|α|

δ1(|α|, λ) ≤ 1

N
,

then we take κ1 and κ2 sufficiently small enough such as

(4.16) 2C0(1 +
λ

1 − 2λ
)(κ1 + κ2) sup

|α|

δ1(|α|, λ) ≤ 1

N
.

In each case, we have

||PS⊥H(f, h)||D(Aγ) ≤
1

4
κ2 +

1

N
(κ1 + κ2) + ||PS⊥Fα,λ||D(Aγ)

We take 8C0(1 + λ)κ2 = κ1. Then we have

||PSH(f, h)||D(Aγ) ≤
1

2
κ1 + ||PSFα,λ||D(Aγ),(4.17)

||PS⊥H(f, h)||D(Aγ) ≤
1

4
κ2 +

8C0(1 + λ) + 1

N
κ2 + ||PS⊥Fα,λ||D(Aγ),(4.18)

thus if we take N as 8C0(1+λ)+1
N

≤ 1
4 , then Φα,λ maps Xκ1,κ2

into itself, because
||PSFα,λ||D(Aγ) and ||PS⊥Fα,λ||D(Aγ) are sufficiently small if we take |α| large or λ

small enough. We omit the details. Since H is a mapping from DS ×DS⊥ into D(A),
it is easy to see that Φα,λ is completely continuous.
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Hence by the Schauder fixed point theorem, Φα,λ has at least one fixed point on
Xκ1,κ2

.
Now we shall prove that a fixed point of Φα,λ on Xκ1,κ2

is unique. Let (f1, h1), (f2, h2) ∈
Xκ1,κ2

be fixed points of Φα,λ. Then, arguing as same as above, we obtain

||f1 − f2||D(Aγ) = ||PSH(f1, h1) − PSH(f2, h2)||D(Aγ)

≤ 1

4
||f1 − f2||D(Aγ) + C||h1 − h2||D(Aγ),

||h1 − h2||D(Aγ) = ||PS⊥H(f1, h1) − PS⊥H(f2, h2)||D(Aγ )

≤ 1

4
||h1 − h2||D(Aγ) +

C

N
||f1 − f2||D(Aγ),

for a numerical constant C independent of N .
Hence ||f1 − f2||D(Aγ) ≤ 4C

3 ||h1 − h2||D(Aγ) and

||h1 − h2||D(Aγ) ≤
1

4
||h1 − h2||D(Aγ) +

4C2

3N
||h1 − h2||D(Aγ) ≤

1

2
||h1 − h2||D(Aγ),

since N is large. This gives h1 = h2, and also f1 = f2. This completes the proof of
the proposition.

5. Large Reynolds number asymptotics

In this section, we prove the asymptotic estimate (1.14). Let wα,λ be the solution
obtained in Proposition 4.1. Let 0 < γ < 1. Then it is not difficult to see

(5.1) ||wα,λ||D(Aγ) ≤ C||Fα,λ||D(Aγ ),

for a numerical constant C > 0 by the estimates (4.11) and (4.12). We give a proof
only to the case of large |α|. In this case, we may assume that the constant C0(1 +

λ
1−2λ

)(δ1 + δ2) in (4.11), (4.12) is sufficiently small. Note that we already have

||PSwα,λ||D(Aγ), ||PS⊥wα,λ||D(Aγ) ≤ 1

by the proof of Proposition 4.1. Thus we obtain

||PSwα,λ||D(Aγ) ≤ C||PS⊥wα,λ||D(Aγ) + 2||PSFα,λ||D(Aγ),

||PS⊥wα,λ||D(Aγ) ≤ Cλ(1 +
λ

1 − 2λ
)δ1||PSwα,λ||D(Aγ) + 2||PS⊥Fα,λ||D(Aγ).

Hence

||PS⊥wα,λ||D(Aγ)

≤ Cλ(1 +
λ

1− 2λ
)δ1(||PS⊥wα,λ||D(Aγ) + 2||PSFα,λ||D(Aγ)) + ||PS⊥Fα,λ||D(Aγ),

that is,

||PS⊥wα,λ||D(Aγ) ≤ C||Fα,λ||D(Aγ ),

The estimate (5.1) is now easily obtained.
Since wα,λ is a solution of the equation (4.1), by the estimate (3.1), we have the

estimate of ||wα,λ||Y ∩W such that

||wα,λ||Y ∩W ≤ C

1 − 2λ
(||wα,λ||D(Aγ ) + λ)||wα,λ||D(Aγ) + ||Fα,λ||Y ∩W

≤ C

1 − 2λ
(||Fα,λ||D(Aγ) + λ)||Fα,λ||D(Aγ) + ||Fα,λ||Y ∩W .(5.2)

Hence the large Reynolds number asymptotics of solutions is controlled by the
behavior of Fα,λ = λ(L − αΛ + λM)−1fλ. By the arguments in [5], we obtain the
desired estimate as follows.
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Proposition 5.1. Let λ ∈ [0, 1
2 ) and let R2(λ) be the number obtained in Proposition

4.1. Then for any α with |α| ≥ R2(λ), the function Fα,λ satisfies

(5.3) ||Fα,λ||Y ∩W ≤ Cλ

(1 − 2λ)(1 + |α|) .

Proof. We only give the proof for the case |α| >> 1. By Corollary 2.3, we already
know fλ ∈ PS⊥X1 = Ran Λ. Moreover, by investigating the equation MG = Λw∞,
we see that fλ ∈ Ran Λ and the function hλ satisfying fλ = Λhλ also belongs to
D(L); see [5, Section 3]. We omit the details here. Now we use the argument in [5,
Proposition 3.4].

−(L − αΛ + λM)−1fλ

= −(L − αΛ + λM)−1Λhλ

=
1

α
(L − αΛ + λM)−1(L − αΛ + λM)hλ − 1

α
(L − αΛ + λM)−1(L + λM)hλ

=
1

α

{

hλ + (L − αΛ + λM)−1(L + λM)hλ

}

.

Thus we have from (3.1),

||Fα,λ||Y ∩W ≤ Cλ

|α|
{

||hλ||Y ∩W +
1

1 − 2λ
||(−L)−

1
2 (L + λM)hλ)||X

}

≤ Cλ

(1 − 2λ)|α| ||hλ||Y ∩W .

This gives the desired estimate for |α| >> 1.
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