
THE BOUNDARY GROWTH OF SUPERHARMONIC FUNCTIONS AND
POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS

KENTARO HIRATA

ABSTRACT. We investigate the boundary growth of positive superharmonic functionsu on
a bounded domainΩ in Rn, n ≥ 3, satisfying the nonlinear elliptic inequality

0 ≤ −∆u ≤ cδΩ(x)−αup in Ω,

wherec > 0, α ≥ 0 andp > 0 are constants, andδΩ(x) is the distance fromx to the
boundary ofΩ. The result is applied to show the Harnack inequality for such superhar-
monic functions. Also, we study the existence of positive solutions, with singularity on the
boundary, of the nonlinear elliptic equation

−∆u + V u = f(x, u) in Ω,

whereV andf are Borel measurable functions conditioned by the generalized Kato class.

1. INTRODUCTION

The purpose of this paper is to investigate the boundary growth of positive superharmonic
functions satisfying a certain nonlinear elliptic inequality. As applications, we shall obtain
the Harnack inequality for positive solutions of nonlinear elliptic equations and the existence
theorem for nontangential limits of certain Green potentials.

Let Ω be a domain inRn and letδΩ(x) stand for the distance fromx to the boundary∂Ω
of Ω. A lower semicontinuous functionu : Ω → (−∞, +∞], whereu 6≡ +∞, is called
superharmoniconΩ if it satisfies the mean value inequality

u(x) ≥ 1

νnrn

∫

B(x,r)

u(y)dy whenever0 < r < δΩ(x),

whereB(x, r) denotes the open ball of centerx and radiusr, andνn is the volume of the
unit ball. Let∆ be the Laplace operator onRn. It is well known that ifu is a superharmonic
function onΩ, then there exists a unique (Radon) measureµu onΩ such that

∫

Ω

φ(x)dµu(x) = −
∫

Ω

u(x)∆φ(x)dx for all φ ∈ C∞
0 (Ω),

whereC∞
0 (Ω) is the collection of all infinitely differentiable functions vanishing outside

a compact set inΩ (cf. [2, Section 4.3]). The measureµu is called theRiesz measure
associated withu. If µu is absolutely continuous with respect to the Lebesgue measure and
dµu(x) = fu(x)dx wherefu is a nonnegative locally integrable function onΩ, then we call

2000Mathematics Subject Classification.31B05, 31B25, 35J60.
Key words and phrases.boundary growth, superharmonic function, nonlinear elliptic equation.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPrint Series of Department of Mathematics, Hokkaido University

https://core.ac.uk/display/42025583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


fu the Riesz function associated withu for convenience. It is clear thatfu = −∆u when
u ∈ C2(Ω).

The classical Littlewood theorem states that every Green potential on the unit ball has ra-
dial limit 0 almost everywhere on the boundary. However, the nontangential and tangential
limits do not necessarily exist. To avoid this, many authors have imposed weighted integra-
bility conditions on the density functions of Green potentials (cf. [3, 8, 21] and references
therein). Such results were concerned with the boundary behavior of solutions of the Pois-
son equation, but are not applicable to positive solutions of stationary Schrödinger equations
or nonlinear elliptic equations. For this reason, we study the boundary behavior of positive
superharmonic functionsu satisfying the nonlinear inequality

(1.1) 0 ≤ fu ≤ cδΩ(x)−αup almost everywhere onΩ,

wherefu is the Riesz function associated withu, andc > 0, α ≥ 0 andp > 0 are constants.
First of all, we note from the Poisson integral representation that every positive harmonic

functionh on the unit ballB of Rn satisfies

h(0)

2n
δB(x) ≤ h(x) ≤ 2h(0)δB(x)1−n for x ∈ B.

As seen in Lemma 3.1 below, the lower estimate is extendable to any positive superharmonic
functions. However the upper estimate does not necessarily hold even for positive superhar-
monic functions satisfying (1.1). Our main purpose is to determine the critical numberp∗

such that every positive superharmonic function satisfying (1.1) withp ≤ p∗ is bounded by
a constant multiple ofδΩ(x)1−n. By the symbolA, we denote an absolute positive constant
whose value is unimportant and may change from line to line. In what follows, we suppose
thatΩ is a boundedC1,1-domain inRn, n ≥ 3.

Theorem 1.1.Letc > 0. Suppose that0 < p ≤ (n+1)/(n−1) and0 ≤ α ≤ n+1−p(n−1).
Let u be a positive superharmonic function onΩ satisfying(1.1) for the Riesz functionfu

associated withu. Then there exists a constantA depending only onu, c, α, p andΩ such
that

(1.2) u(x) ≤ AδΩ(x)1−n for x ∈ Ω.

Furthermore,u ∈ C1(Ω).

As applications of Theorem 1.1, we have the Harnack inequality and the existence theo-
rem for nontangential limits of Green potentials satisfying (1.1).

Corollary 1.2. Let c > 0. Suppose that0 < p ≤ (n + 1)/(n − 1) and0 ≤ α ≤ min{n +
1 − p(n − 1), 1 + p}. Letu be a positive superharmonic function onΩ satisfying(1.1) for
the Riesz functionfu associated withu. Then there exists a constantA depending only on
u, c, α, p andΩ such that

(1.3) sup
B(x,r)

u ≤ A inf
B(x,r)

u,

wheneverB(x, 8r) ⊂ Ω.
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For ξ ∈ ∂Ω andθ > 0, we define

Γθ(ξ) = {x ∈ Ω : |x− ξ| < (1 + θ)δΩ(x)} .

Corollary 1.3. Let c > 0. Suppose that0 < p ≤ (n + 1)/(n − 1) and0 ≤ α ≤ min{n +
1 − p(n − 1), 1 + p}. Letu be a positive superharmonic function onΩ satisfying(1.1) for
the Riesz functionfu associated withu. If the greatest harmonic minorant ofu is the zero
function, then for eachθ > 0,

lim
Γθ(ξ)3x→ξ

u(x) = 0 for a.e.ξ ∈ ∂Ω.

Remark1.4. Actually, Corollary 1.2 is valid for arbitrary domains. Therefore Corollary 1.3
can be extended easily to Lipschitz and NTA domains. See proofs of them.

Note again that these results are applicable to positive solutionsu ∈ C2(Ω) of

(1.4) 0 ≤ −∆u ≤ cδΩ(x)−αup in Ω.

The following theorem shows that the boundp ≤ (n + 1)/(n− 1) is sharp in Theorem 1.1.

Theorem 1.5. Let ξ ∈ ∂Ω and c > 0 (assumed to be large enough whenp = 1 only).
Suppose thatp andα satisfy either

(i) p > (n + 1)/(n− 1) andα ≥ 0, or
(ii) 0 < p ≤ (n + 1)/(n− 1) andα > n + 1− p(n− 1).

Then, for eachβ satisfying

(1.5) n− 1 < β <





2 + α(n− 2)

(2− n)p + n
if p <

n

n− 2
,

∞ if p ≥ n

n− 2
,

there exists a positive solutionu ∈ C2(Ω) of (1.4)such that

(1.6) lim sup
Γθ(ξ)3x→ξ

δΩ(x)βu(x) > 0

for anyθ > 0. In particular,u does not satisfy(1.2).

Remark1.6. From p > (n + 1)/(n − 1) or α > n + 1 − p(n − 1), we observe that
n− 1 < (2 + α(n− 2))/((2− n)p + n). Thus we can takeβ satisfying (1.5).

Two positive functionsf andg are said to be comparable if there exists a constantA such
thatA−1f ≤ g ≤ Af . Then we writef ≈ g and callA the constant of comparison. Obvi-
ously, the Poisson kernel gives the sharpness of (1.2). The following theorem is interesting
itself and shows that the growth rate in (1.2) is sharp for positive solutions of nonlinear
elliptic equations as well.

Theorem 1.7. Let ξ ∈ ∂Ω and c > 0 (assumed to be small enough whenp = 1 only).
Suppose that0 < p < (n + 1)/(n − 1) and0 ≤ α < min{n + 1 − p(n − 1), 1 + p}. If g
is a locally Hölder continuous function onΩ such that|g(x)| ≤ cδΩ(x)−α, then there exist
infinitely many positive solutionsu ∈ C2(Ω) of

(1.7) −∆u = gup in Ω
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such that

(1.8) u(x) ≈ δΩ(x)

|x− ξ|n for x ∈ Ω.

In contrast to Theorem 1.7, there are many results concerning the existence and nonexis-
tence of positive solutions of the Lane-Emden equation−∆u = up:

• the critical number for the homogeneous Dirichlet problem is(n + 2)/(n− 2) (e.g.
[20]),

• the critical number for the existence of positive solutions comparable to| · |2−n near
the origin isn/(n− 2) (cf. [13, 16, 22] and references therein).

Theorems 1.7 and 6.1 assert that(n + 1)/(n− 1) is the critical number for the existence of
positive solutions comparable to the Poisson or Martin kernel.

The plan of this paper is as follows. In Section 2, we shall prove Theorem 1.1 after
showing some elementary lemmas. Corollaries 1.2 and 1.3 will be shown in Section 3.
Section 4 includes the proof of Theorem 1.5. In Section 5, we introduce a generalized
Kato class and discuss the existence of positive solutions of the nonlinear elliptic equation
−∆u+V u = f(x, u) rather than (1.7). As a special case of this, we shall obtain Theorem 1.7
in Section 6. Also, we shall give a remark concerning the sharpness ofp < (n + 1)/(n− 1)
in Theorem 1.7.

2. PROOF OFTHEOREM 1.1

Let G(·, y) denote the Green function ofΩ with pole aty ∈ Ω, i.e. the distributional
solution of {

−∆G(·, y) = δy in Ω,

G(·, y) = 0 on∂Ω,

whereδy is the Dirac measure aty. Let ξ ∈ ∂Ω andx0 ∈ Ω. It is known from [12] that
the Martin boundary of a boundedC1,1-domainΩ coincides with the Euclidean boundary,
and therefore the ratioG(·, y)/G(x0, y) converges to a positive harmonic function onΩ as
y → ξ. The limit function, writtenK(·, ξ), is called theMartin kernelof Ω with pole at
ξ. The following estimate for the Green function is well known (cf. [5, 23]), and yields an
estimate for the Martin kernel after elementary calculations.

Lemma 2.1. For x, y ∈ Ω andξ ∈ ∂Ω,

G(x, y) ≈ min

{
1,

δΩ(x)δΩ(y)

|x− y|2
}
|x− y|2−n,(2.1)

K(x, ξ) ≈ δΩ(x)

|x− ξ|n ,(2.2)

where the constants of comparisons depend only onΩ.

In what follows, letu be a positive superharmonic function onΩ satisfying (1.1) for
the Riesz functionfu associated withu. Then the Riesz decomposition theorem (cf. [2,
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Theorem 4.4.1]) yields that

(2.3) u(x) = h(x) +

∫

Ω

G(x, y)fu(y)dy for x ∈ Ω,

whereh is the greatest harmonic minorant ofu onΩ. Note thath is nonnegative.

Lemma 2.2. If h is a nonnegative harmonic function onΩ, then there exists a constantA
depending only onh andΩ such that

h(x) ≤ AδΩ(x)1−n for x ∈ Ω.

Proof. By the Martin representation theorem and (2.2), we have

h(x) =

∫

∂Ω

K(x, y)dν(y) ≤ AδΩ(x)1−nν(∂Ω),

whereν is the measure on∂Ω associated withh. ¤

Lemma 2.3. There exists a constantA depending only onu andΩ such that
∫

Ω

δΩ(y)fu(y)dy ≤ A.

Proof. Let x0 ∈ Ω be fixed, whereu(x0) < ∞. Then we observe from (2.1) thatG(x0, y) ≥
A−1δΩ(y) for y ∈ Ω. Hence (2.3) concludes that

∫
Ω

δΩ(y)fu(y)dy ≤ Au(x0). ¤

Lemma 2.4. For eachj ∈ N, there exists a constantcj > 0 depending only onj, u andΩ
such that forz ∈ Ω andx ∈ B(z, δΩ(z)/2j+1),

u(x) ≤ cjδΩ(z)1−n +

∫

B(z,δΩ(z)/2j)

fu(y)

|x− y|n−2
dy.

Proof. Let z ∈ Ω andx ∈ B(z, δΩ(z)/2j+1). By (2.1), we have

G(x, y) ≤ A
δΩ(x)δΩ(y)

|x− y|n ≤ A2njδΩ(z)1−nδΩ(y) for y ∈ Ω \B(z, δΩ(z)/2j).

Sincefu ≥ 0, it follows from Lemma 2.3 that
∫

Ω\B(z,δΩ(z)/2j)

G(x, y)fu(y)dy ≤ A2njδΩ(z)1−n,

and therefore∫

Ω

G(x, y)fu(y)dy ≤ A2njδΩ(z)1−n +

∫

B(z,δΩ(z)/2j)

fu(y)

|x− y|n−2
dy.

This, together with (2.3) and Lemma 2.2, concludes the required estimate. ¤

Proof of Theorem 1.1.Let z ∈ Ω andj ∈ N. By Lemma 2.3, we have

δΩ(z)

∫

B(z,δΩ(z)/2)

fu(y)dy ≤ A,
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whereA depends only onu andΩ. Letr = δΩ(z). Making the change of variablesy = z+rζ
and lettingψz(ζ) = rn+1fu(z + rζ), we have

(2.4)
∫

B(0,1/2)

ψz(ζ)dζ ≤ A,

and by Lemma 2.4,

(2.5) rn−1u(z + rη) ≤ cj +

∫

B(0,2−j)

ψz(ζ)

|η − ζ|n−2
dζ for η ∈ B(0, 2−(j+1)).

Suppose that0 < p ≤ (n + 1)/(n− 1) and0 ≤ α ≤ n + 1− p(n− 1), and let

n + 1

n− 1
< q <

n

n− 2
, ` =

[
log(q/(q − 1))

log(q/p)

]
+ 1 and c0 = max

1≤j≤`+1
{cj}.

DefineΨz,j : B(0, 1) → [0,∞) by

Ψz,j(η) = c0 +

∫

B(0,2−j)

ψz(ζ)

|η − ζ|n−2
dζ.

To show (1.2), it is enough to prove thatΨz,`+1(0) is bounded by a constant independent of
z sincern−1u(z) ≤ Ψz,`+1(0) by (2.5). We claim that forκ ≥ 1 there exists a constantA
depending only onc, c0, p, q, κ andΩ such that for1 ≤ j ≤ `,

(2.6) ‖ψκ/p
z ‖Lq(B(0,2−(j+1))) ≤ A + A‖ψκ

z ‖L1(B(0,2−j)).

Indeed, by the Jensen inequality for the unit measure|η − ζ|2−ndζ/
∫

B(0,2−j)
|η − ζ|2−ndζ,

(∫

B(0,2−j)

ψz(ζ)

|η − ζ|n−2
dζ

)κ

≤ 2κ−1

∫

B(0,2−j)

ψz(ζ)κ

|η − ζ|n−2
dζ for η ∈ B(0, 1).

This and the Minkowski inequality give that

‖Ψκ
z,j‖Lq(B(0,2−j)) ≤ A + A

∥∥∥∥
∫

B(0,2−j)

ψz(ζ)κ

| · −ζ|n−2
dζ

∥∥∥∥
Lq(B(0,2−j))

≤ A + A‖ψκ
z ‖L1(B(0,2−j)).

SinceδΩ(z + rη) ≥ r/2 for η ∈ B(0, 1/2), it follows from (1.1), (2.5),0 < p ≤ (n + 1 −
α)/(n− 1) and the boundedness ofΩ that

ψz(η) = rn+1fu(z + rη) ≤ crn+1δΩ(z + rη)−αu(z + rη)p

≤ AΨz,j(η)p for a.e.η ∈ B(0, 2−(j+1)).

Therefore
‖ψκ/p

z ‖Lq(B(0,2−(j+1))) ≤ A + A‖ψκ
z ‖L1(B(0,2−j)),

and so (2.6) holds. Lets = q/p > 1. Then (2.6) implies that
∫

B(0,2−(j+1))

ψz(η)sκdη ≤ A + A

(∫

B(0,2−j)

ψz(η)κdη

)q

for 1 ≤ j ≤ `.
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We use this̀ times to obtain

‖ψz‖
L

q
q−1 (B(0,2−(`+1)))

≤ A + A

(∫

B(0,2−`)

ψz(η)
q

q−1
1
s dη

)q−1

≤ · · ·

≤ A + A

(∫

B(0,1/2)

ψz(η)
q

q−1
1

s` dη

)q`−1(q−1)

.

Sinceq/(s`(q − 1)) ≤ 1 by the definition of̀ , it follows from the Ḧolder inequality and
(2.4) that

Ψz,`+1(0) ≤ A + A‖ψz‖
L

q
q−1 (B(0,2−(`+1)))

≤ A,

whereA is independent ofz. Hence we obtain (1.2). Moreover, (1.1) and (1.2) imply the
local boundedness offu, which concludes from [18, Theorem 6.6] thatu ∈ C1(Ω). This
completes the proof of Theorem 1.1. ¤

3. PROOFS OFCOROLLARIES 1.2 AND 1.3

We have the following lower estimate for any positive superharmonic functions.

Lemma 3.1. Letu be a positive superharmonic function onΩ. Then there exists a constant
A depending only onu andΩ such that

(3.1) u(x) ≥ 1

A
δΩ(x) for x ∈ Ω.

Proof. Let µu be the Riesz measure associated withu. By the Riesz decomposition theorem,
we have

u(x) = h(x) +

∫

Ω

G(x, y)dµu(y),

whereh is a nonnegative harmonic function onΩ. If µu(Ω) = 0, thenu = h. The Martin
representation theorem and (2.2) yields that

u(x) =

∫

∂Ω

K(x, y)dν(y) ≥ δΩ(x)

A
ν(∂Ω),

and so (3.1) holds in this case. Ifµu(Ω) > 0, then we findr0 > 0 such thatµu(E) > 0,
whereE = {x ∈ Ω : δΩ(x) ≥ r0}. It follows from (2.1) that

u(x) ≥
∫

E

G(x, y)dµu(y) ≥ δΩ(x)

A
µu(E) wheneverδΩ(x) <

r0

2
.

Also, the lower semicontinuity ofu yields thatu has a positive minimum on{x ∈ Ω :
δΩ(x) ≥ r0/2}. Hence (3.1) follows. ¤

The following Harnack inequality for stationary Schrödinger equations is found in [9,
Theorem 8.20].
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Lemma 3.2. Let ν > 0 be a constant and letρ be a measurable function on a domainD
such that|ρ| ≤ ν2. If u ∈ W 1,2(D) is a weak solution of∆u + ρu = 0 in D, then there
exists a constantA depending only on the dimensionn such that

sup
B(x,r)

u ≤ A
√

n+νr inf
B(x,r)

u

wheneverB(x, 4r) ⊂ D.

Proof of Corollary 1.2.Let B(y, 8r) ⊂ Ω and letD = B(y, 4r). By Theorem 1.1, we have
u ∈ C1(Ω) ⊂ W 1,2(D). Let ρ(x) = fu(x)/u(x). Then it follows from the definition offu

that forφ ∈ C∞
0 (D),

∫

D

ρuφdx =

∫

D

fuφdx = −
∫

D

u∆φdx =

∫

D

∇u · ∇φdx.

Thereforeu is a weak solution of∆u + ρu = 0 in D. Also, we observe from (1.1) and (1.2)
that if 1 ≤ p ≤ (n + 1− α)/(n− 1), then

0 ≤ ρ(x) ≤ cδΩ(x)−αu(x)p−1

≤ AδB(y,8r)(x)−α+(p−1)(1−n) ≤ AδB(y,8r)(x)−2 ≤ Ar−2 for x ∈ D.

If 0 < p < 1, then0 ≤ α ≤ 1 + p, so that we have by Lemma 3.1

0 ≤ ρ(x) ≤ cδΩ(x)−αu(x)p−1 ≤ AδB(y,8r)(x)−α+p−1 ≤ Ar−2 for x ∈ D.

Hence (1.3) follows from Lemma 3.2. ¤

Proof of Corollary 1.3.Let u satisfy the assumption in Corollary 1.3. Thenu is the Green
potential of the densityfu. By [15, Th́eor̀eme 21] (cf. [2, Corollary 9.3.8]), we see thatu
has minimal fine limit0 at ξ ∈ ∂Ω \ E, where the surface measure ofE is zero. Let{xj}
be arbitrary sequence inΓθ(ξ) converging toξ. Since the bubble set

⋃
j B(xj, δΩ(xj)/8) is

not minimally thin atξ (cf. [12, Lemma 5.3]), we find a sequenceyj ∈ B(xj, δΩ(xj)/8)
converging toξ such thatu(yj) → 0 asj →∞. By Corollary 1.2,

0 ≤ u(xj) ≤ Au(yj) → 0.

Thus Corollary 1.3 is proved. ¤

4. PROOF OFTHEOREM 1.5

Proof of Theorem 1.5.Let β be as in (1.5) and let

(4.1) γ =
α + β(p− 1)

2
and λ = α + βp.

Then we observe thatγ > 1 and

(4.2) λ < γn + 1.

Without loss of generality, we may assume that thex1-axis is orthogonal to∂Ω at ξ = 0.
Let xj = (2−j+3, 0, . . . , 0) andrj = 2−γj. Note thatB(xj, 8rj) ⊂ Ω andB(xj, 2rj) ∩
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B(xk, 2rk) = ∅ if j 6= k. Let A1 be a constant determined in the sequel and letfj be a
nonnegative smooth function onΩ such thatfj ≤ A12

λj and

fj =

{
A12

λj onB(xj, rj),

0 onΩ \B(xj, 2rj).

Definef =
∑∞

j=1 fj. Then, by (4.2),

∫

Ω

δΩ(y)f(y)dy =
∞∑

j=1

∫

B(xj ,2rj)

δΩ(y)fj(y)dy ≤ A1νn2n+4

∞∑
j=1

2j(−1+λ−γn) < ∞.

Thusu :=
∫

Ω
G(·, y)f(y)dy is well defined onΩ. Sincef is locally Hölder continuous on

Ω, it follows from [18, Theorem 6.6] thatu ∈ C2(Ω) is a positive solution of−∆u = f in
Ω. Also, we observe from the mean value property and (2.1) that forx ∈ ∂B(xj, 2rj),

u(x) ≥
∫

B(xj ,rj)

G(x, y)fj(y)dy = A12
λjνnr

n
j G(x, xj) ≥ A1νn

2n−2A2

2j(λ−2γ),

whereA2 is a constant depending only onΩ such thatG(x, xj) ≥ A−1
2 |x − xj|2−n. Let

A3 = (A1νn)/(2n−2A2). By the minimum principle,

(4.3) u(x) ≥ A32
j(λ−2γ) for x ∈ B(xj, 2rj).

Hence it follows from (4.1) that

u(xj) ≥ A32
j(λ−2γ) ≥ A32

jβ = A32
3βδΩ(xj)

−β,

and sou satisfies (1.6). We finally show that−∆u ≤ cδΩ(x)−αup onΩ. If x 6∈ ⋃
j B(xj, 2rj),

then

cδΩ(x)−αu(x)p ≥ 0 = f(x) = −∆u(x).

Let x ∈ B(xj, 2rj). Then, by (4.3) and (4.1),

cδΩ(x)−αu(x)p ≥ c2−4αAp
32

j(α+p(λ−2γ)) = c2−4αAp
32

jλ.

Note that ifp 6= 1, then we can takeA1 (large enough ifp > 1; small enough ifp < 1) such
that

(4.4) c2−4αAp
3 ≥ A1.

Hence we obtain

cδΩ(x)−αu(x)p ≥ A12
λj ≥ f(x) = −∆u(x).

If p = 1, then the above inequality holds forc ≥ 24α+n−2A2/νn. Thus the proof of Theorem
1.5 is complete. ¤
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5. THE EXISTENCE OF POSITIVE SOLUTIONS WITH SINGULARITY ON∂Ω

In this section, we consider the existence of positive solutions, with singularity atξ ∈ ∂Ω,
of the nonlinear elliptic equation

(5.1)

{
−∆u + V u = f(x, u) in Ω,

u = 0 on∂Ω \ {ξ},
whereV andf are Borel measurable functions satisfying some appropriate conditions, and
the equation−∆u+V u = f(x, u) is understood in the sense of distributions. We introduce
a new class of Borel measurable functions. Let

Hξ(x, y) =
G(x, y)K(y, ξ)

K(x, ξ)
for x, y ∈ Ω.

We say that a Borel measurable functionϕ onΩ belongs tothe generalized Kato classKξ(Ω)
associated withξ if

lim
r→0

(
sup
x∈Ω

∫

Ω∩B(x,r)

Hξ(x, y)|ϕ(y)|dy

)
= 0,(5.2)

lim
r→0

(
sup
x∈Ω

∫

Ω∩B(ξ,r)

Hξ(x, y)|ϕ(y)|dy

)
= 0.(5.3)

Note that the classical Kato classK(Ω) is the set of all Borel measurable functionsϕ on Ω
satisfying

lim
r→0

(
sup
x∈Ω

∫

Ω∩B(z,r)

|ϕ(y)|
|x− y|n−2

dy

)
= 0

for eachz ∈ Rn. In view of [7, Theorem 3.1], we see thatK(Ω) ⊂ Kξ(Ω). Define

‖ϕ‖Kξ(Ω) = sup
x∈Ω

∫

Ω

Hξ(x, y)|ϕ(y)|dy.

We impose the following conditions onV andf :

(A1) V ∈ Kξ(Ω) and‖V ‖Kξ(Ω) < 1/2,
(A2) f is a Borel measurable function onΩ× (0,∞) such thatf(x, t) is continuous with

respect tot for eachx ∈ Ω,
(A3) |f(x, t)| ≤ tψ(x, t), whereψ is a nonnegative Borel measurable function onΩ ×

(0,∞) such that for eachx ∈ Ω, ψ(x, t) is nondecreasing with respect tot and
ψ(x, t) → 0 ast → 0,

(A4) ψ(x, δΩ(x)/|x− ξ|n) ∈ Kξ(Ω).

Theorem 5.1.Letξ ∈ ∂Ω. Suppose thatV andf are Borel measurable functions satisfying
(A1)—(A4). Then(5.1)has infinitely many positive solutionsu ∈ C(Ω) such that

(5.4) u(x) ≈ δΩ(x)

|x− ξ|n for x ∈ Ω.

Note that Theorem 1.7 for1 ≤ p < (n + 1)/(n− 1) is a special case of Theorem 5.1. For
the case0 < p < 1, we need to replace (A3) by

10



(A3’) |f(x, t)| ≤ tψ(x, t), whereψ is a nonnegative Borel measurable function onΩ ×
(0,∞) such that for eachx ∈ Ω, ψ(x, t) is nonincreasing with respect tot and
ψ(x, t) → 0 ast →∞.

Theorem 5.2.Letξ ∈ ∂Ω. Suppose thatV andf are Borel measurable functions satisfying
(A1), (A2), (A3’) and (A4). Then(5.1) has infinitely many positive solutionsu ∈ C(Ω)
satisfying(5.4).

Remark5.3. If Kξ(Ω) is replaced by the classical Kato classK(Ω), then Theorems 5.1 and
5.2 do not cover Theorem 1.7. So we need to consider the generalized Kato class.

Theorems 5.1 and 5.2 will be proved by using some properties of functions in the gener-
alized Kato class and the Schauder fixed point theorem. Note that we do not use 3G inequal-
ities (cf. [1, 7, 10, 19]), which were applied widely to the studies of stationary Schrödinger
equations and nonlinear elliptic equations (cf. [4, 6, 11, 14, 17, 22] and references therein).
We start with lower and upper estimates forHξ.

Lemma 5.4. Let r > 0 andξ ∈ ∂Ω. Then, for|x− y| < r < |x− ξ|/2,

K(y, ξ)2 ≤ A

rn
Hξ(x, y),

whereA depends only onΩ.

Proof. It is enough to show that for|x− y| < r < |x− ξ|/2,

(5.5) G(x, y) ≥ rn

A
K(x, ξ)K(y, ξ).

If |x− y| ≤ δΩ(x)/2, then we have by (2.1)

G(x, y) ≥ 1

A
|x− y|2−n ≥ 1

A
r2−n.

Also, sinceδΩ(y) ≤ 2δΩ(x) ≤ 2|x− ξ| and|x− ξ| ≤ 2|y − ξ|, it follows from (2.2) that

K(x, ξ)K(y, ξ) ≤ A
δΩ(x)δΩ(y)

|x− ξ|n|y − ξ|n ≤ A|x− ξ|2(1−n) ≤ Ar2(1−n).

Hence (5.5) holds in this case. If|x− y| ≥ δΩ(x)/2, then we have by (2.1) and (2.2)

G(x, y) ≥ 1

A

δΩ(x)δΩ(y)

|x− y|n ≥ rn

A
K(x, ξ)K(y, ξ),

since|y − ξ| ≥ r. Thus the lemma is proved. ¤

Lemma 5.5. Let r > 0 andξ ∈ ∂Ω. Then, for|x− y| ≥ r,

Hξ(x, y) ≤ A

rn
K(y, ξ)2,

whereA depends only onΩ.

11



Proof. By (2.1) and (2.2), we have

G(x, y) ≤ A
δΩ(x)δΩ(y)

|x− y|n ≤ A

rn
K(x, ξ)K(y, ξ),

sinceΩ is bounded. Thus the lemma follows. ¤
Obviously, ifϕ ∈ Kξ(Ω), then (5.2) and (5.3) imply that for sufficiently smallδ > 0,

sup
x∈Ω

∫

Ω∩B(x,δ)

Hξ(x, y)|ϕ(y)|dy ≤ ε,

sup
x∈Ω

∫

Ω∩B(ξ,δ)

Hξ(x, y)|ϕ(y)|dy ≤ ε.

(5.6)

Lemma 5.6. If ϕ ∈ Kξ(Ω), then for eachr > 0,∫

Ω\B(ξ,r)

K(y, ξ)2|ϕ(y)|dy < ∞.

Moreover,‖ϕ‖Kξ(Ω) < ∞.

Proof. Let 0 < δ < r/2 be small and let us coverΩ by finitely many ballsB(xj, δ), where
xj ∈ Ω \B(ξ, r). By Lemma 5.4 and (5.6), we obtain∫

Ω\B(ξ,r)

K(y, ξ)2|ϕ(y)|dy ≤ A

δn

∑∫

Ω∩B(xj ,δ)

Hξ(xj, y)|ϕ(y)|dy < ∞.

Also, this and Lemma 5.5 give

sup
x∈Ω

∫

Ω\(B(x,δ)∪B(ξ,δ))

Hξ(x, y)|ϕ(y)|dy < ∞.

Combining this and (5.6), we obtain‖ϕ‖Kξ(Ω) < ∞. ¤

Lemma 5.7. If ϕ ∈ Kξ(Ω), then for eachz ∈ Ω,

lim
r→0

(
sup
x∈Ω

∫

Ω∩B(z,r)

Hξ(x, y)|ϕ(y)|dy

)
= 0.

Proof. Let x ∈ Ω andr > 0. Then, by (5.6) and Lemma 5.5,∫

Ω∩B(z,r)

Hξ(x, y)|ϕ(y)|dy ≤ 2ε +

∫

Ω∩B(z,r)\(B(x,δ)∪B(ξ,δ))

Hξ(x, y)|ϕ(y)|dy

≤ 2ε +
A

δn

∫

Ω∩B(z,r)\B(ξ,δ)

K(y, ξ)2|ϕ(y)|dy.

In view of Lemma 5.6, we obtain the required property. ¤
The proofs of Theorems 5.1 and 5.2 are similar to each other. We give the proof only for

Theorem 5.1. Forλ > 0, we let

Wλ =

{
w ∈ C(Ω) :

2(1− 2‖V ‖Kξ(Ω))

3− 2‖V ‖Kξ(Ω)

λ ≤ w ≤ 4

3− 2‖V ‖Kξ(Ω)

λ

}
,

12



and define the operatorTλ onWλ by

Tλw(x) = λ−
∫

Ω

H(x, y, w)dy,

where

H(x, y, w) =
G(x, y)

K(x, ξ)

(
V (y)w(y)K(y, ξ)− f(y, w(y)K(y, ξ))

)
.

For simplicity, we writeϕ(y) = |V (y)| + ψ(y, δΩ(y)/|y − ξ|n). Let A5 be the constant
of comparison appearing in (2.2). Then it follows from (A1), (A3), (A4) and (2.2) that
ϕ ∈ Kξ(Ω) and that forw ∈ Wλ,

|H(x, y, w)| ≤ Hξ(x, y)w(y)

(
|V (y)|+ ψ(y,

4λ

3− 2‖V ‖Kξ(Ω)

A5δΩ(y)

|y − ξ|n )

)

≤ 4λ

3− 2‖V ‖Kξ(Ω)

Hξ(x, y)ϕ(y),

(5.7)

whenever0 < λ ≤ (3− 2‖V ‖Kξ(Ω))/(4A5).

Remark5.8. If f satisfies (A3’) instead of (A3), then

|H(x, y, w)| ≤ 4λ

3− 2‖V ‖Kξ(Ω)

Hξ(x, y)ϕ(y),

wheneverλ ≥ A5(3− 2‖V ‖Kξ(Ω))/(2− 4‖V ‖Kξ(Ω)).

Let Tλ(Wλ) = {Tλw : w ∈ Wλ}.
Lemma 5.9. Tλ(Wλ) is equicontinuous onΩ. Moreover,Tλw(x) → λ asx → ξ.

Proof. Let z ∈ Ω \ {ξ} and letx1, x2 ∈ Ω ∩ B(z, δ/2), where0 < δ < |z − ξ|/2. If δ > 0
is sufficiently small, then we have by (5.7) and Lemma 5.7

|Tλw(x1)− Tλw(x2)|

≤ ε + A

∫

Ω\(B(z,δ)∪B(ξ,δ))

∣∣∣∣
G(x1, y)

K(x1, ξ)
− G(x2, y)

K(x2, ξ)

∣∣∣∣ K(y, ξ)ϕ(y)dy.
(5.8)

Note that ify ∈ Ω \B(z, δ), thenG(x, y)/K(x, ξ) has a finite limit asx → z (cf. [2, Theo-
rem 8.8.6]). Since the integrand in (5.8) is bounded by a constant multiple ofK(y, ξ)2ϕ(y)
in view of Lemma 5.5, it follows from Lemma 5.6 and the Lebesgue convergence theorem
that the second term of the right hand side in (5.8) tends to zero as|x1−x2| → 0. ThusTλw
is continuous atz uniformly for w ∈ Wλ.

Next, letz = ξ. Then, by (5.7) and Lemma 5.7,

|Tλw(x)− λ| ≤ ε + A

∫

Ω\B(ξ,δ)

Hξ(x, y)ϕ(y)dy.

By the same reasoning as above, the second term of the right hand side tends to zero as
x → ξ. ThusTλw(x) → λ uniformly for w ∈ Wλ asx → ξ. ¤
Lemma 5.10. There exists a constantλ0 > 0 such that if0 < λ ≤ λ0, thenTλ(Wλ) ⊂ Wλ.
Moreover,Tλ(Wλ) is relatively compact inC(Ω).
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Proof. Let w ∈ Wλ. Forj ∈ N, we define

Ψj(x) =

∫

Ω

Hξ(x, y)ψ(y,
1

j
K(y, ξ))dy.

As in the proof of Lemma 5.9, we see thatΨj ∈ C(Ω) for sufficiently largej. Moreover
(A3) implies that for eachx ∈ Ω, Ψj(x) is nonincreasing forj andΨj(x) → 0 asj → ∞.
By the Dini theorem,

lim
j→∞

(
sup
x∈Ω

Ψj(x)

)
= 0.

Therefore there exists a constantλ0 > 0 such that for0 < λ ≤ λ0,

sup
x∈Ω

Ψ(3−2‖V ‖Kξ(Ω))/(4λ)(x) ≤ 1− 2‖V ‖Kξ(Ω)

4
.

Here we note from (A1) that the right hand side is positive. Hence

|Tλw(x)− λ| ≤ 4λ‖V ‖Kξ(Ω)

3− 2‖V ‖Kξ(Ω)

+
4λ

3− 2‖V ‖Kξ(Ω)

Ψ(3−2‖V ‖Kξ(Ω))/(4λ)(x)

≤ 1 + 2‖V ‖Kξ(Ω)

3− 2‖V ‖Kξ(Ω)

λ.

This andTλw ∈ C(Ω) conclude thatTλ(Wλ) ⊂ Wλ. The relatively compactness follows
from Lemma 5.9 and the Ascoli-Arzelá theorem. ¤
Remark5.11. If f satisfies (A3’) instead of (A3), then the first statement of Lemma 5.10 is
replaced by that there exists a constantλ0 > 0 such that ifλ ≥ λ0, thenTλ(Wλ) ⊂ Wλ.

Lemma 5.12. If 0 < λ ≤ λ0, thenTλ is continuous onWλ.

Proof. If wj ∈ Wλ converges tow ∈ Wλ uniformly on Ω, then we observe from (A2)
thatTλwj converges pointwisely toTλw. The relatively compactness ofTλ(Wλ) implies the
uniform convergence. ¤
Proof of Theorem 5.1.Note thatWλ is a nonempty bounded closed convex subset ofC(Ω).
SinceTλ is a continuous mapping fromWλ into itself such thatTλ(Wλ) is relatively compact
in C(Ω), it follows from the Schauder fixed point theorem (cf. [9]) that there isw ∈ Wλ

such thatTλw = w. Let u(x) = w(x)K(x, ξ). Thenu ∈ C(Ω) satisfies (5.4) in view of
(2.2) and

u(x) = λK(x, ξ)−
∫

Ω

G(x, y)V (y)u(y)dy +

∫

Ω

G(x, y)f(y, u(y))dy.

Therefore, using the Fubini theorem, we see that∫

Ω

u(x)∆φ(x)dx =

∫

Ω

(
V (y)u(y)− f(y, u(y))

)
φ(y)dy for φ ∈ C∞

0 (Ω),

and sou is a distributional solution of (5.1). Moreover, we see from Lemma 5.9 that

lim
x→ξ

u(x)

K(x, ξ)
= lim

x→ξ
Tλw(x) = λ.
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Thus the proof of Theorem 5.1 is complete. ¤

6. PROOF OFTHEOREM 1.7

In this section, we prove Theorem 1.7 by applying Theorem 5.1 or 5.2.

Proof of Theorem 1.7.We first show that

(6.1) ϕ(y) := δΩ(y)−α

(
δΩ(y)

|y − ξ|n
)p−1

∈ Kξ(Ω).

Suppose first that1 ≤ p < (n + 1)/(n− 1) and0 ≤ α < n + 1− p(n− 1). Let x ∈ Ω and
r > 0. Put

E1 = Ω ∩B(x, r) ∩B(x, δΩ(x)/2),

E2 =
(
Ω ∩B(x, r) \B(x, δΩ(x)/2)

) \B(ξ, |x− ξ|/2),

E3 =
(
Ω ∩B(x, r) \B(x, δΩ(x)/2)

) ∩B(ξ, |x− ξ|/2).

Observe from (2.1) and (2.2) that

Hξ(x, y)ϕ(y) ≤ A
δΩ(y)p−α

δΩ(x)

|x− ξ|n
|x− y|n−2|y − ξ|np

≤ A

|x− y|np+α−1−p
for y ∈ E1,

and

Hξ(x, y)ϕ(y) ≤ A
δΩ(y)1+p−α|x− ξ|n
|x− y|n|y − ξ|np

≤





A

|x− y|np+α−1−p
for y ∈ E2,

A

|y − ξ|np+α−1−p
for y ∈ E3.

Note thatE3 6= ∅ implies thatE3 ⊂ B(ξ, r). Hence we see thatϕ satisfies (5.2). Also, (5.3)
is shown by using (5.2). Indeed, for sufficiently smallδ > 0,∫

Ω∩B(ξ,r)

Hξ(x, y)ϕ(y)dy ≤ ε +

∫

Ω∩B(ξ,r)\B(x,δ)

Hξ(x, y)ϕ(y)dy

≤ ε + A
|x− ξ|n

δn

∫

B(ξ,r)

|y − ξ|1+p−α−npdy

≤ ε +
A

δn
rn+1+p−α−np.

Hence (6.1) holds in this case.
Suppose next that0 < p < 1 and0 ≤ α < 1 + p. Observe from (2.1) and (2.2) that

Hξ(x, y)ϕ(y) ≤ A
|x− ξ|n(1−p)

|x− y|n+α−1−p
for y ∈ E1,

and

Hξ(x, y)ϕ(y) ≤





A
|x− ξ|n(1−p)

|x− y|n+α−1−p
for y ∈ E2,

A
1

|y − ξ|np+α−1−p
for y ∈ E3.
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The same reasoning as above yields (6.1).
Now, let us apply Theorem 5.1 or 5.2.

Case 1:p 6= 1. SinceV ≡ 0 andf(x, t) = g(x)tp fulfill (A1), (A2), (A4) and either (A3) or
(A3’), it follows that (1.7) has infinitely many (distributional) positive solutionsu ∈ C(Ω)
satisfying (1.8). The local boundedness ofu and (1.1) yield thatu ∈ C1(Ω) (cf. [18,
Theorem 6.6]). Sincegup is locally Hölder continuous onΩ, we conclude thatu ∈ C2(Ω)
and−∆u = gup in Ω.
Case 2:p = 1. Sinceϕ ∈ Kξ(Ω), it follows from Lemma 5.6 that‖ϕ‖Kξ(Ω) < ∞. Therefore
if 0 < c < 1/(2‖ϕ‖Kξ(Ω)), then‖g‖Kξ(Ω) < 1/2. Applying Theorem 5.1 withV = g and
f ≡ 0 and repeating the same argument as above, we conclude that−∆u = gu has infinitely
many positive solutionsu ∈ C2(Ω) satisfying (1.8).

These complete the proof of Theorem 1.7. ¤
We finally remark the sharpness ofp < (n + 1)/(n− 1) in Theorem 1.7.

Theorem 6.1.Let ξ ∈ ∂Ω andc > 0. Suppose thatp ≥ 1 andα ≥ n + 1− p(n− 1). Then

(6.2) −∆u = cδΩ(x)−αup in Ω

has no positive solutions satisfying(1.8).

Proof of Theorem 6.1.Suppose to the contrary that there exists a positive solutionu of (6.2)
satisfying (1.8). Then it follows from (2.3), (2.1) and (1.8) that forx ∈ Ω,

u(x) ≥
∫

Ω\B(x,δΩ(x)/2)

G(x, y)(−∆u(y))dy

≥ 1

A

∫

Ω\B(x,δΩ(x)/2)

δΩ(x)δΩ(y)

|x− y|n δΩ(y)−α

(
δΩ(y)

|y − ξ|n
)p

dy

≥ 1

A

δΩ(x)

(diam Ω)n

∫

Γθ(ξ)\B(x,δΩ(x)/2)

1

|y − ξ|np+α−p−1
dy.

Sincenp + α− p− 1 ≥ n, we conclude thatu ≡ ∞ which is a contradiction. ¤
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