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ON THE EXISTENCE OF BURGERS VORTICES FOR HIGH
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ABSTRACT. Axisymmetric or non-axisymmetric Burgers vortices have been stud-
ied numerically as a model of concentrated vorticity fields. Recently, it is rigor-
ously proved that non-axisymmetric Burgers vortices exist for all values of the
vortex Reynolds number if an asymmetric parameter is sufficiently small. On the
other hand, several numerical results suggest that Burgers vortices have simpler
structures if the vortex Reynolds number is large, even when the asymmetric
parameter is not small. In this paper we give a rigorous explanation for this
numerical observation and extend the existence results for high vortex Reynolds
numbers.

1. INTRODUCTION

In 1948 Burgers [1] found an exact solution to the three dimensional stationary
Navier-Stokes equations for viscous incompressible fluids as follows. We consider a
two dimensional perturbation of a background straining flow whose velocity is of the
form:

(1]‘) U(.’E]_,(EQ,(E?,) :U5($1,$2,$3>+u($1,$2>,

where u4 represents a given background straining flow with a nonnegative asymmetric
parameter A\, and v is an unknown two dimensional perturbation, i.e.,

14+ A 1—AX
(12) u5($1,$2,$3> = (_ 2 1, — 9 T2, l'g),
(1.3) u(r1,z2) = (ui(21,22), uz(21,22), 0)

with d1u1 + Orus = 0.
Taking rotation of the velocity U, we find that the vorticity vector has only one
component depending only on two spatial variables:

(1.4) VxU=(0, 0, w(z,x2))

where w = O1ug — Oouq. Assuming that U satisfies the three dimensional stationary
Navier-Stokes equations for viscous incompressible fluids, we obtain the equations for
w as follows:

Lw = (u,V)w— AMuw, x € R?
(Bx.a) u=Kx*uw,

/}R2 w(x)dzr = a.
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Here the operators £ and M are given by

(1.5) ﬁ:A+g-v+1,
1
(].6) M = 5((E181 - xgag).

The relation between the velocity field v and the vorticity w is called the Biot-
Savart law, and the convolution kernel K is given by

1 zt

pEarE

The value « represents the total circulation, and |«/| is the vortex Reynolds number
since the viscosity coefficient is normalized to one in our case. We call a solution to
the equation (B} o) the Burgers vortex.

Let G be the two dimensional Gauss kernel:

(L.7) K() Lo

—Zo,21).

(1.8) Glz) = ie* ==

Then by direct calculations, we see that G satisfies

LG =0, (K+G,V)G =0.

Thus aG solves the equation (B o) for A = 0. This is the exact solution Burgers
found, and it is called the axisymmetric Burgers vortex. The stability of the axisym-
metric Burgers vortices was firstly discussed by Y. Giga and T. Kambe [7] for small
|| (see also the related work by A. Carpio [2]), and this smallness assumption was
removed by Th. Gallay and C. E. Wayne [4].

The case A # 0 is called non-axisymmetric. In this case, the equation (B q)
has not yet been studied much. As far as the author knows, the only mathematical
results are the results by Th. Gallay and C. E. Wayne [5], [6]. In [5] they constructed
solutions to the equations (B, ,) in the Gaussian weighted L? space for any Reynolds
numbers |a| when the asymmetric parameter A is sufficiently small (A << 1). They
also recovered the large-Reynolds-number asymptotics of H. K. Moffatt, S. Kida, and
K. Okhitani [10] in this case. For not sufficiently small A, the existence and uniqueness
of the Burgers vortex are obtained only when the Reynolds number |«/| is sufficiently
small (the smallness of |a| depends on A € [0,1)); see [6]. Roughly speaking, the
term AMuw leads to the slow spatial decay in xo direction, which causes difficulties in
controlling the nonlinear term.

The Burgers vortex, or the equation (B ), has been used as a model which
describes local structures of intensed vorticity fields in turbulence. Although there
are only a few mathematical results, the Burgers vortices have been well studied
numerically; see A. C. Robinson and P. G. Saffman [14], S. Kida and K. Ohkitani
[8], H. K. Moffat, S. Kida, and K. Ohkitani [10], A. Prochazka and D. I. Pullin
[12], and A. Prochazka and D. I. Pullin [13]. From physical motivations, the case
of high Reynolds numbers is mainly investigated. The interesting feature of their
results is that the Burgers vortex has simpler structures and better stability when the
Reynolds number |a| is large. Especially, it is numerically shown that the shape of
the isovorticity contour becomes more circular as the Reynolds number is increasing.
In the previous work [11] the author studied a linearized operator for the equation
(Ba,o) and obtained some estimates and spectrum behavior for this operator which
are compatible with the numerical results.

In the present paper we consider the equation (B) o) when the Reynolds number
|la| is large, and the asymmetric parameter A is less than 1.

To state our results precisely, let us introduce function spaces.
Let X,Y be the real Hilbert spaces defined as follows.
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(1.9) X={wel* R |G we LQ(RQ),/ wdz =0,
]R2

< wp,wy >x= /}R2 G (z)wy (2)we(2)dx},
(1.10) Y={weX|dweX, i=1,2
< wy,wy >y= /}R2 G (2) (w1 (z)we(z) + Vwy (2) - Vws(z))dz.}

We also define the subspace of X

LIW = {weX|, G 2zwe LA(R?)i=1,2,
< wi,wy >Sw= G (x) (w1 (x)wa(z) + |2 |?w1 (2)wa (z))dz.}
]RZ
Clearly the closed subspace Y N W (equipped with the natural scalar product) is

compactly embedded in X. Motivated by [11], we set PgX as the space of all radially
symmetric functions in X, i.e.,

(1.12) PsX = {f € X| f(Rz) = f(x) a.e. z € R? for all orthogonal matrix R}.

Let Pg. X be the orthogonal complement of PgX in X and let woo € YNWNPgL X
be the function which satisfies the equation

(1.13) MG = A
The existence of we, is obtained in [5] (see also [10]). In fact, ws is uniquely deter-

mined in Pg1 X; see Section 2. We are now in position to state our main result.

Theorem 1.1. Let A € [0,1). Then there is a number R(A) > 0 such that for any
a € R with |a| > R(X) , there exists a solution wq, x of the equation (By o) such that
War —aG €Y NW, [p ziwardr =0, i =1,2, and

CA

(1-2X)1+|a])
where the constant C' is independent of o and A. The constant R(\) is taken as

(1.15) lim R(\) = oo.

1
A—3

(1.14) [lwax — &G — Mg |lynw <

This solution is unique in the following closed ball in X :
CA
eX i dr =0, i=1,2, — aG — Mo < .
(FexX | [ np@is =0, i =12 |1f =06 = Nuxlvaw < T—gmrrmoT)
Remark 1.1. It is not difficult to see that the constant R()\) can be taken as zero
for sufficiently small \. So the above theorem improves the existence result obtained
by Th. Gallay and C. E. Wayne [5]. In [6] the solution of (Bxa) is obtained in
the polynomial weighted L? space for A € [0,1) when the Reynolds number |a| is
sufficiently small. In particular, the solution is constructed near oGy where

VvV1—)\2 _1iAg2_ 1-a 2
— e 4 1 4 2'
4
Note that Gy is a solution of (L + AM)Gx = 0. The above result shows that the
dynamics of the Burgers vortex depends on the Reynolds number and has simpler

structures as || is increasing, which gives the rigorous explanation for the numerical
observation for A € [0, %).

(1.16) Gil(z) =
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Remark 1.2. In [5] the asymptotic estimate of wa,x at large Reynolds numbers (1.14)
is obtained by establishing the uniform estimates for the operator (L — aAg)™! (see
(1.17) for the definition of Ag) and using the smallness of A(<< %) In our proof we
use the advantage of the equation at large Reynolds numbers instead of the smallness
of \. In particular, it is revealed that how the radially or non-radially symmetric parts
of the Burgers vortex are influenced by the value of the Reynolds numbers. We note
that the estimate (1.14) shows the validity of the formal asymptotic expansion by H.
K. Moffat, S. Kida, and K. Ohkitani [10].

Remark 1.3. The restriction A < % seems to be essential if we try to find the Burgers
vortex in the Gaussian weighted L? space X ; see (1.14) and the estimates in Lemma
3.1. We also note that the function G belongs to X if and only if A < %

In order to prove the main theorem, we expand the equation (B) ) around aG +
Ao Then we get the equation for w = w — aG — Awye:

(1.17) (L —alg + M)w = B(w,w) + Ay w + Afa,
where
(1.18) B(f,h) = (Kxf,V)h
(1.19) Anf = B(h, f)+ B(f,h),
for h,f €Y.
The function f) is defined as
(1.20) = —Lwe + )\(B(woo,woo) — ./\/lwoo).

To derive the function fy from the equation (B ), we used the definition of we,
and the facts that LG = 0, B(f,g) =0 for f, g € Y NPgX. By direct calculations,
we can check that the functions wee, B(Wso, Weo ), and Muwe, belongs to Pgr X; see
Section 2. Hence the function f also belongs to Pg. X.

In general, the integro-differential operator Ay is not a closed operator in X. To
avoid this inconvenience, as in [11], we consider the closure of A¢ instead of A itself.
For simplicity, we write

(1.21) A =Ag; the closure of Ag in X, A=Ay .
Let X7 be the closed subspace of X defined by
(1.22) Xi={feX| / zif(x)dz =0, i =1,2}.
]RQ

Then we see that the equation for w = w — aG — Awy is also invariant in X;. Thus
we consider the equation

(L — al + AM)w = B(w,w) + Mw + fy, © € R?,

(Bxa) / w(z)der = / zyw(x)de =0, i =1,2.
R2 R?

The reason why we consider the equation in X; instead of X is that the kernel of
A coincides with PgX; (= PgX) in this space by [11]; see Section 2.

We shall construct a solution of (B A,a) by the Schauder fixed point theorem. And
then, we shall show the uniqueness of solutions under the assumptions of the theorem.

Let us state what is the difficulty and how we overcome it. The main difficulty
appears when we deal with the term AMw. In [5] this term is treated as the per-
turbation. However, since Mw is not a lower order term, we cannot regard the term
AMuw as the perturbation if A is not sufficiently small.

In [11] it is shown that the operator norm of the inverse of L, := (£ — al)[p_, x
in X is small when |a] is large. But this is still not enough to control the term AMuw.
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We note that if ||[£;1V||x_y is small when || is large, then we could regard AMw
as the perturbation. But it seems that the smallness of ||£,1V||x_y is not true. So
far, we only know ||£;'V||x_y is uniformly bounded with respect to |a| by [5].

The above observation implies that we should treat the term AMw as the main part
of the equation when X is not small. That is, we regard the term (£ — aA + AM)w as
the principal term. Thus the most important step is to establish the estimates for the
operator (£L—aA+AM)~!in X;. We note that even the existence of (£L—aA+AM)~1
is not trivial. The estimates for £! suggest that (£ — oA + AM)~! have better
estimates if it acts on Pg1 X; (the orthogonal complement of PgX; in X;) and |« is
large. This is shown to be true, but we need more complicated steps to prove this,
since the term AMw leads to the slow spatial decay in x5 direction and also gives
rise to the interaction between different Fourier modes with respect to the angular
variable in polar coordinates. For example, we can easily see that the space PgX; or
Pg. X is not invariant under the action of the operator £ — aA + AM. With careful
analyses of the interaction between the radially symmetric part and the non-radially
symmetric part, we establish the required estimates for (£ —aA +AM)™1; see Section
3 for details.

We construct solutions of (By ) based on the estimates for the operator (£ — aA +
AM)~L. To make use of the advantage at large Reynolds numbers, we decompose a
solution of (By,«) into the radially symmetric part and non-radially symmetric part.
For the non-radially symmetric part, we obtain better estimates when |a/| is large. On
the other hand, we do not have any advantage in the estimates of (£ — aA + AM) ™1
for the radially symmetric part. However, from the structure of the equation, we
see that the radially symmetric part of solutions is essentially expressed by the non-
radially symmetric part of them. This enables us to obtain the desired estimates also
for the radially symmetric part of solutions. The asymptotic estimates of solutions at
large Reynolds numbers directly follow from the estimates of the function (£ — A +
)\M)ilf)\.

This paper is organized as follows. In Section 2, we summarize the known results
for some linear operators obtained in [4], [5], and [11]. We also prove some properties
of the bilinear form B(f,h) and the function ws. In Section 3, we establish the
estimates for the operator (£ — aA + AM) ™!, which is the core of this paper. In
Section 4, we construct a solution of the equation (B \,o) Which gives the proof of the
former part of Theorem 1.1. In Section 5, we give the asymptotic estimates (1.14) by
deriving the estimates of the function (£ — aA +AM)~1f,.

2. PRELIMINARIES

2.1. Known results for some linear operators. In this section we recall the
several known properties for some linear operators we consider in this paper.
First of all, it is well known that the operator L is self-adjoint in X and its spectrum
n

consists of eigenvalues {—4| n =1,2,---}. The associated eigenfunctions for —% are

the Hermite functions {816 ! 826 *G} with §1 4+ B2 = n. So the subspace X; is nothing
but the orthogonal complement of {310:G + (202G | §; € R} in X.

In [5] and [6] Th. Gallay and C. E. Wayne proved the following lemma for the
operators Ag and £ — alAg.

Lemma 2.1 ([5], [6]).

(1) (=£)~2 is bounded from X into Y NW.

(2) Ag is bounded from Y into X.

(3) Ag is skew-symmetric: for any wi, we € Y, we have < Agwi,wy >x + <
wl,Ang >x=0.
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(4) (L — alg)™! is compact in X and bounded from X into Y. Moreover, its
operator norm is bounded uniformly in .

In [11] the operator A (the closure of Ag in X) and £ — aA are studied. As stated
in [11], the operator A is expressed in terms of polar coordinates and the Fourier series
expansion with respect to the angular variable. We omit the details here. We only
state the results in [11] without proofs.

Lemma 2.2 ([11]). The kernel of A in X is given by

(2.1) Ker A =PsX @ {ﬂlalG + ﬂ282G | G; € ]R}
Moreover, let Lo = (£ — al)|gars : D(£) NRan A — Ran A. Then we have
(2.2) lim sup Re (p) =—o0.

lal=0o0 pea(Lay)
Here, 0(Ly) is the spectrum of Lo and Re (p) is the real part of p.

The above characterization of Ker A shows that Ker A = Pg X7 if A is restricted
on X;. This fact is essentially used in this paper.

2.2. The properties of the bilinear form and the function w.,. The bilinear
form B(f,h) = (K % f,V)h plays important roles in the study of Burgers vortices.
We start from the following proposition.

Proposition 2.1. Let2 <r <3 andp = 5. Let f € L"(R*)NLP(R?) and h € Y.
Then we have

1 3
(2.3) 1B Mx < ClFILSIL- Ay,
_1 1 3
(2.4) (=L)"=B(f,)llx < CIflLallfIz-lR]]x-
Proof. We first note that by the Gagliardo-Nirenberg inequality, we have

1 3
1K fllzee < CIE 5 fI[Lal[VE * FlILr
1 1 1

where 33 =7 i We note that 2 < ¢ < oo from the condition 2 < r < 3. Then by

the Hardy-Littlewood-Sobolev inequality and the Calderén-Zygmund inequality, we
see

(2.5) 1K % fll= < ClAIEIFIE
since % = % + 4. Thus
IB(f,Wllx = [|G™2(K * £,V)hl| L
< |IK * fllp=||G™2 V|| 2
< ClAILIAIE Ry

This proves the estimate (2.3).
To show the estimate (2.4), we prove the estimate

(2.6) (L) 28w x < Cllwllx, i=1,2,

for w € X. This estimate is obtained by the duality argument. Indeed, we have for
any h € X,

<(—£)7%({9¢U},h>x = <8¢w,(—£)*%h>x

1 1 1
= 3 < w,xi(—ﬁ)*fh >y — < wﬁi(—ﬁ)*ih >x .

Since (—£)~ 7 is bounded from X into Y N W, we have
| < (=£)720w,h >x | < Cllullx|Ihllx,
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this proves (2.6). Now the estimate (2.4) immediately follows from B(f,h) = V -
(h K * f) and the estimate (2.5). The proof of the proposition is completed.

From the above proposition, we can obtain the estimates for the integro-differential
operator Ap. We set A = (—C)%. Then A is sectorial; for example, see [3, Section
II, Corollary 4.7]. Since A has a bounded inverse, we set the norm on D(A") for
v €10,1] as

(2.7) 1 fllpcavy = 1A fllx,

instead of the usual graph norm. By the interpolation arguments, we have the fol-
lowing corollary.

Corollary 2.1. Let v1, 2 € (0,1]. Let f € D(A™) and h € D(A"). Then we have

(2.8) 1(=£) "2 Anfllx < CIBlI a1l x + 1] pamyl 1Bl x),
where C' depends only on 1 and ~ys.

Proof. Let 2 < r < 3. Then by the Gagliardo-Nirenberg inequality, we have

Il < ClFINE IV AIZ:,
for o =1 — 2. Thus ||f||.- < C||f||% 7||Af||% and this shows that
(2.9) Al < Clifllx,panq. < Cllfllpasy,

for o < o’; see [9, Section 2.2] for details. We note that if 2 < r < 3, then p = 5" €
(1,2). Hence

IfllLe = [|GEGT% f||1» < CO|If]lx,

by the Holder inequality. Combining these, by choosing suitable r in the estimate
(2.4), we obtain the estimate (2.8).

To see the qualitative properties of the bilinear form B(f,h), we consider the
representation of B(f,h) in terms of polar coordinates.
Let n € Z and let P, be the orthogonal projection defined by

Pow = wy(r)e™,
1 27 .
wy(r) =  /, w(rcosB, rsinf)e” "0 dg.
We set
(2.10) P, X ={P,w | we X}.

Then we have the following proposition for B(f,h).
Proposition 2.2. Let f e Y NP, X and he Y NP, X. Then B(f,h) € PpimX.

Proof. We recall the argument of [4, Lemma 4.4]. Let f = f,(r)e™? and h =
B (r)e’™? in polar coordinates. We set vy = (vf,l),vftz)) = K * f. We write vf,l) =

. 2 . _ ; .
vy cos @ — vg sin @ and v} ) — 4, sin 6 + vy cos  where v, = T,(r)e™? and vy = Tge?.
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Then from div vy = 0 and rot vy = f, we obtain the linear ordinary differential
equations for T, (r) and Tg(r)

(2.11) 74+ ind =,
r r
— Up . Uy
2.12 AR L
(2.12) Vg + P [
When n # 0, by eliminating Uy, we obtain the equation for €2, = ﬁrﬁr

1 n? 1
(2.13) —;(TQ;)’ + 7“_29" — 5fn =0.

By the decay at infinity and the local integrability conditions, solution of the above
equation is written by
@) l)0) = ([ O sn@ds+ [T C) sn(s)as).
4|7’L| o T T §
The function Ty is obtained by 7. From the uniqueness of the equation
AUf = vlf = (_62f7 81f)a

we see that vy is indeed expressed by the above v, and vy.
Now by using the relation d; = cos 09, — 5“;989 and 0y = sin60, + #89, we
obtain

(2.15) B(f,h) = (Bohly, + —Tghyy, )i tm?.
T

When n = 0, again by the decay at infinity and the local integrability conditions,
we see that D, = 0 and g(r) = [ L f,(s)ds from (2.11), (2.12). Thus

(2.16) B(f,h) = ?mhmeme.
This completes the proof.

Corollary 2.2. If he Y NPgX, then Apf € Pg1 X for any f € Y NPg1L X.

Proof. Since PgX = Py X, the assertion immediately follows from the above propo-
sition.

Corollary 2.3. The function fy belongs to Pg1 X.
Proof. We recall that
fr = —Lwoo + A(B(Woo, Weo) — Mweo).

In [5, Proposition 3.1] ws is obtained as we, = W(r) sin 26 for some function w(r).
Note that from the characterization of Ker A, this is uniquely determined in Pg1 X.

Since Pg1 X is invariant under the action of £, we have Lw, € Pg1 X. By direct
calculations, we also have Mws, € Pg1 X. Moreover, from the above proposition and
Weo = W(r)sin20 = w(ﬂ#, it is not difficult to see B(woo, Weo) € Pgr X.
This completes the proof.

Finally, we remark the following simple proposition, which guarantees that the
space X is invariant under the equation (B q).

Proposition 2.3. Let f, he€Y. Then Apf € X;.
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Proof. We set vy = (U; ),v;z)) K x f and v, = (’l)}(Ll),U}(L )) K x h. The proof is
given by the integration by parts. Indeed, by the definition of A}, we have

/ i fdr = / 11V - (vp f +vph)dx
R2 R2
= - / (i £ + 0§ h)da
R2
/ o 0+ 0r?) = o (=000 + 010}
R
/ (—522),(11)1)5:1) + 811)}(3)1;;2) + U;l)aw}(f) + 51v§:1)U}(LQ))d;U
R2

= —/ (0200 + 030D 0 )da
Rz
= 0.

Similarly, we have [p, 2Ap fdx = 0. It is obvious that [p, Ajfde = 0. Now the
proof is completed.

3. THE ESTIMATES FOR THE LINEARIZED OPERATOR

In this section, we establish the estimates for the linearized operator £ —aA 4+ AM.
1

The following lemma is the core of this paper. We recall that A = (—L)z.

Lemma 3.1. Let A € [0, 3) and vy € [0,1). Then there is some R1(\) > 0 independent
of v such that for any o with |a] > R1(\) and f € X1, we have

(3.1)
K 1
102 = @A+ AM) ™ fllyew < 7755 11(=£)"* fllx
(3.2)
1 _1 K1)\ _1
[Ps (£ — ah + AM) f||D(Aw)<51(|a|a7)<||PSL(_E) il + 222 (- 2) 2f||X)
(3.3)
IBs(L — ah +AM) " fl[peamy < (1+N)|[Ps(—£) "2 f||x
+A<1+A)62<|a|,v>(||ﬂvsu—c>%f||x LELTE >%f||x).

Here, the constants Ky and Ky are independent of A\, v, and o with |a| > Ri()).
The constants 01(|al,y) and d2(||,7y) are bounded with respect to |a| € [Ri(A), o)
and v € [0,1), and satisfy that
(3.4) | l‘lm 01(lal,y) = ‘ llim d2(]al,v) = 0.

Remark 3.1. [t is not difficult to see that the norm of Y N W s equivalent with
I - 1Ipcay- So the estimate (3.1) is a special case of (3.2) and (5.3). However, we do
not have the property (3.4) in this case.

To prove the above lemma, we first consider the operator £ —aA +AM —Al. Since
L is self-adjoint and —£ > 1 in X7, we can write

L—aA+IM =X = —(=L)2(I+a%—ANI+A-L)"")(=L)2,
where
(3.5) o= (-L£)7TIA(-L)77
(3.6) I = (=L£) 2M(-L)=.
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By the results in [5], we already know that ¥ is compact and skew-symmetric in
X and II is bounded in X. We shall show the following proposition.

Proposition 3.1. Let A € [0,3). Then the operator (I +aX — I+ MN—£)~") has

a bounded inverse in X satisfying the estimate

(3.7) (I +a% = AT+ AM(=£)") 7 f]lx < T fllx
Proof of Proposition 3.1. Let @, x be a bilinear form on X defined by
(3.8) Qax(fih) =< (T +aX = NI+ AN-L) ) f,h>x.

Clearly, Qq,» is bounded, i.e., there is some constant K such that |Qq x(f,h)| <
K||fllx||h]|x for all f, h € X. Since ¥ is skew-symmetric, we have < Xf, f >x=0
We also recall the equality

I(=L)2n|%k = c>h>x
- /|v () Pde -+ e llelhlk — 11l

which leads to the inequality

(3.9) I-£) 7 71 = 5 lel(~£)7% £ — 201
Combining these, we have
Quall:f) = <T+aB- NI+ M-L)")f.f >x
1B = < (<L) ML) 4, 7 >x + 51l (-£) 471 — 2011

Y

1 1 A 1
Ik =A< M(=L)"2f,(-L)7% f >x +§|II$I(—£)_5f||§c —2M|f11%

A , A .
17115 = Sl (=£) 72 fll% + glll2l(=£)72 fI[% = 2All /1[5
(1 =2)|If11%

thus Q. is coercive. By the Lax-Milgram theorem, (I + aX — AT + A(—£)71)
is invertible in X, and the estimate (3.7) follows from the above inequality. This
completes the proof of the proposition.

From Proposition 3.1, we see that £ — aA + AM — Al is invertible and its inverse
(L—ah+IM =)t = —(=L£)"2(I 4+ aX — M1 + A(—£)"1)"}(—£)"2 has the
estimates

(3.10) (£ = ah + M = A1) llx < —< |1 fllx

(3.11) (£ — ah +IM = XD fllyew < 11 x-

C
1—2A

Next we improve the above estimates for large |a|. We set h = (L — aA + AM —
AM)71f. Then h € Y N W and we have

(I+a% = AL+ A(—L)")(=L)7h = —(—L)"2f,

SO

W=

(I+aX+N=L)" Y (=L)Th = —(—L)"2f+AI(—L)2h
h

= (O AL
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Thus we have the relation

(3.12) h o= —(=L) 2T A\ (-L)"%f
ML) I L (—L£)"E M,

where

(3.13) Tor=1+aS+A-L)""

Let Pg be the projection from X; onto PgXi; the closed subspace of all radially
symmetric functions in X;. Let Pg. = I — Pg. We note that the projection Pg
commutes with the operators (—E)_%, Y. In fact, we have PsX = 0. Hence we can
verify

(3.14) Psrh = —(—L) 2T APsi(—L)"2f
HA(=L)TI  Pse (L) TEMb,
(3.15) Psh = —(=L£) 2T \Ps(—L)*f

(L) APs(—£) 2 MPg. h.
In the last line, we used the fact that
IToAPs = (T+aS + AM—£)")'"Ps = (I +A(—£)"") " 'Ps,

and Pg(—L)"2Mh = Pg(—L) "2 MPg.h for h with Pg.h € Y N W NPg.X. Note
that Pg.h € Y N W NPgL X follows from the representation (3.14), since (—£)~2 M
is bounded from Y N W to X.

The following lemma is crucial.

Lemma 3.2. Let A >0 and v € [0,1). Then we have for any f € X1,

(3.16)  [|(—£) 205 3PsflIpar) < IIfllx
(3.17) (L) T APse fllpany < erllal,IIflx,
(3.18)  [|(—£)"E0 3 Ps(—L)"EM(—L) "L AP fllp(ar) < ea(lal,7)]If]1x.

Here, €1(|a],v) and ea(|al,) are uniformly bounded with respect to |a| > 0, v € [0,1),
and A > 0. Moreover, they satisfy that

(3.19) lim €(la,7) =0, i=1,2.

|at] — o0

Proof of Lemma 3.2. First we note that

(3.20) 05 fllx < 11£11x.

Indeed, we have

Taxfllx < (T+a+NC[f]lx,

and

<FHaXfHMN-L) S f >x

111 + AI(=£) 2 fl%
I1f11%-

<Fa7)\faf>X

Y
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These estimates give (3.20) by the Lax-Milgram theorem. From the estimate (3.20)
we obtain

(—£)~
I(=£)~=T, % st||D(Aw)<||f||X,
1(—£) 7205 3 Ps(—L) "2 M(—L) " T Psu fllpear) < C'[|f]]x,

T
F
where ¢ = ||(—c)—%M(—c)—a||XﬁX. Here we used the estimate ||(—£) % f|| p(as) <
[fl|x for f € X1,
We prove the estimates (3.17) and (3.18) by deriving a contradiction. Without loss
of generality, we may assume that o > 0. Set €1 (v, ) := ||(—£)_%F;)1>\]P)SL || x—D(av)-
We assume that limsup,,_, . €1(«,v) > 0.
Then, there exists a sequence {a;}ien, @ — 00 as i — oo, such that e; =
inf;en 61((11) > 0.
Then we have a sequence of functions {f;}ien with ||f;||x = 1 such that

1 —1+y (677
(—£) T8 Pos fillpoany = (L) 7% al)

1+7

%P APsfliparny < |Ifllx

i|lx > ——||fillx > 5 >0.

Weset h; =(—L) 2 T st_fl € ]P)Sj_X]_

Since (—/.3)% is compact (because (£)~2 is compact) and {F;}/\]P’ 5. fi}is bounded
in X, we have a subsequence {h;} of {h;} such that h; converges to a function he, €
Pg. X, strongly in X;. Then ho, satisfies (—£) 7 hoo € X1 and [|hoo||x > $ > 0.

On the other hand, for any f € X7, we see

< (L) TFA(-L) Fha, f >x
= — < (=L) Tho,A(—L) 2f >x
= —lim < (L) Fh;, A(~L)"2f >x

J— 00

= lim < (=£) *A(=L) 3 hj, f >x

Jj—00

= lim (< Ty (L) T hy f 5x — < (<L) TRy, f >x A< (—L) " Fhy, £ >x)

j—00
. 1 1=y 1ty

= jhm a—(< Psifi, f>x — < (=L£)Z hy, f>x =A< (L) 3 hj, f >x)

= 0.

Thus (—£) " 2A(=L) 2he = 0, that is , A(~£) 2hs = 0. However, since
Ker A = PsX; and ho € Pgi Xy (and thus (—E)’%hoo € Pg1X1), we must have
(=£)"Zhs = 0. Hence ho, = 0. This contradicts with ||heo||x > 0. Now the
estimate (3.17) has been proved.

From the estimate (3.17), we have the following claim:

Let {f;}ien be any bounded sequence in X;. Then for any sequence {a; }ien in R
such that a; — oo as i — oo, the sequence h; = F;}A]st_ fi weakly converges to 0 in
X;.

Indeed, for any f € X; N D(L), we have

lim <hy, f>x = lim <hi,(~£)"2 (L)'= f>x
= lim < (-L£)" 2 hy, (L) T f >x

= 0.
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Since D(L) is dense in X7 and h; is bounded in X by the estimate (3.17), we have
the claim.

The estimate (3.18) is shown by the above claim. We set

e2(a,7) = [[(-£) P T3Ps(—L£) 2 M(~L) 2T P [x—pan)
= lI(=£) 72 TgABs(—£) " EM(=L) AT APy Ix—x.

Again we assume that there exists a sequence {a; }ien, a; — 00 asi — 00, satisfying

€2 = inf;eny a; > 0. Then we have {f;}ieny with || fi||x = 1 such that
hi=(—£) "% TyiPs(—L) 2 M(~L) T Po f;

satisfies infien ||h4||x > % > 0.

Since (—£) "2 M(—L)"2T ! Ps. is bounded in X (note that (—£)~ 2 x; is bounded

in X which is obtained in [5]), we have a subsequence {h;} en of {h;}icn such that
h; strongly converges to a nontrivial function h, in X;. Now for any f € X,

< hooaf >x
= lim < hj, f>x
j‘)OO
= lim < (=£) " ToAPs(—L) EM(-L) I, \Peu fy, f >x

J—00

= lim < M(=L£) 2T \Peu f;, (L) 2PsT A (—L) = f >x
j—oo J» )
1 . 1 1 _ 14y
= —5411111 < (=L) zF%{APSij,(aﬁ—mg)(—c) *PsTo(—L£)77 f>x

J— 00

~ lim < (~£)7 3T, P £ M(—£) FBSTG A (0) 75/ >

J—00

1 . _ _1 1 _ i+
= =g Jim < TP fi, (—£) 73 = a8)(—£) AP (-£) 77 f >x

— lim < DR fi, (<L) EM(=L) T HPSTG L (—£) 75 f >

J—0

= 07

by the above claim. This implies ho, = 0, which leads to a contradiction. Now the
proof of the lemma is completed.
Proof of Lemma 3.1. Let f € X;. We consider a solution h of the equation

(L —aA+IM)h = f.
Then, h satisfies the equation
(3.21) (L —ah+AIM —X)h = f—Ah.
Thus, from the estimate (3.11) for f = f — Ah, we have the estimate

C 1, -
1hllyow < =55 I(=£)72(f = Ah)llx
C 1 CA
(3.22) < 1_2>\||(—£) f||X+m(||PSih||X+||]P5h||X)'

For simplicity, we write €1 = e1(|a],7), €2 = €2(]al,) in Lemma 3.2. We apply
Lemma 3.2 to the expression (3.14). Then we have

IPshllpany < el(|[Pse (L)% fllx + M|Pss (—£)"2h||x)
+Aer||Ps (L)% Mh||x
e1(||Ps= (—£) 7% fllx + N|Psehl|x) + Cher ]y,

A

IN
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SO
(3.23) IPs2hl|par) < 261][Pse (L)% fllx + 20Nl h]ly,

if || is sufficiently large or \ is sufficiently small.
We also have from (3.15) and Lemma 3.2,

IPs(—L)7% fllx + A[(=£)"*Tg\Ps(—L) "% h||x

HA[(=L) 72 TgAPs(—L£) "2 M(=L) 2T A Psu (—£) 72 (— f + AMb)||x
IPs(—L)7% fllx + A[(=£) "2 L5 \Ps(—L) "% h||x

6| [Pgi (—L£) 7% fl|x + Aea|[Pgi (—L£) 72 Mh]|x

IPs(=£)72 fllx + Al|(=£)"2Tg \Ps(—£) %[ x
+Aez||Pss(—L) 72 fllx + CA%ex By .

IN

[[Psh|[pcar

IN

IN

By the relation
< (=L A+ ADh,h>x> (1+ )| |A%,

we see that

(3.24)  A|(—L)"2TgiPs(—£)"2hllx = M|(—£+A)"'Psh||x
A
T+
= A L) (L) sh|
1+>\ S X
A
THA

IN

[[Psh||x

IN

[[Psh||pax).-
Hence we obtain

(3.25)
IPshl| piary < (1+A) (HPS(—E)%fHX + Aea||Pgs (L) 72 fl|x + CA2€2||h||Y>-

Combining the estimates (3.23) and (3.25) for v = 0, we have

IPs2hx +[|Pshllx
< (4 N|Ps(—L) 72 fl[x + (21 + ML+ Nea) |[|[Pg (L)% f| x
+ (21X + C(1L+ M)\ %e) | |2y,

thus substituting this into (3.22), we get

bllyew < 2( +(14+N)|IPs(—£) "% fl|x

1—2X

c -
+2(7—5y + 261 + AL+ Mea) [P (—£) 7% fllx,
K 1.
. < — 2
(3.26) < a0 Ik

if |a| is sufficiently large or A is sufficiently small. This estimate proves the existence
and boundedness of (£ — aA + AM)~! by the Fredholm alternative.
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By substituting (3.26) into (3.23) and (3.25), we finally obtain

1~ K 1
(3.27) ||Psm||p<m><2el(||PSL<—c>2f||x+ U2 ||x)
(3.28)  [IPshllpar) < (1+ N)|IPs(—£) "% fllx
+A<1+A>e2(||PSL<—£>—%f||X ) (- >%f||x).

The proof of Lemma 3.1 is now completed.

4. CONSTRUCTION OF SOLUTIONS
In this section we construct a solution of the equation
(4.1) w= (L —al+IM) " (Bw,w) + Miw + Afr),

where A; and fy are given by (1.21) and (1.20).

In order to use the estimates in Lemma 3.1 effectively, we decompose the equation
into the radially symmetric part and the non-radially symmetric part. That is, we
construct a solution of the form

w=ws+wgr, wg €Y NWNPsgX;, wgr € YNWNPg1 X;.

Then we see

B(w,w) = B(ws,wgs)+ Blwgs,ws) + B(wgs,wg)
1
AwaSL + §AwstSL,
ANMw = Alws-l-AleL.

Note that the functions Ay wgr, Aqwg, and fy belong to Py X;.

We identify D(A7) in X7 with PsD(A7) x Pg. D(AY). Here PsD(AY) = D(AY)N
PsX; and Pg. D(AY) = D(AY) NPg1 X;.

For (f,h) € PsD(AY) x Pg1 D(AY), we set

(4.2) Hi(f,h) = (L—ah+ M) Ash,
(4.3) Hy(f,h) = %( —aA 4 AM) Ak,
(4.4) H3(f,h) = ML —aA+IM)~ 1A1f,
(4.5) Hy(f,h) = ML —alh+IM)"'A
(4.6) Fapr = ML—aA+IM)" 1fx,
and

(4.7) Ho\(f,h) ZH (f.h) + Fax.

The term (£ — oA+ AM) "1 A¢h makes sense for any f, h € D(A7) with v € (0,1].
Indeed, by Lemma 3.1 and (2.8), we have

(£ = ah + AM) " Ashllyomw SII(=£)7 2 Aghllx

IN

CK1

< (||h||D anllfllx + 1 fllpcanlhllx)-

Thus the above H, » maps PgD(AY) X]PsLD(A’Y) into YNWNX; for any v € (0, 1].
We fix v € (0,1) and write Dg = PgD(A?Y), Dg. = Pg1 D(A?) for simplicity.
Now we define the map ®,,, on Dg x Dg. by
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(4.8) Pan(fih) = PsHan(f,h), Psr Hax(f, h)).

By Lemma 3.1, this map ®,  is well-defined. Let x1, k2 > 0 and let X, », be a
closed convex subset in Dg x Dg.1 such that

(4.9) Xirms = {(f,h) € Ds X Dgu | [|flIpcary < k1, [|hl|pary < Ko}

The following proposition leads to Theorem 1.1.

Proposition 4.1. Let A € [0,3). Then there exist k1(\), r2(N), and Ry(X) > 0
such that for any a with |a] > Ra(X), the above ®o x has a unique fized point in

X1 (N r2(N) -

Proof. First we show that ®, ) is a compact mapping on X, (x),x,(x) into itself for
suitable k1(\), k2(A), and Ry(A) > 0. By Lemma 3.1, we have

BsH (£, )|y < A(l+A>62(||PSL<—5>—%Afh||X

KoK i\

ST -0 Aty )

S OM1+XN1+ 17— 2)\)52(||f||x||h||D(m) + [ fllpcam 17l x)-

Here, we used the estimates (2.8). Similarly, we obtain from Lemma 3.1,

IPs Hi(f 1)l pavy < C(1+ VL[| lx 1Al pary + [ f a7l x),

1—2)\
[PsHa(f,h)||pary < C(L+X)(1+ A1+

)62 Bllx bl Ipan,

)01l [h| x|l DAy,

L 7 <
[Ps Ha(f, h)|[pary < C(1+ o

A
[PsHs(f, h)|[pary < CXN*(1+N)(1+ m)fszﬂf”D(m),

A
m)fslﬂf”mmp

A
|PsHy(f, h)||D(Aw) <CMN1+ /\)(1 + A1+ -

[Ps Hs(f, h)|Ipcavy < CA(1+

2)\)52)||h||1:)(,4w),

A
IPs+ Ha(f, W)l p(avy < CAL + 7—57)d1llRl pcan)-

In the estimates for Hs, we used the fact that A;f € Pg1 X3 by Corollary 2.2. We
also remark that the estimates for ||[PsHa(f,h)||p(a~y and [|[PsHs(f, h)||p(a~y imply
that we potentially require the smallness of ||| p(avy itself. Especially, the fact that
the term PsH4(f, h) does not depend on f is crucial, since the prefactor constant is
not sufficiently small when A is not small enough.

The estimate for Fy, y is

A 1
IPsFallpeary < OA*(1+X)(1+ T 2(=L)72 Allx,

A 1
[[Ps1 Faxllpeary < CA(1+ m)&ll(—ﬁ) 2 fallx,

hence especially we have

(410) ‘ lllm ||Fa,)\||D(AW) = 0
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We also note that || Fo,x|| p(an) is sufficiently small uniformly in || if A is sufficiently
small. Combining these above, we obtain

(4.11)
IBsH(f, 1)llpary < CoAL+A)(1+ 5 _)\2>\)§2{||f||X||h||D(AW) + a1l x
Hlnllxllouy + MIfllocan + Alloun) |
+Co(1+ N{l|Rllx[IMllpcary + MRl peany } + [[PsFaxllpamy,
(4.12)
1B+ H(f,h)llpary < Co(l+ 7 _)\2/\)51{||f||X||h||D(Av) + I flpean 1Pl x

Al xRl pcary + AU flpeary + ||h||D(AW))} +|Pss Faxllpeavy-

Here Cy is a numerical constant.
Let ko < k1 < 1. We take |a] sufficiently large (or A sufficiently small) enough to
satisfy

1
)52 S Na

A
(4.13) CoA+ N1+ =55

where N > 100 is determined later. Then for (f, h) € X, x,, we have
1
1Ps H(f, )l pear) < 71+ Co(l+ M) (K3 + Akiz) + [P Fanllp(ar).
Next we consider the estimate of (4.12). If A is not small, then we take |«| suffi-
ciently large enough to satisfy

A 1

. < —.
(4.14) Col+ ) <+
If A is sufficiently small enough to satisfy

A 1

. A < =
(4.15) CoA(1+ 1_2/\)SIEI‘>51(|04|7)\) Sy
then we take k1 and ko sufficiently small enough such as

A 1

. < —.

(4.16) 2CH(1 + 1_2/\)(/€1+I€2)S‘g[|)(51(|04|,>\) SN

In each case, we have
1 1
[[Pst H(f,h)|lpar) < 7t N(fﬂl + k2) + [|Pst Fo x| Dea)
We take 8Cy(1 + A)k2 = k1. Then we have

1
(4.17) [[PsH(f,h)||pary < 3h + [|PsFaxllD(ar),
1 8Ch(1+ M) +1
(18)  |BseH(fM)llopan < 2ro + SN o B Bl b

thus if we take N as w < i, then ®, \ maps X, ., into itself, because
[[PsFallp(avy and [|Pgr Foa||pcar) are sufficiently small if we take [af large or A
small enough. We omit the details. Since H is a mapping from Dg x Dg.1 into D(A),
it is easy to see that ®,, ) is completely continuous.
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Hence by the Schauder fixed point theorem, ®, » has at least one fixed point on
Xﬁhﬁz'

Now we shall prove that a fixed point of ®, » on Xy, ., is unique. Let (f1, k1), (f2,he) €
Xy .5 De fixed points of @, x. Then, arguing as same as above, we obtain

Ilf1 = follpary = |PsH(f1,h1) —PsH(f2,h2)||pca)
1
< gl = Fellpcas) + Cllha = hallpear),
|1 = hollpavy = |[PsrH(f1,h) — P H(f2,h2)|[p(av)

1 C
< gl = hallpas) + w7l = fellpean,
for a numerical constant C' independent of N.
Hence [|f1 — fol|p(av) < % 1|h1 — hallp(ary and
1 4C? 1
[l = hallpary < 7llh1 = hallpear) + 3—N||h1 = hallpary < 5llha = hallpear,
since N is large. This gives hy = hg, and also f; = fo. This completes the proof of
the proposition.
5. LARGE REYNOLDS NUMBER ASYMPTOTICS

In this section, we prove the asymptotic estimate (1.14). Let wq,x be the solution
obtained in Proposition 4.1. Let 0 < v < 1. Then it is not difficult to see
(5.1) llwaxllpary < CllFaxllpeary,

for a numerical constant C' > 0 by the estimates (4.11) and (4.12). We give a proof

only to the case of large |a|. In this case, we may assume that the constant Cy(1 +

—25)(61 + 62) in (4.11), (4.12) is sufficiently small. Note that we already have
[IPswa,xl[D(ar), [IPstwan|lpayy <1

by the proof of Proposition 4.1. Thus we obtain

|[Pswa,allpany < ClPsiwanllpar) + 2[|PsFaxllpam,
A
||P5Lwa,)\||D(Aw) S C)\(l'i‘m)&lnpswa,)\HD(AW) +2||]P)SJ_FO¢7)\||D(A’Y).

Hence

[IPstwa,x||Dear)

< CX1+ 1 _/\2>\)51(||PSJ-U}0¢7)\||D(A7) + 2||PsFax||pavy) + [|Pss FallDeary,
that is,
[[Psrwax||pary < CllFaxllpiary,
The estimate (5.1) is now easily obtained.
Since wq,x is a solution of the equation (4.1), by the estimate (3.1), we have the
estimate of ||wq,x||ynw such that

A

C
lwanllyow < 3==5 (lwanllpay) + Mllwaallpan + [[Faallyow

1

(5.2) ([1Faxllpary + M Faxllpary + [ Faxllyaw.

< [
- 1-2X

Hence the large Reynolds number asymptotics of solutions is controlled by the
behavior of F, x = AL — aA + AM)~Lf,. By the arguments in [5], we obtain the
desired estimate as follows.
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Proposition 5.1. Let A € [0, 1) and let Ro()\) be the number obtained in Proposition
4.1. Then for any a with |a| > Ra(N), the function Fy x satisfies

CA
1=20)1+al)

Proof. We only give the proof for the case |a] >> 1. By Corollary 2.3, we already
know f) € Pg. X; = Ran A. Moreover, by investigating the equation MG = Awee,
we see that f, € Ran A and the function hy satisfying fy = Ahy also belongs to
D(L); see [5, Section 3]. We omit the details here. Now we use the argument in [5,
Proposition 3.4].

—(L—aA+IM)7Lfy
= —(L—aA+ M) ARy

(L —ah +AIM) L — ah + IM)hy — é(,c —aA + AM)THL A+ AM)hy,

(5.3) 1Follyaw < -

— Q|

- E{hA + (£ = ah + AM) L+ AM)hy T
Thus we have from (3.1),

Uy + =5 =00 € + A}

1—2X
CA
—— R :
(1 —2)\)|a||| Allyaw
This gives the desired estimate for |a| >> 1.

IN

[[Faxllyaw
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