
REMARKS ON THE RELATIVISTIC HARTREE EQUATIONS

YONGGEUN CHO, TOHRU OZAWA, HIRONOBU SASAKI, AND YONG-SUN SHIM

Abstract. We study the global well-posedness (GWP) and small data scat-

tering of radial solutions of the relativistic Hartree type equations with nonlo-

cal nonlinearity F (u) = λ(| · |−γ ∗ |u|2)u, λ ∈ R \ {0}, 0 < γ < n, n ≥ 3. We

establish a weighted L2 Strichartz estimate applicable to non-radial functions

and some fractional integral estimates for radial functions.

1. Introduction

In this paper, we consider the Cauchy problems concerning the relativistic Hartree
equations:

{
i∂tu =

√
1−∆u + F (u) in Rn × R, n ≥ 3,

u(0) = ϕ,
(1)

{
∂2

t u + (1−∆)u = F (u) in Rn × R, n ≥ 3,
u(0) = ϕ1, ∂tu(0) = ϕ2.

(2)

The nonlinear part F (u) is of Hartree type such that F (u) = Vγ(u)u, where

Vγ(u)(x) = λ(| · |−γ ∗ |u|2)(x) = λ

∫

Rn

|u(y)|2
|x− y|γ dy.

Here λ is a non-zero real number and γ is a positive number less than the space
dimension n.

The first equation (1) is called the semi-relativistic equation which describes
the Boson stars [6, 7, 13] and the second one (2) is the well-known Klein-Gordon
equation whose physical model is originated from the helium atom [10, 14, 17]. For
the simplicity of presentation, the mass, speed of light and Planck constant of both
equations have been normalized.

The equations (1) and (2) can be rewritten in the form of the integral equations

u(t) = U(t)ϕ− i

∫ t

0

U(t− t′)F (u)(t′)dt′,(3)

u(t) = (cos tω)ϕ1 + ω−1(sin tω)ϕ2 −
∫ t

0

ω−1(sin(t− t′)ω)F (u) dt′,(4)

1991 Mathematics Subject Classification. Primary: 35Q40, 35Q55; Secondary: 47J35.
Key words and phrases. relativistic Hartree type equations, global well-posedness, scattering,

radial solutions.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPrint Series of Department of Mathematics, Hokkaido University

https://core.ac.uk/display/42025649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Y. CHO, T. OZAWA, H. SASAKI, AND Y.-S. SHIM

where ω =
√

1−∆ and the associated unitary group U(t) is realized by the Fourier
transform as

U(t)ϕ = (e−itωϕ)(x) ≡ 1
(2π)n

∫

Rn

eix·ξe−it
√

1+|ξ|2 ϕ̂(ξ) dξ,

where ĝ denotes the Fourier transform of g defined by ĝ(ξ) =
∫
Rn e−ix·ξg(x) dx.

The operators cos tω and sin tω are defined by replacing e−it
√

1+|ξ|2 with

cos(t
√

1 + |ξ|2) and sin(t
√

1 + |ξ|2),
respectively.

If the solution u of (1) or (3) has a decay at infinity and smoothness, it satisfies
two conservation laws:

‖u(t)‖L2 = ‖ϕ‖L2 ,

E1(u) ≡ K1(u) + V (u) = E1(ϕ),

K(u) =
1
2
〈
√

1−∆ u, u〉, V (u) =
1
4
〈F (u), u〉,

(5)

where 〈, 〉 is the complex inner product in L2. Also the solution of (2) or (4) satisfies
the conservation law:

E2(u, ∂tu) ≡ K2(u, ∂tu) + V (u) = E2(ϕ1, ϕ2),

K2(u, ∂tu) =
1
2
(〈∂tu, ∂tu〉+ 〈

√
1−∆u,

√
1−∆u〉).(6)

The main concern of this paper is to establish the global well-posedness and
scattering of radial solutions of the equations (1) and (2).

The study of the global well-posedness (GWP) and scattering for the semi-
relativistic equation (1) has not been long before. In [15], GWP was considered
with a three dimensional Coulomb type potential which corresponds to γ = 1. In
[4], the first and second authors of the present paper showed GWP for 0 < γ ≤ 1
if n ≥ 2 and 0 < γ < 1 if n = 1, for 0 < γ < 2n

n+1 if n ≥ 2, and small data
scattering for γ > 2 if n ≥ 3. In this paper we tried to fill the gap 1 < γ ≤ 2
for GWP under the assumption of radial symmetry. For further study like blowup
of solutions, solitary waves, mean field limit problem for semi-relativistic equation,
see the references [13, 6, 7, 8, 9].

The first result is on the GWP for radial solutions of (3).

Theorem 1. Let 1 < γ < 3
2 for n = 3 and 1 < γ < 2 for n ≥ 4. Let ϕ ∈ H

1
2

be radially symmetric and assume that ‖ϕ‖L2 is sufficiently small if λ < 0. Then

there exists a unique radial solution u ∈ CbH
1
2 such that |x|−1u ∈ L2

locL
2 of (3)

satisfying the energy and L2 conservations (5).

Here Cb = C ∩ L∞, Hs
r = (1 −∆)−s/2Lr and Ḣs

r = (−∆)−s/2Lr are the usual
and homogeneous Sobolev spaces, respectively. We mean Hs

2 by Hs and Ḣs
2 by

Ḣs. Hereafter, the space Lq
T (B) denotes Lq(−T, T ;B) for T > 0 and ‖ · ‖Lq

T B its
norm for some Banach space B. If T = ∞, we use Lq(B) for Lq(R; B) with norm
‖ · ‖LqB , 1 ≤ q ≤ ∞. We also denote v ∈ Lq

T (B) for all T < ∞ by v ∈ Lq
loc(B).

The next result is on the small data scattering of radial solutions of (3) for n ≥ 4.
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Theorem 2. Let γ = 2 and n ≥ 4. Let ϕ ∈ H1 be radially symmetric. If ‖ϕ‖H1

is sufficiently small, then there exists a unique radial solution u ∈ CbH
1 such that

|x|−1u ∈ L2L2 to (3). Moreover, there exist radial functions ϕ+ and ϕ− such that

‖u(t)− U(t)ϕ±‖H1 → 0 as t → ±∞.

In [4], the authors used the LqLr type Strichartz estimates of the Klein-Gordon
equation to prove GWP and scattering for the equation (1). Contrary to the
case of Klein-Gordon equation, semi-relativistic equation preserves a regularity
in a contraction argument based on the Strichartz estimate, from which the gap
( 2n

n+1 ≤ γ ≤ 2) arises naturally in the range of γ for GWP. To tide over this dif-
ficulty, we assume the radial symmetry for data and solutions, which enables us
to estimate fractional integrals associated with the nonlinearity Vγ(u)u. Then we
establish an L2 Strichartz estimate for n ≥ 2 with weight |x|−a which is useful to
treat radial functions but also applicable to non-radial functions (a gain of angu-
lar regularity is achieved in the non-radial case). The one dimensional analog is
attainable. See Remark 4 below.

For GWP we use a fractional integral estimate on the unit sphere such that
∫

Sn−1
|re1 − ρσ|−θ dσ ≤ M(r, ρ) < ∞,

where e1 = (1, 0, · · · , 0). The result of Theorem 1 corresponds to the case θ = γ+ 1
2 .

If n = 3, then the finiteness of integralenforces γ to be less than 3
2 as in Theorem

1, since the integral is finite only when n − 2 − θ > −1. For details see Lemma 2
and Lemma 3. In Theorem 2, we treated the case θ = 2 for which the integral is
not finite if n = 3. However, the three dimensional GWP can be slightly improved
up to 5

3 by using another Strichartz estimate on a hybrid Sobolev space (for this
see [5]). It will be worthy of trying to fill the gap 5

3 ≤ γ ≤ 2 for n = 3.

The Klein-Gordon equation (2) was initially studied by [26] (see also [18]). In
[21], the GWP is considered for λ < 0 and 0 < γ ≤ 4. It was proved in [26, 20, 23]
that the scattering operator for (2) is well-defined on some domain if n ≥ 2, 4/3 <
γ ≤ 4n/(n + 1) and γ < n. Furthermore, [19] showed that if n ≥ 3, 2 ≤ γ ≤ 4 and
γ < n, then the scattering operator can be defined on some neighborhood near zero
in the energy space.

In this paper the small data scattering of radial solutions is successfully treated
below energy space, provided 3

2 < γ < 2. To state precisely, let us define a weighted
spaces Ws,ε and a data space Dα,β by

Ws,ε = {ψ ∈ L2 : ‖ψ‖2Ws,ε
≡ ‖| · |−s−εψ‖2L2(|x|≤1) + ‖| · |−s+εψ‖2L2(|x|>1) < ∞}

and Dα,β = Hα− 1
2 ∩ L

2n
n+2−2β ,

respectively, where ε > 0 is sufficiently small.

Theorem 3. Let 3
2 < γ < 2 for n = 3 and 3

2 < γ ≤ 2 for n ≥ 4. Then there is a

real number s and ε such that
1
2

< s <
γ

2
, 0 < ε < min

(
γ

2
− s, s− 1

2

)
, 1 + s− ε < γ < 1 + s + ε.(7)
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For fixed such s and ε, let (ϕ1, ϕ2) ∈ Ds+ε,s+ε ×Ds+ε−1,s+ε be radially symmetric

data. Then if ‖ϕ1‖Ds+ε,s+ε +‖ϕ2‖Ds+ε−1,s+ε is sufficiently small, then there exists a

unique radial solution u ∈ CbH
s− 1

2+ε ∩L2Ws,ε to (4). Moreover, there exist radial

functions ϕ±1 ∈ Hs− 1
2+ε and ϕ±2 ∈ Hs− 3

2+ε such that

‖u(t)− u±(t)‖
Hs− 1

2 +ε → 0 as t → ±∞,

where u± is the solutions to the Cauchy problem
{

∂2
t u± + (1−∆)u± = 0,

u±(0) = ϕ±1 , ∂tu
±(0) = ϕ±2 .

(8)

In the definition of initial data space Dα,β the space L
2n

n+2−2β can be slightly weak-
ened by the homogeneous Sobolev space Ḣ−(1−β). In fact, L

2n
n+2−2β ↪→ Ḣ−(1−β)

for 0 < β < 1. See the proof of Theorem 3 below. Let D̃α,β be the weak-
ened space Hα− 1

2 ∩ Ḣ−(1−β). Then one can easily show that the solution u ∈
Cb(R; Ḣ−(1−(s−ε))) and then the existence of scattering operator of (2) on a small
neighborhood of the origin in D̃s+ε,s−ε × D̃s+ε−1,s−ε. For details see Remark 6
below.

The lower bound 3
2 of γ is caused by the condition (7) which follows from the

relation between the weight |x|−a and the L2 estimate of Bessel function such that
∫ ∞

0

r1−2a|Jn−2
2

(r)|2 dr < ∞.

For the finiteness, the assumption 1
2 < a < n

2 is inevitable because Jn−2
2

(r) =

O(r
n−2

2 ) as r → 0 and Jn−2
2

(r) = O(r−
1
2 ) as r →∞. For more explicit formula, see

the identity (13) below. Hence for the present it seems hard to improve the range
of γ for the small data scattering. From the perspective of negative result for the
scattering1, it will be very interesting to show the scattering up to the value of γ
greater than 1.

This paper is organized as follows. In Section 2 we introduce a weighted Strichartz
estimate for n ≥ 2. In Section 3 some fractional integral estimates are considered
under radial symmetry. All the proofs of theorems are shown in Section 4.

If not specified, throughout this paper, the notation A . B and A & B denote
A ≤ CB and A ≥ C−1B, respectively. Different positive constants possibly de-
pending on n, λ, γ and a might be denoted by the same letter C. A ∼ B means
that both A . B and A & B hold.

2. Weighted L2 Strichartz estimate

In this section, we show the following weighted L2 Strichartz estimate.

1The non-existence of the asymptotically free solutions occurs when γ ≤ 1. For instance see

the last section of [4].
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Proposition 1. Let 1
2 < a < n

2 and n ≥ 2. Then for any ϕ ∈ Hs and F ∈ L1
T Hs,

s ≥ 0, we have

‖U(·)ϕ‖
L2

T ( eHs
aH

a− 1
2

σ )
. ‖ϕ‖Hs ,

∥∥∥∥
∫ •

0

U(· − t′)F (t′) dt′
∥∥∥∥

L2
T ( eHs

aH
a− 1

2
σ )

. ‖F‖L1
T Hs .

(9)

The constants in the estimates can be chosen independently of T .

Here we denote the weighted Sobolev space H̃s
a by

H̃s
a = {v : ‖v‖ eHs

a
≡ ‖| · |−aLa(∆)(1−∆)

s
2 v‖L2 < ∞},

where a is a positive real number and La(∆) = (−∆)
1
2 (1−a)(1−∆)−

1
4 . The Sobolev

space Hα
σ = (1−∆σ)−

α
2 L2(Sn−1) is defined on the unit sphere Sn−1, where ∆σ is

the Laplace-Beltrami operator on the unit sphere Sn−1 (see [11, 16] for instance).
The mixed norm H̃s

aHα
σ is defined as follows.

‖v‖2eHs
aHα

σ

=
∫

Rn

|x|−2a
∣∣La(∆)(1−∆)

s
2 (1−∆σ)

α
2 v

∣∣2 dx.

Remark 1. If ϕ and F are radially symmetric, then the angular regularity Hα
σ is

not necessary.

Remark 2. If we use Theorem 3.4 of [4] for small data GWP, then from the

Strichartz estimates above, we readily observe that if 2 < γ < n, n ≥ 3, s >
γ
2 − n−2

2 , and ‖ϕ‖Hs is sufficiently small, then for 1
2 < a < n

2 the solution u of

(1) is in L2(H̃s
aH

a− 1
2

σ ). In fact, in view of the proof of Theorem 3.4 of [4] we have

‖F (u)‖L1Hs . ‖ϕ‖Hs and hence

‖u‖
L2( eHs

aH
a− 1

2
σ )

. ‖ϕ‖Hs + ‖F (u)‖L1Hs . ‖ϕ‖Hs .

Similarly, we have by using Lemma 2.4 of [23] that if 4
3 < γ < 2, n ≥ 2 and

‖ϕ1‖Hs + ‖ϕ2‖Hs−1 is sufficiently small for s ≥ 1, then the solution u of (2) is in

L2(H̃s
aH

a− 1
2

σ ) for any 1
2 < a < n

2 .

Proof of Proposition 1. Without loss of generality we may assume s = 0. Let us

first define an operator Wν(t) by

(Wν(t)f)(r) = r−a

∫ ∞

0

e−it
√

1+ρ2
(rρ)

1
2 Jν(rρ)

ρ1−a

(1 + ρ2)
1
4
f(ρ) dρ,(10)

where ν is a real number greater than equal to n−2
2 and Jν is the Bessel function

of order ν. We claim that for any ν ≥ n−2
2 and 1

2 < a < n
2

‖Wν(·)f‖L2(R+×(−T,T )) ≤ ‖Wν(·)f‖L2(R2
+) . (1 + ν)−(a− 1

2 )‖f‖L2 .(11)
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In fact, using the change of variables
√

1 + ρ2 7→ ρ, we have

(Wν(t)f)(r)

= r
1
2−a

∫ ∞

−∞
e−itρχ(1,∞)(ρ)Jν(r

√
ρ2 − 1)

√
ρ(ρ2 − 1)

1
4− a

2 f(
√

ρ2 − 1) dρ,

where χ(1,∞) is the characteristic function on the interval (1,∞). Now from the

Plancherel theorem with respect to the time variable and the change of variables√
ρ2 − 1 7→ ρ, it follows that

‖Wν(·)f‖2L2(R2
+) = 2π

∫ ∞

0

ρ2−2a|f(ρ)|2
∫ ∞

0

r1−2a|Jν(rρ)|2 dr dρ

= 2π

(∫ ∞

0

r1−2a|Jν(r)|2 dr

)
‖f‖2L2 .

(12)

For the estimate of inner integral, we use the known formula on Bessel function

(see p. 402 of [27]) such that for any ν ≥ n−2
2 and 1

2 < a < n
2∫ ∞

0

r1−2a|Jν(r)|2 dr =
Γ(2a− 1)Γ(ν + 1− a)
22a−1Γ(a)2Γ(ν + a)

,(13)

which has no singularity at ν ≥ n−2
2 . We note that the numerator on the RHS

is finite as far as 1
2 < a < n

2 ≤ ν + 1. By Stirling’s formula such that Γ(s) ∼
ss− 1

2 e−(s−1) for large s (for instance, see [2]), we get (11).

From now on, we prove the proposition. We expand ϕ with radial functions and

spherical harmonic functions as follows:

ϕ(rσ) =
∑

k≥0

∑

1≤l≤d(k)

gk,l(r)Yk,l(σ), (r, σ) ∈ (0,∞)× Sn−1,

where gk,l are radial functions such that
∫ ∞

0

|gk,l(r)|2rn−1 dr < ∞,

Yk,l are orthonormal spherical harmonics of order k, and d(k) is the dimension of

the space of spherical harmonics of order k. See [3, 11, 16].

By the othornormality, we have

‖ϕ‖2L2 ∼
∑

k≥0

∑

1≤l≤d(k)

∫ ∞

0

|gk,l(r)|2rn−1 dr.

Using the Fourier transform of spherical harmonic functions (see for instance [25]),

we have

ĝk,lYk,l(ρσ) = Gk,l(ρ)Yk,l(σ),

where

Gk,l(ρ) = cn

∫ ∞

0

gk,l(r)rn−1(rρ)−
n−2

2 Jν(k)(rρ) dr,

and ν(k) =
2k + n− 2

2
.
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The constant cn is independent of k. By the Plancherel theorem, one can easily

observe that ∫ ∞

0

|gk,l(r)|2rn−1 dr =
∫ ∞

0

|Gk,l(ρ)|2ρn−1 dρ.

Now let us define functions fk,l by fk,l(ρ) = Gk,l(ρ)ρ
n−1

2 . Then from the Fourier

transform of spherical harmonic functions, we have

r−aLa(∆)U(t)ϕ(rσ) = r−
n−1

2

∑

k,l

(Wν(k)(t)fk, l)(r)Yk, l(σ).

By the fact −∆σYk, l = k(k +n−2)Yk, l, the orthonormality of spherical harmonics

and the estimate (11), we get

‖U(·)ϕ‖2
L2 eH0

aH
a− 1

2
σ

.
∑

k, l

(1 + ν(k))2a−1‖Wν(k)(·)fk,l‖2L2(R2
+)

.
∑

k, l

‖fk, l‖2L2 =
∑

k,l

∫ ∞

0

|Gk,l(ρ)|2ρn−1 dρ

=
∑

k,l

∫ ∞

0

|gk,l(r)|2rn−1 dr

∼ ‖ϕ‖2L2 .

For the proof of the second inequality of (9) we introduce a lemma for low-

diagonal operator estimate (see [1, 24]).

Lemma 1. Let A and B be Banach spaces. Let K be an operator such that

‖KG‖Lq
T (A) ≤ C‖G‖Lp

T (B) for 1 ≤ p ≤ q ≤ ∞ with kernel k defined by

KG(t) =
∫ T

0
k(t − t′)G(t′) dt′, where C does not depend on T . If p < q, then

the low-diagonal operator K̃ defined by K̃G =
∫ t

0
k(t − t′)G(t′) dt′ satisfies that

‖K̃G‖Lq
T (A) ≤ C̃‖G‖Lp

T (B), where C̃ is C times a constant depending only on p, q.

In view of Lemma 1 with kernel k(t) = U(t), A = H̃0
aH

a− 1
2

σ and B = L2, it

suffices to show that∥∥∥∥∥
∫ T

0

U(· − t′)F (t′) dt′
∥∥∥∥∥

L2
T ( eH0

aH
a− 1

2
σ )

. ‖F‖L1
T L2 .(14)

In fact, by the first Strichartz estimate (9), we have
∥∥∥∥∥
∫ T

0

U(· − t′)F (t′) dt′
∥∥∥∥∥

L2
T ( eH0

aH
a− 1

2
σ )

=

∥∥∥∥∥U(·)
∫ T

0

U(−t′)F (t′) dt′
∥∥∥∥∥

L2
T ( eH0

aH
a− 1

2
σ )

. ‖F‖L1
T L2 .

This yields the second inequality of (9). ¤
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Remark 3. From the proof of Proposition 1, one can see the identity

‖e−itωϕ‖2
L2 eHs

a

=
2πΓ(2a− 1)Γ(n

2 − a)
22a−1Γ(a)2Γ(n−2

2 + a)
‖ϕ‖2Hs

for any radial function ϕ ∈ Hs for some s ≥ 0. Thus the weighted Strichartz

estimate is sharp as far as 1
2 < a < n

2 .

Remark 4. If n = 1, then a modified weighted Strichartz estimate is possible.

To state precisely, we take any L2 function w as a weight and define a weighted

Sobolev space H̃s
w as follows

H̃s
w = {v : ‖v‖ eHs

w
≡ ‖wL 1

2
(∆)(1−∆)

s
2 v‖L2 < ∞}.

Then for any T > 0 we have

‖U(·)ϕ‖L2
T
eHs

w
. ‖ϕ‖Hs

∥∥∥∥
∫ •

0

U(· − t′)F (t′) dt′
∥∥∥∥

L2
T
eHs

w

. ‖F‖L1
T Hs .

To prove these estimates we have only to show that ‖W (·)f‖L2L2 . ‖f‖L2 , where

W (t)f(x) = w(x)
∫ ∞

−∞
ei(xξ−t

√
1+ξ2) |ξ| 12

(1 + ξ2)
1
4
f(ξ) dξ.

By the change of variables ξ 7→
√

1 + ξ2 and by applying Plancherel theorem w.r.t.

the time variable, and then using the change of variables ξ 7→
√

ξ2 − 1 again, one

can readily have that

‖W (·)f‖L2
T L2 ≤ ‖W (·)f‖L2L2 ≤

√
2‖w‖L2‖f‖L2 .

The inhomogeneous Strichartz estimate can be treated by the same way as in the

proof of Proposition 1.

3. Fractional integral estimates for radial functions

We prove some fractional integral estimates for radial functions.

Lemma 2. Let n ≥ 3 and 0 < γ < n− 1.

(i) If f and g are radial functions with f, |x|−δf, |x|−(γ−δ)g ∈ L2 for some

0 < δ ≤ γ, then

sup
x∈Rn

∫

Rn

|f(y)||g(y)|
|x− y|γ dy . ‖| · |−δf‖L2‖| · |−(γ−δ)g‖L2 .(15)

(ii) If f, g are radially symmetric and f, |x|−(γ−δ)g ∈ L2 for some 0 < δ ≤ γ,

then

sup
x∈Rn

|x|δ
∫

Rn

|f(y)||g(y)|
|x− y|γ dy . ‖f‖L2‖| · |−(γ−δ)g‖L2 .(16)
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Remark 5. In [8] Fröhlich and Lenzmann showed that if ϕ ∈ C∞0 (R3) is radially

symmetric and satisfies E1(ϕ) < 0, then the radial solution u of (1) with γ = 1

blows up within a finite time. To lead to the blowup they used a variance type

estimate where the estimates |V1(u)(x)| ≤ ‖ϕ‖2L2/|x| and |∇V1(u)(x)| ≤ ‖ϕ‖2L2/|x|2
are crucial. The lemma above leads us to the same estimates for n ≥ 4 and hence

to the finite time blowup.

Proof of Lemma 2. We revisit the proof of Lemma 3 of [5]. Fixing x, we divide the

integration into three parts as follows∫

Rn

|f(y)||g(y)|
|x− y|γ dy =

∫

|y|>2|x|
+

∫
|x|
2 ≤|y|≤2|x|

+
∫

|y|< |x|
2

≡ I + II + III.

For I, since |x− y| ≥ |y|
2 for |y| > 2|x|, we have

I .
∫

|y|>2|x|

|f(y)|
|y|δ

|g(y)|
|y|γ−δ

dy

. ‖| · |−δf‖L2‖|x|−(γ−δ)g‖L2 or |x|−δ‖f‖L2‖|x|−(γ−δ)g‖L2 .

Since f and g are radially symmetric, we may assume that x = |x|e1 = re1 =

r(1, 0, · · · , 0, 0). Using the spherical coordinates (ρ, θ1, θ2, · · · , θn−1) ∈ (0,∞) ×
[0, π]× [0, π]×· · ·× [0, 2π] for y variable, the integrals II and III are converted into

II + III =

(∫ 2r

r
2

+
∫ r

2

0

)
ρn−1|f(ρ)||g(ρ)|Ω(r, ρ)dρ,(17)

where

Ω(r, ρ) =
∫ 2π

0

∫ π

0

· · ·
∫ π

0

(r2 + ρ2 − 2rρ cos θ1)−
γ
2

× sinn−2 θ1 sinn−3 θ2 · · · sin θn−2 dθ1 · · · dθn−2dθn−1.

If r
2 ≤ ρ ≤ 2r, then by the fact n− 2− γ > −1 and

√
r2 + ρ2 − 2rρ cos θ1 ≥ ρ sin θ1

we have

Ω(r, ρ) . ρ−γ

∫ π

0

sinn−2−γ θ1 dθ1 . ρ−γ .(18)

If ρ < r
2 , then

Ω(r, ρ) . r−γ ,(19)

since r2 + ρ2 − 2rρ cos θ1 ≥ r2. Therefore by the Hölder inequality we have

II + III . ‖| · |−δf‖L2‖| · |−(γ−δ)g‖L2 or |x|−δ‖f‖L2‖| · |−(γ−δ)g‖L2 .

This completes the proof. ¤
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Lemma 3. Let 1 < γ < 2 if n ≥ 4 and 1 < γ < 3
2 if n = 3. Let ε satisfy 0 < ε <

min(γ − 1, 2− γ). Then for any radial functions f, g ∈ L2 with |x|−1f, |x|−1g ∈ L2

∥∥∥| · |−γ− 1
2 ∗ (fg)

∥∥∥
L2n

. (‖f‖2−γ−ε
L2 ‖| · |−1f‖γ−1+ε

L2 + ‖f‖2−γ+ε
L2 ‖| · |−1f‖L2)‖| · |−1g‖L2 .

(20)

Proof of Lemma 3. As in the proof of Lemma 2 we split the fractional integral and

estimate pointwise as∫ |f(y)g(y)|
|x− y|γ+ 1

2
dy =

∫

|x|>2|y|
+

∫
1
2 |y|≤|x|≤2|y|

+
∫

|x|< 1
2 |y|

= I + II + III.

In case that |x| < 1, from similar estimates to (17), (18) and (19), and from the

Hölder inequality and interpolation it follows that for small ε with γ + ε < 2

I . |x|− 1
2+ε

∫ |f(y)g(y)|
|y|γ+ε

dy . |x|− 1
2+ε‖f‖2−γ−ε

L2 ‖| · |−1f‖γ−1+ε
L2 ‖| · |−1g‖L2 ,

II + III . |x|− 1
2+ε‖f‖2−γ−ε

L2 ‖| · |−1f‖γ−1+ε
L2 ‖| · |−1g‖L2

∫ π

0

sinn− 5
2−γ θ dθ.

Since n − 5
2 − γ > −1 if 1 < γ < 2 for n ≥ 4 and 1 < γ < 3

2 for n = 3, the last

integral is finite. Hence

‖| · |−γ− 1
2 ∗ (fg)‖L2n(|x|<1) . ‖f‖2−γ−ε

L2 ‖| · |−1f‖γ−1+ε
L2 ‖| · |−1g‖L2 .

If |x| ≥ 1, then choosing ε such that γ − ε > 1, by the same argument as above

we have

I + II + III . |x|− 1
2−ε‖f‖2−γ+ε

L2 ‖| · |−1f‖γ−1−ε
L2 ‖| · |−1g‖L2 .

Hence

‖| · |−γ− 1
2 ∗ (fg)‖L2n(|x|≥1) . ‖f‖2−γ+ε

L2 ‖| · |−1f‖γ−1−ε
L2 ‖| · |−1g‖L2 .

The proof has been completed. ¤

Lemma 4. Let n ≥ 3 and 1 < γ < n − 1. Let f, g ∈ Ws,ε be radial functions for

some s, ε satisfying the condition (7). Then it follows that
∥∥| · |−γ ∗ (fg)

∥∥
L

n
1−(s−ε) ∩L

n
1−(s+ε)

. ‖f‖Ws,ε‖g‖Ws,ε .(21)

Proof of Lemma 4. By the same spirit as in the proof of Lemma 3, we split the

fractional integral into three parts I, II, III and estimate them using radial sym-

metry. We also divide each part into two regions of x; inside the unit ball and its

outside

If |x| < 1, then since ε < γ
2 − s, we have

I + II + III . |x|−(γ−2(s+ε))‖| · |−(s+ε)f‖L2‖| · |−(s+ε)g‖L2 .
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Since ‖| · |−(s+ε)f‖L2 ≤ ‖f‖Ws,ε and (γ − 2(s + ε)) n
1−(s±ε) < n, we have

‖| · |−γ ∗ (fg)‖
(L

n
1−(s−ε) ∩L

n
1−(s+ε) )(|x|<1)

. ‖f‖Ws,ε
‖g‖Ws,ε

.

If |x| ≥ 1, then

I + II + III . |x|−(γ−2(s−ε))‖| · |−(s−ε)f‖L2‖| · |−(s−ε)g‖L2 .

Since (γ − 2(s− ε)) n
1−(s±ε) > n, we have

‖| · |−γ ∗ (fg)‖
(L

n
1−(s−ε) ∩L

n
1−(s+ε) )(|x|≥1)

. ‖f‖Ws,ε
‖g‖Ws,ε

.

This completes the proof of the lemma. ¤

4. Proofs of the theorems

4.1. Proof of Theorem 1. We only consider the positive time because the proof
for negative time can be treated in the same way.

Let us first define a complete metric space XT,ρ with metric d(u, v) = ‖u−v‖XT
,

where XT = C([0, T ]; H
1
2 ) ∩ L2

T H̃
1
2
1 by

XT,ρ ≡ {v ∈ XT : v is radially symmetric and ‖v‖XT ≤ ρ}.
Here let us observe that the space H̃

1
2
1 is exactly the same as {v : ‖| · |−1v‖L2 < ∞}.

Now we define a mapping N : u 7→ N(u) on XT,ρ by

N(u)(t) = U(t)ϕ− i

∫ t

0

U(t− t′)F (u)(t′) dt′.(22)

For any u ∈ XT,ρ, N(u) is radially symmetric. By the Strichartz estimate (9)
with a = 1, b = 0 and s = 1

2 , we have

‖N(u)‖XT,ρ . ‖ϕ‖
H

1
2

+ ‖F‖
L1H

1
2
.

For the second term, we use the generalized Leibniz rule (see Lemma A1 ∼ Lemma
A4 in Appendix of [12]) such that for any s ≥ 0

‖Ds(uv)‖Lr . ‖Dsu‖Lr1‖v‖Lq2 + ‖u‖Lq1 ‖Dsv‖Lr2 ,(23)

where Ds = (−∆)s/2

and
1
r

=
1
r1

+
1
q2

=
1
q1

+
1
r2

, ri ∈ (1,∞), qi ∈ (1,∞], i = 1, 2.

From (23), we have

‖N(u)‖XT,ρ

. ‖ϕ‖
H

1
2

+ ‖Vγ(u)‖L1
T L∞‖u‖L∞T H

1
2

+ ‖(−∆)
1
4 Vγ(u)‖L1

T L2n‖u‖
L∞T L

2n
n−1

.
(24)

To estimate the last two terms, we use Lemma 2. Using (15) with f = g = u and
interpolation we have

‖Vγ(u)‖L∞ . ‖u‖2−γ
L2 ‖u‖γ

eH
1
2
1

.
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and using (21) with f = g = u for some small ε as in Lemma 3

‖(−∆)
1
4 Vγ(u)‖L2n . ‖Vγ+ 1

2
(u)‖L2n

. ‖u‖2−γ−ε
L2 ‖u‖γ+ε

eH
1
2
1

+ ‖u‖2−γ+ε
L2 ‖u‖γ−ε

eH
1
2
1

.

Hence the nonlinear estimate (24) has the following: for some positive number ε

‖N(u)‖XT,ρ

. ‖ϕ‖
H

1
2

+ (T
2

2−γ + T
2

2−γ−ε + T
2

2−γ+ε )‖u‖2
L∞T H

1
2
‖u‖

L2
T
eH

1
2
1

. ‖ϕ‖
H

1
2

+ (T
2

2−γ + T
2

2−γ−ε + T
2

2−γ+ε )ρ3.

From the choice of T and ρ satisfying that

C‖ϕ‖H1 ≤ ρ

2
,

C(T
2

2−γ + T
2

2−γ−ε + T
2

2−γ+ε )ρ3 ≤ ρ

2
for some constant C, it follows that N maps XT,ρ to itself.

For any u, v ∈ XT,ρ, we have

d(N(u), N(v)) . ‖F (u)− F (v)‖
L1

T H
1
2

. ‖(Vγ(u)− Vγ(v))u‖
L1

T H
1
2

+ ‖Vγ(v)(u− v)‖
L1

T H
1
2
.

Using Lemma 2, Lemma 3 and the Leibniz rule (23) again, we have that

‖(Vγ(u)− Vγ(v))u‖
L1

T H
1
2

. ‖(Vγ(u)− Vγ(v))u‖L1
T L2 + ‖(−∆)

1
4 ((Vγ(u)− Vγ(v))u)‖L1

T L2

.
(
‖Vγ(u)− Vγ(v)‖L1

T L∞ + ‖(−∆)
1
4 (Vγ(u)− Vγ(v))‖L1

T L2n

)
‖u‖

L∞T H
1
2

.
∫ T

0

(‖u‖L2 + ‖v‖L2)2−γ‖u− v‖γ

eH
1
2
1

dt‖u‖
L∞T H

1
2

+ ‖| · |−(γ+ 1
2 ) ∗ (|u|2 − |v|2)‖L1

T L2n‖u‖
L∞T H

1
2

. (T
2

2−γ + T
2

2−(γ+ε) + T
2

2−(γ−ε) )ρ2‖u− v‖
L2

T
eH

1
2
1

and

‖Vγ(v)(u− v)‖
L1

T H
1
2

. ‖Vγ(v)‖L1
T L∞‖u− v‖

L∞T H
1
2

+ ‖(−∆)
1
4 Vγ(v)‖L1

T L2n‖u‖
L∞T H

1
2

. (T
2

2−γ + T
2

2−(γ+ε) + T
2

2−(γ−ε) )ρ2‖u− v‖
L∞T H

1
2
.

Thus by the choice of T, ρ as above

d(N(u), N(v)) ≤ C(T
2

2−γ + T
2

2−γ−ε + T
2

2−γ+ε )ρ2d(u, v) ≤ 1
2
d(u, v).(25)

Therefore N becomes a contraction mapping on XT,ρ. This proves the local ex-
istence. The energy and L2 conservations follow from the Strichartz estimate (9)
and the method of [22].
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Now we consider the global well-posedness. To do so, we need the following
energy inequality that for λ > 0,

1
2
‖u(t)‖2

H
1
2
≤ E(u) = E(ϕ).

If λ < 0, then for any ϕ with ‖ϕ‖L2 ≤ 1

‖u(t)‖2
Ḣ

1
2
≤ 2|E(u)|+ 2|V (u)|
≤ 2|E(ϕ)|+ C‖u‖2

L
2n

n−γ+1
‖u‖2

Ḣ
1
2

≤ C(1 + ‖ϕ‖2
Ḣ

1
2
)γ + C‖ϕ‖4−2γ

L2 ‖u‖2γ

Ḣ
1
2
.

Here for the third inequality we used the fact that

2|E(ϕ)| ≤ 1 + ‖ϕ‖2
Ḣ

1
2

+ C‖ϕ‖4−2γ
L2 ‖ϕ‖2γ

Ḣ
1
2
≤ C(1 + ‖ϕ‖2

Ḣ
1
2
)γ .

Hence especially in the case of negative λ, with assumption of the smallness of
‖ϕ‖L2 for γ < 2 such that

‖ϕ‖L2 ≤ min
(
1, (8γCγ(1 + ‖ϕ‖2

Ḣ
1
2
)γ(γ−1))−

1
4−2γ

)
,

we have

‖u(t)‖2
H

1
2
≤ 2C(1 + ‖ϕ‖2

Ḣ
1
2
)γ .(26)

Now let us denote E(ϕ) for λ < 0 and (1 + ‖ϕ‖2
Ḣ

1
2
)γ for λ < 0 by E(ϕ). Then

from the Strichartz estimate (9), (26) and Lemma 2, 3, we have for some small time
0 < δ < 1 and small ε > 0

‖u‖
L2

δ
eH

1
2
1,0

. (1 + E(ϕ))
1
2 + δ

2
2−γ−ε (1 + ‖u‖

L∞δ H
1
2
)3−γ+ε‖u‖

L2
δ
eH

1
2
1

. (1 + E(ϕ))
1
2 + δ

2
2−γ−ε (1 + E(ϕ))

3−γ+ε
2 ‖u‖

L2
δ
eH

1
2
1

.

Thus for some δ so small that 1
4 ≤ δ

2
2−γ−ε (1 + E(ϕ))

3−γ+ε
2 ≤ 1

2 , we have

‖u‖
L2(Tj−1,Tj ; eH

1
2
1 )
≤ C(1 + E(ϕ))

1
2 ,

where Tj − Tj−1 = δ for j ≤ k − 1, Tk = T and Tk − Tk−1 ∼ δ. This implies that

‖u‖2
L2

T
eH

1
2
1

≤
∑

1≤j≤k

‖u‖2
L2(Tj−1,Tj ; eH

1
2
1 )

. kδ(1 + E(ϕ))1+
(3−γ+ε)(2−γ−ε)

4

. T (1 + E(ϕ))1+
(3−γ+ε)(2−γ−ε)

4 .

(27)

From (26) and (27) we conclude that u ∈ Cb(R+;H
1
2 )∩L2

locH̃
1
2
1 . This completes

the proof of Theorem 1.
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4.2. Proof of Theorem 2. Let Yρ be a complete metric space with metric d(u, v) =

‖u− v‖Y , where Y = Cb(R; H1) ∩ L2H̃
1
2
1 by

Yρ ≡ {v ∈ Y : v is radially symmetric and ‖v‖Y ≤ ρ}.
Then we claim that the map N defined as (22) is a contraction on Y , provided ρ is
sufficiently small.

From the Strichartz estimate (9) and the fractional integral estimates (15) and
(16), we have for any u ∈ Yρ

‖u‖Y . ‖ϕ‖H1 + ‖V2(u)‖L1L∞‖u‖L∞H1 + ‖(∇V2(u))u‖L1L2

. ‖ϕ‖H1 + ‖u‖2
L2 eH

1
2
1

‖u‖L∞H1

. ‖ϕ‖H1 + ρ3.

Hence choosing ρ so small that C‖ϕ‖H1 ≤ ρ
2 and Cρ3 ≤ ρ

2 , the mapping N maps
Y to itself. We also have

d(N(u), N(v)) . ‖V2(u)u− V2(v)v‖L1H1

. ‖(V2(u)− V2(v))u‖L1H1 + ‖V2(v)(u− v)‖L1H1 .

Using Lemma 2, we have

‖(V2(u)− V2(v))u‖L1H1

. ‖(V2(u)− V2(v))‖L1L∞‖u− v‖L∞H1 + ‖∇((V2(u)− V2(v))u)‖L1L2

. (‖u‖
L2 eH

1
2
1

+ ‖v‖
L2 eH

1
2
1

)‖u− v‖
L2 eH

1
2
1

‖u‖L∞H1

+ (‖u‖L∞H1 + ‖v‖L∞H1)‖u− v‖
L2 eH

1
2
1

‖u‖
L2 eH

1
2
1

and

‖V2(v)(u− v)‖L1H1

. ‖V2(v)‖L1L∞‖u− v‖L1H1 + ‖∇(V2(v)(u− v))‖L1L2

. ‖v‖2
L2 eH

1
2
1

‖u− v‖L∞H1 + ‖v‖L∞H1‖v‖
L2 eH

1
2
1

‖u− v‖
L2 eH

1
2
1

.

Hence from the condition of u and v

d(N(u), N(v)) . ρ2d(u, v).

Thus by the choice of ρ such that Cρ2 ≤ 1
2 , N becomes a contraction.

As for the scattering, let us define functions ϕ± by

ϕ± = ϕ− i

∫ ±∞

0

U(−s)F (u)(s) ds.

Then clearly ϕ± ∈ H1 and one can show that

‖u(t)− U(t)ϕ±‖H1 . ‖u‖2
L2(I±t ; eH

1
2
1 )
‖u‖L∞H1

→ 0 as t → ±∞,

where I+
t = (t,∞) and I−t = (−∞, t). This proves Theorem 2.
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4.3. Proof of Theorem 3. Let Zρ be a complete metric space with metric d(u, v) =
‖u− v‖Z , where Z = Cb(R; Hs) ∩ L2Ws,ε by

Zρ ≡ {v ∈ Y : v is radially symmetric and ‖v‖Z ≤ ρ}.
Here from the definition we easily observe that the space Ws,ε contains the space

Ls±ε(∆)H̃0
s±ε = {v : (Ls±ε(∆))−1v ∈ H̃0

s±ε}.
Now we define a nonlinear map Ñ by

Ñ(u) = (cos tω)ϕ1 + ω−1(sin tω)ϕ2 −
∫ t

0

ω−1(sin(t− t′)ω)F (u) dt′.

Then we claim that the map Ñ is a contraction on Z, provided that ρ is sufficiently
small.

We first observe from the Strichartz estimate (9) 2 and fractional integration
that

‖(Ls±ε(∆))−1(cos(·)ω)ϕ1‖L2 eH0
s±ε

. ‖(Ls±ε(∆))−1ϕ1‖L2

. ‖(−∆)−
1−(s±ε)

2 ϕ1‖L2 + ‖(−∆)
s− 1

2 +ε

2 ϕ1‖L2

. ‖ϕ1‖
L

2n
n+2−2(s−ε) ∩Hs+ε− 1

2

and

‖(Ls±ε(∆))−1ω−1(sin(·)ω)ϕ2‖L2 eH0
s±ε

. ‖(Ls±ε(∆))−1ω−1ϕ2‖L2

. ‖ϕ2‖
L

2n
n+2−2(s−ε) ∩Hs+ε− 3

2

Since
‖ψ‖Ws,ε . ‖ψ‖Ls+ε(∆) eH0

s+ε
+ ‖ψ‖Ls−ε(∆) eH0

s−ε
,

we have

‖(cos tω)ϕ1 + ω−1(sin tω)ϕ2‖L∞Hs∩L2Ws,ε
. ‖ϕ1‖Ds+ε,s+ε + ‖ϕ2‖Ds+ε−1,s+ε .

Now we estimate the nonlinear part. From the Strichartz estimate (9) and the

boundedness of (−∆)
1−(s±ε)

2 (1−∆)−
3
2−(s+ε)

2 in L2, it follows that
∥∥∥∥
∫ t

0

ω−1(sin(t− t′)ω)F (u) dt′
∥∥∥∥

L∞Hs− 1
2 +ε∩L2Ws,ε

. ‖(−∆)−
1−(s+ε)

2 F (u)‖L1L2 + ‖(−∆)−
1−(s−ε)

2 F (u)‖L1L2

. ‖F (u)‖
L1L

2n
n+2−(s+ε)

+ ‖F (u)‖
L1L

2n
n+2−(s−ε)

. (‖Vγ(u)‖
L1L

n
1−(s+ε)

+ ‖Vγ(u)‖
L1L

n
1−(s−ε)

)‖u‖L∞L2 .

(28)

Using Lemma 4 with f = g = u, the last term on the RHS of (28) is bounded by a
constant multiple of

‖u‖2L2Ws,ε
‖u‖L∞L2 .(29)

Therefore, for any u ∈ Zρ we have

‖Ñ(u)‖Z ≤ C(‖ϕ1‖Ds+ε,s+ε + ‖ϕ2‖Ds+ε−1,s+ε) + Cρ3

2To apply (9) we need the condition s− ε > 1
2
.
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and this implies that Ñ maps from Zρ to itself, provided ρ and the norm of the
initial data are sufficiently small.

On the other hand, by the Strichartz estimate (9) and fractional integral estimate
we have that

d(Ñ(u), Ñ(v))

. ‖(−∆)
1−(s+ε)

2 (Vγ(u)u− Vγ(v)v)‖L1L2 + ‖(−∆)
1−(s−ε)

2 (Vγ(u)u− Vγ(v)v)‖L1L2

. ‖(−∆)
1−(s+ε)

2 ((Vγ(u)− Vγ(v))u)‖L1L2 + ‖(−∆)
1−(s−ε)

2 ((Vγ(u)− Vγ(v))u)‖L1L2

+ ‖(−∆)
1−(s+ε)

2 Vγ(v)(u− v)‖L1L2 + ‖(−∆)
1−(s−ε)

2 Vγ(v)(u− v)‖L1L2

. ‖(Vγ(u)− Vγ(v))u‖
L1L

2n
n+2−(s+ε)

+ ‖(Vγ(u)− Vγ(v))u‖
L1L

2n
n+2−(s−ε)

+ ‖Vγ(v)(u− v)‖
L1L

2n
n+2−(s+ε)

+ ‖Vγ(v)(u− v)‖
L1L

2n
n+2−(s−ε)

.

Applying Lemma 4 with f = u− v, g = u or f = v, g = u− v or f = g = v to the
last four terms in the above estimate, we have

d(Ñ(u), Ñ(v))

. (‖u‖L2Ws,ε
+ ‖v‖L2Ws,ε

)‖u− v‖L2Ws,ε
‖u‖L∞L2 + ‖v‖2L2Ws,ε

‖u− v‖L∞L2

. ρ2d(u, v).

Hence the smallness of ρ and of the norms of initial data makes Ñ a contraction.
Now we consider the scattering. Let us define four functions ϕ±i , i = 1, 2 by

ϕ̂±1 (ξ) = ϕ̂1(ξ) +
∫ ±∞

0

(
√

1 + |ξ|2)−1 sin(t′
√

1 + |ξ|2) F̂ (u)(ξ, t′) dt′

ϕ̂±2 (ξ) = ϕ̂2(ξ)−
∫ ±∞

0

cos(t′
√

1 + |ξ|2) F̂ (u)(ξ, t′) dt′.

Then it follows from the regularity of the solution u that ϕ±1 ∈ Hs− 1
2+ε and ϕ±2 ∈

Hs− 3
2+ε. Furthermore, since u ∈ L2Ws,ε, for the linear solution u± of (8) we

conclude from the estimate (28) and (29) that

‖u(t)− u±(t)‖Hs

. ‖(−∆)−
1−(s+ε)

2 F (u)‖L1(I±t ;L2) + ‖(−∆)
1−(s−ε)

2 F (u)‖L1(I±t ;L2)

. (‖Vγ(u)‖
L1(I±t ;L

n
1−(s+ε) )

+ ‖Vγ(u)‖
L1(I±t ;L

n
1−(s−ε) )

‖u‖L∞L2

. ‖u‖2
L2(I±t ;Ws,ε)

‖u‖L∞L2 → 0 as t → ±∞.

This completes the proof of the theorem.

Remark 6. If the initial data (ϕ1, ϕ2) ∈ D̃s+ε,s−ε × D̃s+ε−1,s−ε and their norm is

sufficiently small, then the solution u is in Cb(R; Ḣ−(1−(s−ε))). In fact, the existence

and uniqueness in Cb(R;Hs− 1
2+ε) ∩ L2Ws,ε follows immediately from the previous

proof. Hence we have only to show ‖u‖L∞Ḣ−(1−(s−ε)) < ∞. From (28) and (29) we
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have

‖u‖L∞Ḣ−(1−(s−ε))

≤ ‖ϕ1‖Ḣ−(1−(s−ε)) + ‖ϕ2‖Ḣ−(1−(s−ε)) +
∫ t

0

‖(−∆)−
1−(s−ε)

2 F (u)‖L2 dt′

. ‖ϕ1‖Ḣ−(1−(s−ε)) + ‖ϕ2‖Ḣ−(1−(s−ε)) + ‖Vγ(u)‖
L1L

n
1−(s−ε)

‖u‖L∞L2

. ‖ϕ1‖Ḣ−(1−(s−ε)) + ‖ϕ2‖Ḣ−(1−(s−ε)) + ‖u‖2L2Ws,ε
‖u‖L∞L2 < ∞.

Let u− be the radial solution of the linear equation (8) with radially symmetric

initial data (ϕ−1 , ϕ−2 ) ∈ D̃s+ε,s−ε × D̃s+ε−1,s−ε. Then from the proof as above we

can find a unique solution u ∈ Cb(R; Hs+ε− 1
2 ∩ Ḣ−(1−(s−ε))) ∩ L2Ws,ε satisfying

u(t) = u−(t) +
∫ −∞

t

ω−1 sin((t− t′)ω)F (u) dt′,

provided that ‖ϕ−1 ‖ eDs+ε,s−ε
+‖ϕ−2 ‖ eDs+ε−1,s−ε

is sufficiently small. Here the solution

u satisfies (1) with initial data ϕ ∈ D̃s+ε,s−ε such that

ϕ = u(0) = ϕ−1 −
∫ −∞

0

ω−1 sin(t′ω)F (u) dt′.

Now in turn there are radial functions ϕ+
1 and ϕ+

2 as in Theorem 3. Actually,

they are uniquely determined under a smallness condition of initial data. Hence

we conclude that there exists a scattering operator S maps (ϕ−1 , ϕ−2 ) in a small

neighborhood of D̃s+ε,s−ε × D̃s+ε−1,s−ε to (ϕ+
1 , ϕ+

2 ) in a small neighborhood of

D̃s+ε,s−ε × D̃s+ε−1,s−ε and that S is injective.
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