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Abstract. We show the global existence of solutions of a reaction-
diffusion system with the nonlinear terms |x|σj upj vqj . The proof is
based on the existence of super-solutions and the comparison principle.
We also prove that uniqueness of the global solutions holds in the su-
perlinear case by contraction argument. Our conditions for the global
existence are optimal in view of the nonexistence results proved by Ya-
mauchi [12].

1. Introduction

We consider the Cauchy problem for the reaction-diffusion system:
ut − ∆u = |x|σ1up1vq1 , x ∈ RN , t > 0,

vt − ∆v = |x|σ2up2vq2 , x ∈ RN , t > 0,

u(x, 0) = u0(x) ≥ 0, ̸≡ 0, x ∈ RN ,

v(x, 0) = v0(x) ≥ 0, ̸≡ 0, x ∈ RN ,

(1.1)

where pj , qj ≥ 0, σj ≥ 0 (j = 1, 2), and p1, q2 ̸= 1.
Combustion process of single solid chemical material is expressed as a

reaction-diffusion system (see, e.g., [2]). Two unknown functions in this
original system represent the temperature and mass of the material. The
nonlinearity in the original system consists of powers and exponential forms
of the unknown functions. Our problem (1.1) describes a simplified model
to investigate the mechanism of this type of nonlinearity.

Before stating our main results, we first recall known results for the single
equation : ut − ∆u = up. Let N be the space dimension. Fujita [5] proved
the existence of global solutions to the equation if p > 1+2/N for exponen-
tial decaying small initial data. He also proved the nonexistence of global
solutions if p < 1 + 2/N . In the critical case, p = 1 + 2/N , the nonexistence
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is proved by Hayakawa [6], Kobayashi, Sirao and Tanaka [7] and Weissler
[11]. On the other hand, in the sublinear case, i.e. 0 < p < 1, it is shown by
Aguirre and Escobedo [1] that every solution to the equation exists globally
in time.

For nonlinear terms with variable coefficients, Pinsky [10] showed the
existence and nonexistence of global solutions to the equation: ut − ∆u =
a(x)up, where p > 1 and a(x) behaves like |x|m with m > −2 for large |x|.

We next consider a system:

{
ut − ∆u = F1(x, u, v),
vt − ∆v = F2(x, u, v).

Escobedo and Herrero [3] studied the system with the nonlinear terms
F1 = vp and F2 = uq with p, q > 0 for nonnegative, continuous and bounded
initial data. Their results are divided into three cases: (i) pq > 1 and
(max(p, q) + 1)/(pq − 1) < N/2, (ii) pq > 1 and (max(p, q) + 1)/(pq − 1) ≥
N/2, (iii) pq < 1. When pq > 1 and (max(p, q) + 1)/(pq − 1) < N/2, there
exist global solutions for small initial data. For large initial data, some
solutions blow up in finite time. When pq > 1 and (max(p, q)+1)/(pq−1) ≥
N/2, there exist no global solutions. When pq < 1, every solution exists
globally in time.

In case F1 = |x|σ1vp and F2 = |x|σ2uq with p, q > 1, 0 ≤ σj < N(pj + qj −
1), j = 1, 2, Mochizuki and Huang [9] showed the existence and nonexistence
of global solutions and the asymptotic behavior of the global solution. Let
α = {(p(σ2+2)+(σ1+2)}/2{(pq−1)} and β = {(q(σ1+2)+(σ2+2)}/{2(pq−
1)}. They proved that if 0 < max(α, β) < N/2, then global solution exists
for small initial data and does not exist for large initial data. On the other
hand, if max(α, β) ≥ N/2, then there exist no global solutions.

For Fj = upjvqj with pj , qj ≥ 0, j = 1, 2, 0 < p1 + q1 ≤ p2 + q2, Escobedo
and Levine [4] showed the following results. Let α = (q1 − q2 + 1)/{p2q1 −
(1 − p1)(1 − q2)} and β = (p1 − p2 + 1)/{p2q1 − (1 − p1)(1 − q2)}.
(i) Let p1 ≤ 1. If 0 ≤ max(α, β) < N/2, then global solution exists for small
initial data and does not exist for large initial data. If max(α, β) < 0, then
every solution exists globally in time. If max(α, β) ≥ N/2, then there exist
no global solutions.
(ii) Let p1 > 1. If p1 + q1 > 1 + 2/N , then global solution exists for small
initial data and does not exist for large initial data. If p1 + q1 ≤ 1 + 2/N ,
then there exist no global solutions.

In this paper, we consider (1.1) as a generalization of these nonlinear
terms. We prove the existence of global solutions to (1.1) under some condi-
tions on N,σj , pj , qj , j = 1, 2, which are optimal in view of the nonexistence
results proved by Yamauchi [12]. We emphasize that if σj = 0, j = 1, 2 or
p1 = q2 = 0, our conditions for the global existence coincide with those of
[4] or [9], respectively.
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Since our problem includes the sublinear case, pj or qj < 1, the contrac-
tion argument does not always work. Thus, we prove the global existence
for (1.1) by finding super-solutions and the comparison principle following
[4]. However, the method of [4] does not seem directly applicable to our
problem because of the presence of the variable coefficients |x|σj . In order
to find super-solutions for the strongly coupled nonlinear terms, we need to
introduce exponential functions in t. Moreover, if the nonlinear terms are
strongly coupled, the solutions of the problem do not always decay at infin-
ity in space. Thus, we improve the estimates used in [9] to derive new ones
for those solutions. We also show that for the superlinear case pj , qj > 1,
j = 1, 2, uniqueness of the global solutions holds. The crucial part to show
the result for the superlinear case is how to choose solution spaces and
weighted norms. In view of that, our problem is more complicated than
that of [9] since we treat the strongly coupled cases.

Our plan of this paper is as follows. In Section 2, we state several notation
and main results. In Section 3, we show the local existence of classical solu-
tions of the system (1.1). In Sections 4 and 5, we show the existence of global
solutions by comparison principle and contraction argument, respectively.

2. Main results

We begin with stating some notation. Put
α =

q1(σ2 + 2) + (1 − q2)(σ1 + 2)
2{p2q1 − (1 − p1)(1 − q2)}

,

β =
p2(σ1 + 2) + (1 − p1)(σ2 + 2)
2{p2q1 − (1 − p1)(1 − q2)}

,
(2.1)


δ1 =

q1σ2 + (1 − q2)σ1

p2q1 − (1 − p1)(1 − q2)
,

δ2 =
p2σ1 + (1 − p1)σ2

p2q1 − (1 − p1)(1 − q2)
.

(2.2)

For a ∈ R, we define the function spaces:

Ia = {w ∈ C(RN );w(x) ≥ 0, lim sup
|x|→∞

|x|aw(x) < ∞},

L∞
a = {w is measurable function on RN ;

w(x) ≥ 0, ∥w∥∞,a ≡ ∥ ⟨x⟩a w(x)∥∞ < ∞},

where ⟨x⟩ =
(
1 + |x|2

)1/2. We also define

ET = {(u, v); [0, T ] → L∞
δ1 × L∞

δ2 , u, v ≥ 0, ∥(u, v)∥ET
< ∞},

where

∥(u, v)∥ET
= sup

t∈[0,T ]
(∥u(t)∥∞,δ1 + ∥v(t)∥∞,δ2).

We state our main results. Throughout this paper, we assume that
(u0, v0) ∈ Iδ1 × Iδ2 .
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Theorem 2.1. Let p1 < 1, q2 < 1.
(i) If 0 < max(α, β) < N/2, then there exist global classical solutions of
(1.1) for small initial data.
(ii) If max(α, β) < 0, then every classical solution of (1.1) exists globally in
time.

Theorem 2.2. Let p1 > 1, q2 < 1. If α < N/2 and p1+q1 > 1+(2+σ1)/N ,
then there exist global classical solutions of (1.1) for small initial data.

For p1 < 1, we can rewrite Theorems 2.1 and 2.2 in the manner of [4] as
follows.

Corollary 2.3. Assume that
p1 + q1 − 1

σ1 + 2
≤ p2 + q2 − 1

σ2 + 2
, (2.3)

and let p1 < 1, q2 ̸= 1.
(i) If 0 < max(α, β) < N/2, then there exist global classical solutions of
(1.1) for small initial data.
(ii) If max(α, β) < 0, then every classical solution exists globally.

Theorem 2.4. Let p1 > 1, q2 > 1. If p1 + q1 > 1 + (2 + σ1)/N and
p2 + q2 > 1 + (2 + σ2)/N , then there exist global classical solutions of (1.1)
for small initial data.

Also for p1 > 1, we can rewrite Theorems 2.2 and 2.4 in the way of [4].

Corollary 2.5. Assume (2.3), and let p1 > 1, q2 ̸= 1. If p1 + q1 > 1 + (2 +
σ1)/N , then there exist global classical solutions of (1.1) for small initial
data.

Remark 2.6. We remark that the condition p1 + q1 > 1 + (2 + σ1)/N in
Corollary 2.5 consists of only the exponents in one equation. This condition
is the same as that for the global existence for the single equation ut−∆u =
|x|σ1up1+q1 . See [10] for details.

In the superlinear case, we have a uniqueness result.

Theorem 2.7. Assume (2.3) and let pj > 1, qj > 1 (j = 1, 2). Assume
that (u0, v0) ∈ Ia × Ib ((σ1 + 2)/(p1 + q1 − 1) < a, b < N). If p1 + q1 >
1 + (2 + σ1)/N , then there exist unique global solutions of (1.1) for small
initial data.

3. Local existence theorem

In this section, we show the local existence of classical solutions of (1.1).

Theorem 3.1. Let δ1 and δ2 be defined in (2.2). Assume that (u0, v0) ∈
Iδ1×Iδ2. Then there exist classical solutions (u(t), v(t)) ∈ ET for the system
(1.1) for some T > 0.
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Proof. We first construct local solutions to the system of integral equations
associated to (1.1):

u(t) = et∆u0 +
∫ t

0
e(t−s)∆| · |σ1u(s)p1v(s)q1ds, (3.1)

v(t) = et∆v0 +
∫ t

0
e(t−s)∆| · |σ2u(s)p2v(s)q2ds, (3.2)

where

et∆f(x) = (4πt)−
N
2

∫
RN

exp
(
−|x − y|2

4t

)
f(y)dy.

It is sufficient to show Propositions 3.2 and 3.4 below to prove Theorem 3.1.
The local existence of solutions of (3.1) and (3.2) is given by the following
proposition.

Proposition 3.2. Let δ1 and δ2 be defined in (2.2). Assume that (u0, v0) ∈
Iδ1 × Iδ2. Then there exist (u(t), v(t)) ∈ ET satisfying the integral equations
(3.1) and (3.2) for some T > 0.

To prove the proposition, we define {un(x, t)} and {vn(x, t)} (n = 1, 2 · · · )
inductively by:

un+1(t) = et∆u0 +
∫ t

0
e(t−s)∆| · |σ1un(s)p1vn(s)q1ds,

vn+1(t) = et∆v0 +
∫ t

0
e(t−s)∆| · |σ2un(s)p2vn(s)q2ds,

u1 = et∆u0,

v1 = et∆v0.

We use the following estimates by weighted norms and uniform estimates
for the solutions.

Lemma 3.3. (1) Let δ, a ∈ R, σ ≥ 0 and δ + a + σ = 0. Then we have

∥et∆|x|σ⟨x⟩a∥∞,δ ≤

{
C(1 + t)max(−δ,0,δ−N)/2, (δ ̸= N),
C log(2 + t), (δ = N).

(3.3)

(2) Suppose that (u0, v0) ∈ Iδ1 × Iδ2. Then there exist K > 0 and T > 0
such that

sup
t∈[0,T ]

∥un(t)∥∞,δ1 < K,

sup
t∈[0,T ]

∥vn(t)∥∞,δ2 < K

for all n.

Proof. (1) We show the estimates dividing into three cases: (i) 0 ≤ δ ≤ N ,
(ii) δ < 0, and (iii) δ > N .
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For the case 0 ≤ δ ≤ N , using Lemma 2.1 in [9], we can see that

∥et∆|x|σ⟨x⟩a∥∞,δ ≤ ∥et∆⟨x⟩σ+a∥∞,δ

≤

{
C, (0 ≤ δ < N),
C log(2 + t), (δ = N).

In the case δ < 0, we have∫
RN

exp
(
−|y|2

4t

)
|x − y|σ⟨x − y⟩ady

≤
∫

RN
exp

(
−|y|2

4t

)
⟨x − y⟩σ+ady

≤ C

∫
|y|≤|x|/2

exp
(
−|y|2

4t

)
⟨x⟩σ+ady + C

∫
|y|>|x|/2

exp
(
−|y|2

4t

)
⟨y⟩σ+ady

≤ CtN/2⟨x⟩σ+a + CtN/2(1 + t)(σ+a)/2.

Finally, for δ > N , we have∫
RN

exp
(
−|x − y|2

4t

)
|y|σ⟨y⟩ady

≤
∫
|y|≤|x|/2

exp
(
−|x|2

16t

)
⟨y⟩σ+ady + C

∫
|y|>|x|/2

exp
(
−|x − y|2

4t

)
⟨x⟩σ+ady

≤ C|x|N/2⟨x⟩σ+a⟨x⟩−(N+σ+a) exp
(
−|x|2

16t

)
+ CtN/2⟨x⟩σ+a

≤ CtN/2⟨x⟩σ+a(1 + t)−(N+σ+a)/2 + CtN/2⟨x⟩σ+a.

(2) We first estimate ∥et∆u0∥∞,δ1 . By (3.3), we have

∥et∆u0∥∞,δ1 ≤ ∥u0∥∞,δ1∥et∆⟨ · ⟩−δ1∥∞,δ1

≤

{
C∥u0∥∞,δ1 , (0 ≤ δ1 < N),
C∥u0∥∞,δ1(1 + T )κ1 , (otherwise),

where κ1 = κ1(δ1, N) > 0.
From above, there exists a constant C̃ = C̃(T ) > 0 satisfying

sup
t∈[0,T ]

∥et∆u0∥∞,δ1 ≤ C̃∥u0∥∞,δ1 ,

sup
t∈[0,T ]

∥et∆v0∥∞,δ2 ≤ C̃∥v0∥∞,δ2

for fixed T > 0.
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We next estimate the nonlinear terms. Define Φ1(u, v) and Φ2(u, v) by

Φ1(u, v)(t) =
∫ t

0
e(t−s)∆| · |σ1u(s)p1v(s)q1ds,

Φ2(u, v)(t) =
∫ t

0
e(t−s)∆| · |σ2u(s)p2v(s)q2ds.

Applying (3.3) again, we obtain

sup
t∈[0,T ]

∥Φ1(un, vn)(t)∥∞,δ1 ≤ C(T ) sup
t∈[0,T ]

∥un(t)∥p1

∞,δ1
sup

t∈[0,T ]
∥vn(t)∥q1

∞,δ2
,

sup
t∈[0,T ]

∥Φ2(un, vn)(t)∥∞,δ2 ≤ C(T ) sup
t∈[0,T ]

∥un(t)∥p2

∞,δ1
sup

t∈[0,T ]
∥vn(t)∥q2

∞,δ2
,

where C(T ) ↓ 0 (T ↓ 0). Indeed, we can see

Φ1(u, v)(t)

≤ sup
t∈[0,T ]

∥u(t)∥p1

∞,δ1
sup

t∈[0,T ]
∥v(t)∥q1

∞,δ2

∫ t

0
∥e(t−s)∆| · |σ1⟨ · ⟩−p1δ1−q1δ2∥∞,δ1ds

≤

{
C supt∈[0,T ] ∥u(t)∥p1

∞,δ1
supt∈[0,T ] ∥v(t)∥q1

∞,δ2
T, (0 ≤ δ1 < N),

C supt∈[0,T ] ∥u(t)∥p1

∞,δ1
supt∈[0,T ] ∥v(t)∥q1

∞,δ2
T (1 + T )κ2 , (otherwise),

where κ2 = κ2(σ1, p1, q1, δ1, δ2, N) > 0.

Here, we put R = max(∥u0∥∞,δ1 , ∥v0∥∞,δ2). Taking large K > 0 and
small T > 0 such that

K > 2C̃R, C(T ) <
K − C̃R

Kp1+q1 + Kp2+q2
,

we obtain the desired estimates. This completes the proof. ¤

Returning to the proof of Proposition 3.2, one can see from Lemma 3.3(2)
that

sup
t∈[0,T ]

∥⟨ · ⟩δ1un(t)∥∞ < K,

sup
t∈[0,T ]

∥⟨ · ⟩δ2vn(t)∥∞ < K

for all n. The monotonicity of the heat kernel gives

un ≤ un+1, vn ≤ vn+1

for all n. Therefore, there exist ũ(x, t) = limn→∞ un(x, t) and ṽ(x, t) =
limn→∞ vn(x, t) on RN × [0, T ], and we have

sup
t∈[0,T ]

∥ũ(t)∥∞,δ1 ≤ K,

sup
t∈[0,T ]

∥ṽ(t)∥∞,δ2 ≤ K.
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Moreover, from Lebesgue’s monotone convergence theorem, we can easily
see that (ũ, ṽ) are local solutions of (3.1) and (3.2). This completes the
proof of Proposition 3.2. ¤

Next, we improve the regularity of the local solutions given in Proposition
3.2.

Proposition 3.4. Let (u0, v0) ∈ Iδ1 × Iδ2, and let (u, v) ∈ ET be solutions
of (3.1) and (3.2) in RN × (0, T ]. Assume that there exists a constant C > 0
such that

∥u(t)∥∞,δ1 < C, ∥v(t)∥∞,δ2 < C (0 ≤ t ≤ T ). (3.4)

Then (u, v) are classical solutions of (1.1) in RN × (0, T ).

Proof. From the assumptions, we can easily see that |x|σjupjvqj (j = 1, 2)
are locally θ-Hölder continuous in x (0 < θ ≤ 1); that is, for any ε > 0 and
for any compact set K ⊂ RN , there exists a constant C > 0 such that

||x1|σjupjvqj (x1, t) − |x2|σjupjvqj (x2, t)| < C|x1 − x2|θ,
for any t ∈ (ε, T ), and x1, x2 ∈ K. It follows from the Hölder continuity and
the standard regularity argument in [8] that (u, v) are classical solutions. ¤

This completes the proof of Theorem 3.1. ¤

4. Proof of Theorems 2.1, 2.2, and 2.4

In proving Theorems 2.1, 2.2, and 2.4, we use a comparison theorem and
the existence of super-solutions. First, we show the following comparison
theorem.

Proposition 4.1. Let f(u, v) and g(u, v) be strictly monotone increasing in
u and v for u, v ≥ 0. Assume that ū, v̄, u, v are non-negative and satisfy

ūt − ∆ū ≥ |x|σ1f(ū, v̄),
v̄t − ∆v̄ ≥ |x|σ2g(ū, v̄),
ut − ∆u ≤ |x|σ1f(u, v),
vt − ∆v ≤ |x|σ2g(u, v),

in RN × (0, T ),

{
ū(x, 0) − u(x, 0) ≥ 0, ̸≡ 0,

v̄(x, 0) − v(x, 0) ≥ 0, ̸≡ 0.
x ∈ RN .

Then we have ū(x, t) ≥ u(x, t) and v̄(x, t) ≥ v(x, t) on RN × (0, T ).

Proof. Put

t1 = inf{τ ∈ (0, T ); ∃x′ ∈ RN s.t. ū(τ, x′) < u(τ, x′)},
t2 = inf{τ ∈ (0, T ); ∃x′ ∈ RN s.t. v̄(τ, x′) < v(τ, x′)}.

If ū(t, x) ≥ u(t, x) for any (t, x) ∈ (0, T ) × RN , then let t1 = ∞. And if
v̄(t, x) ≥ v(t, x) for any (t, x) ∈ (0, T ) × RN , then let t2 = ∞.
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We assume that t1 ≤ t2 and t1 < T . By the definition of t1 and the
continuity argument, we have

ū(t1, x0) = u(t1, x0) for some x0 ∈ RN , (4.1)

ū(t, x) ≥ u(t, x) for any (t, x) ∈ (0, t1) × RN , (4.2)

v̄(t, x) ≥ v(t, x) for any (t, x) ∈ (0, t1) × RN . (4.3)

From the associated integral inequalities of ū and u, we have

ū(t1, x0) − u(t1, x0)

≥ et1∆(ū0(x0) − u0(x0)) +
∫ t1

0
e(t1−s)∆|x0|σ1(f(ū, v̄) − f(u, v))ds

>

∫ t1

0
e(t1−s)∆|x0|σ1(f(ū, v̄) − f(u, v))ds.

Positivity of the heat kernel and (4.1) imply that there exist (s, y) ∈ (0, t1)×
RN such that

(f(ū, v̄) − f(u, v))(s, y) < 0.

This contradicts (4.2), (4.3) and the monotone increasing property of the
function f .

In the case t1 ≥ t2 and t2 < T , we can derive a contradiction in the
same way as above by replacing u with v and f with g. This completes the
proof. ¤

We next show the existence of super-solutions of (1.1) in several cases.

Proposition 4.2. (i) Let p1 > 1, q2 > 1 or p2q1 − (1− p1)(1− q2) > 0, and
let p1 + q1 > 1, p2 + q2 > 1. Assume that one of the following conditions is
satisfied:
(A) p1, q2 > 1, p1 + q1 > 1 + (2 + σ1)/N , p2 + q2 > 1 + (2 + σ2)/N .
(B) p1 > 1 > q2, p1 + q1 > 1 + (2 + σ1)/N , α < N/2.
(C) p1, q2 < 1, p2q1 − (1 − p1)(1 − q2) > 0, α, β < N/2.
Then there exist C1, C2, α1, β1 > 0, t0 > 1 such that

ū(x, t) = C1(t + t0)α1−N
2 exp

(
− |x|2

4(t + t0)

)
, (4.4)

v̄(x, t) = C2(t + t0)β1−N
2 exp

(
− |x|2

4(t + t0)

)
(4.5)

are super-solutions of (1.1).
(ii) Let p1 > 1, q2 > 1 or p2q1 − (1 − p1)(1 − q2) > 0. And let p1 + q1 > 1,
p2 + q2 ≤ 1. Assume that one of the following conditions is satisfied:
(D) p1 > 1 > q2, p1 + q1 > 1 + (2 + σ1)/N , α < N/2,
(E) p1, q2 ≤ 1, p2q1 − (1 − p1)(1 − q2) > 0, α, β < N/2.
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Then there exist C1 ,C2, α1, β1 > 0, t0 > 1, a > 0 such that

ū(x, t) = C1(t + t0)α1−N
2 exp

(
− |x|2

4(t + t0)

)
, (4.6)

v̄(x, t) = C2(t + t0)β1−Na
2 exp

(
− a|x|2

4(t + t0)

)
(4.7)

are super-solutions of (1.1).
(iii) Let p1 < 1, q2 < 1 and p2q1 − (1− p1)(1− q2) < 0. Then there exist C1,
C2, k, a > 0 such that

ū(x, t) = C1⟨x⟩−2δ1 exp (kt) , (4.8)

v̄(x, t) = C2⟨x⟩−2δ2 exp (akt) (4.9)

are super-solutions of (1.1).

Proof. (i) Put

ū(x, t) = C1(t + t0)α1−N
2 exp

(
− |x|2

4(t + t0)

)
, (4.10)

v̄(x, t) = C2(t + t0)β1−N
2 exp

(
− |x|2

4(t + t0)

)
, (4.11)

where C1, C2, α1, β1 > 0, t0 > 1. We can see that (ū, v̄) are global super-
solutions for small C1, C2 > 0 and large t0 > 1, provided that{

α1 − N/2 − 1 > p1(α1 − N/2) + q1(β1 − N/2) − σ1/2, and
β1 − N/2 − 1 > p2(α1 − N/2) + q2(β1 − N/2) − σ2/2,

(4.12)

which (4.12) is equivalent to

(p1 − 1)α1 + q1β1 < (p1 + q1 − 1)N/2 − (σ1 + 2)/2, and (4.13)

p2α1 + (q2 − 1)β1 < (p2 + q2 − 1)N/2 − (σ2 + 2)/2. (4.14)

Now, we shall show the existence of α1, β1 > 0 on the (α1, β1)-plane in each
case of Proposition 4.2.
Case (A): p1, q2 > 1, p1 + q1 > 1 + (2 + σ1)/N , p2 + q2 > 1 + (2 + σ2)/N .
Since the right hand sides of (4.13) and (4.14) are positive, we can take small
α1, β1 > 0 satisfying (4.13) and (4.14).

Case (B): p1 > 1 > q2, p1 + q1 > 1 + (2 + σ1)/N , α < N/2.
We remark that the intersection of

(p1 − 1)α1 + q1β1 = (p1 + q1 − 1)N/2 − (σ1 + 2)/2, and

p2α1 + (q2 − 1)β1 = (p2 + q2 − 1)N/2 − (σ2 + 2)/2

is (α1, β1) = (N/2 − α,N/2 − β). From the assumption, we can see that
the intersection lies above the α1-axis and that the boundary of (4.13) lies
above the origin. For ε1, ε2 > 0, put (α1, β1) = (ε1, {(p1 + q1 − 1)N/2 −
(σ1 + 2)/2}/q1 + ε2). Then there exist small constants ε1, ε2 > 0 such that
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(α1, β1) satisfy (4.13) and (4.14).

Case (C): p1, q2 < 1, p2q1 − (1 − p1)(1 − q2) > 0, α, β < N/2.
From the assumption, we can see that the intersection lies in the first
quadrant. Since p1, q2 < 1 and p2q1 − (1 − p1)(1 − q1) > 0, we have
(1 − p1)/q1 < p2/(1 − q2), that is, the angular coefficient of (4.14) is larger
than that of (4.13). Hence, there exist small constants ε1, ε2 > 0 such that
(α1, β1) = (N/2 − α − ε1, N/2 − β − ε2) satisfy (4.13) and (4.14). ¤

(ii) Case (D): p1 > 1 > q2, p1 + q1 > 1 + (2 + σ1)/N , α < N/2.
Put a > 0 such that

max
{

0,
(1 − p1)N + (σ1 + 2)

q1N

}
< a <

p2

1 − q2
. (4.15)

In fact, since q2 < 1, p2q1 − (1 − p1)(1 − q2) > 0 and α < N/2, we have

p2

1 − q2
− (1 − p1)N + (σ1 + 2)

q1N

=
1

Nq1(1 − q2)
{Nq1p2 − N(1 − q2)(1 − p1) − (1 − q2)(σ1 + 2)}

=
2{p2q1 − (1 − p1)(1 − q2)}

Nq1(1 − q2)

{
N

2
− (1 − q2)(σ1 + 2)

2(p2q1 − (1 − p1)(1 − q2))

}
≥ 2{p2q1 − (1 − p1)(1 − q2)}

Nq1(1 − q2)

(
N

2
− α

)
> 0.

Therefore, we can take a > 0 satisfying (4.15). Let

ū(x, t) = C1(t + t0)α1−N
2 exp

(
− |x|2

4(t + t0)

)
, (4.16)

v̄(x, t) = C2(t + t0)β1−Na
2 exp

(
− a|x|2

4(t + t0)

)
, (4.17)

where C1, C2, α1, β1 > 0, t0 > 1. We can see that (ū, v̄) are global super-
solutions provided that{

α1 − N/2 − 1 > p1(α1 − N/2) + q1(β1 − Na/2) − σ1/2, and
β1 − Na/2 − 1 > p2(α1 − N/2) + q2(β1 − Na/2) − σ2/2

(4.18)

for small C1, C2 > 0 and large t0 > 1. The condition (4.18) is equivalent to

(p1 − 1)α1 + q1β1 < (p1 + aq1 − 1)N/2 − (σ1 + 2)/2, and (4.19)

p2α1 + (q2 − 1)β1 < (p2 + aq2 − a)N/2 − (σ2 + 2)/2. (4.20)

We remark that the intersection of

(p1 − 1)α1 + q1β1 = (p1 + aq1 − 1)N/2 − (σ1 + 2)/2, and

p2α1 + (q2 − 1)β1 = (p2 + aq2 − a)N/2 − (σ2 + 2)/2
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is (α1, β1) = (N/2−α,Na/2−β). From the assumption α < N/2, we see that
the intersection lies above the α1-axis. From a > {(1−p1)N +(σ1+2)}/q1N ,
we can easily see that the boundary of (4.19) lies above the origin. Hence,
we can prove the existence of (α1, β1) satisfying (4.19) and (4.20) in the
same way as in Case (B).

Case (E): p1, q2 ≤ 1, p2q1 − (1 − p1)(1 − q2) > 0, α, β < N/2.
Putting a > 0 satisfying

max
{

1 − p1

q1
,
2β

N

}
< a <

p2

1 − q2
, (4.21)

we can prove in the same way as in Case (C). In fact, since q2 < 1, p2q1 −
(1 − p1)(1 − q2) > 0 and α < N/2, we have

p2

1 − q2
− 2β

N

=
p2N{p2q1 − (1 − p1)(1 − q2)} − (1 − p1)p2(σ1 + 2) − p2q1(σ2 + 2)

(1 − q2){p2q1 − (1 − p1)(1 − q2)}

+
p2q1(σ2 + 2) − (1 − p1)(1 − q2)(σ2 + 2)

(1 − q2){p2q1 − (1 − p1)(1 − q2)}

=
2p2N

1 − q2

(
N

2
− α

)
+

σ2 + 2
1 − q2

> 0,

and since p1, q2 ≤ 1, p2q1 − (1 − p1)(1 − q2) > 0, we have (1 − p1)/q1 <
p2/(1 − q2). Therefore, we can take a > 0 satisfying (4.21). ¤

(iii) Let a = p2

1−q2
. Put

ū(x, t) = C1⟨x⟩−2δ1 exp (kt) , (4.22)

v̄(x, t) = C2⟨x⟩−2δ2 exp (akt) , (4.23)

where C1 ,C2, k > 0. We can see that (ū, v̄) are global super-solutions for
large k > 0. ¤

We are now in a position to prove Theorems 2.1-2.3.

Proof of Theorems 2.1(i), 2.2 and 2.4. Let T ∗ be the maximal
existence time of the classical solutions for (1.1). From the local existence
theorem in Section 3, it is clear that T ∗ ̸= 0. Assume T ∗ < ∞. If the initial
data (u0, v0) are sufficiently small, then the solutions (u, v) are estimated
above by the super-solutions in Proposition 4.2. Using Proposition 3.2 and
Proposition 3.4, we can extend the solutions (u, v) with new initial data
(u(T ∗), v(T ∗)) to time T ∗∗ > T ∗. This contradicts the maximality of T ∗.
Hence T ∗ = ∞. ¤
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Proof of Theorem 2.1 (ii). The constants C1 and C2 > 0 in Proposi-
tion 4.2 (iii) have no restriction. Hence, the argument as above works for
arbitrary initial data in Iδ1 × Iδ2 . ¤

5. Proof of Theorem 2.7

First, we prepare some notation. For γ > 0, we put

ηγ(t, x) = et∆⟨x⟩−γ .

We define the Banach space Eη by

Eη = {(u(t), v(t)); u, v ≥ 0, ∥(u, v)∥Eη < ∞}
with the norm

∥(u, v)∥Eη =
∣∣∣∣∣∣∣∣∣∣∣∣ u

ηa

∣∣∣∣∣∣∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣∣∣∣∣∣∣ v

ηb

∣∣∣∣∣∣∣∣∣∣∣∣
∞

,

where

|||w|||∞ = sup
t∈(0,∞)

∥w(t)∥∞.

Let m = ∥u0∥∞,a + ∥v0∥∞,b. We define

Ψ(u, v) = (Ψ1(u, v), Ψ2(u, v)),

where

Ψ1(u, v) = et∆u0 +
∫ t

0
e(t−s)∆| · |σ1u(s)p1v(s)q1ds,

Ψ2(u, v) = et∆v0 +
∫ t

0
e(t−s)∆| · |σ2u(s)p2v(s)q2ds.

In this section, we use the following lemma to show that Ψ(u, v) is a
contraction mapping of B(Eη, 2m) = {(u, v) ∈ Eη; ∥(u, v)∥Eη ≤ 2m} into
itself.

Lemma 5.1. Let γ > 0 and 0 ≤ δ ≤ γ < N . Then we have

∥ηγ(t)∥∞,δ ≤ C(1 + t)(δ−γ)/2

for t > 0.

Proof. See Lemma 2.1 in [9]. ¤
Proof of Theorem 2.7. It is sufficient to show that Ψ is a mapping of
B(Eη, 2m) into itself. Assume that (u0, v0) ∈ Ia × Ib. Then we can easily
see that

|et∆u0(x)| ≤ ∥u0∥∞,a|et∆⟨x⟩−a|
= ∥u0∥∞,aηa.

Hence, we obtain

∥(et∆u0, e
t∆v0)∥Eη ≤ m.
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We next estimate the nonlinear parts. Since σ1/(p1 + q1 − 1) < a, b < N
and σ1 − a(p1 − 1) − bq1 < −2, we have from Lemma 5.1∫ t

0
e(t−s)∆| · |σ1u(s)p1v(s)q1ds

=
∫ t

0
e(t−s)∆| · |σ1ηa(s)p1−1ηb(s)q1ηa(s)

∣∣∣∣ u(s)
ηa(s)

∣∣∣∣p1
∣∣∣∣ v(s)
ηb(s)

∣∣∣∣q1

ds

≤
∫ t

0
e(t−s)∆∥ηa(s)∥p1−1

∞,
σ1

p1+q1−1

∥ηb(s)∥q1

∞,
σ1

p1+q1−1

ηa(s)
∣∣∣∣ u(s)
ηa(s)

∣∣∣∣p1
∣∣∣∣ v(s)
ηb(s)

∣∣∣∣q1

ds

≤ C

∫ t

0
e(t−s)∆(1 + s){σ1−a(p1−1)−bq1}/2ηa(s)ds

∣∣∣∣∣∣∣∣∣∣∣∣ u

ηa

∣∣∣∣∣∣∣∣∣∣∣∣p1

∞

∣∣∣∣∣∣∣∣∣∣∣∣ v

ηb

∣∣∣∣∣∣∣∣∣∣∣∣q1

∞

= Cηa(t)
∫ t

0
(1 + s){σ1−a(p1−1)−bq1}/2ds

∣∣∣∣∣∣∣∣∣∣∣∣ u

ηa

∣∣∣∣∣∣∣∣∣∣∣∣p1

∞

∣∣∣∣∣∣∣∣∣∣∣∣ v

ηb

∣∣∣∣∣∣∣∣∣∣∣∣q1

∞
≤ Cηa(t)(2m)p1+q1 .

Hence, we obtain

∥(Ψ1(u, v), Ψ2(u, v))∥Eη ≤ 2m

for sufficiently small m > 0. ¤
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