THE BOUNDARY GROWTH OF SUPERHARMONIC FUNCTIONS AND
POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS

KENTARO HIRATA

ABSTRACT. We investigate the boundary growth of positive superharmonic functiars
a bounded domaif? in R™, n > 3, satisfying the nonlinear elliptic inequality
0 < —Au < cdg(x) %uP inQ,

wherec > 0, « > 0 andp > 0 are constants, ang,(z) is the distance fronx to the
boundary ofQ2. The result is applied to show the Harnack inequality for such superhar-
monic functions. Also, we study the existence of positive solutions, with singularity on the
boundary, of the nonlinear elliptic equation

—Au+Vu=f(z,u) inQ,

whereV and f are Borel measurable functions conditioned by the generalized Kato class.

1. INTRODUCTION

The purpose of this paper is to investigate the boundary growth of positive superharmonic
functions satisfying a certain nonlinear elliptic inequality. As applications, we shall obtain
the Harnack inequality for positive solutions of nonlinear elliptic equations and the existence
theorem for nontangential limits of certain Green potentials.

Let 2 be a domain ilR™ and letiq (z) stand for the distance fromto the boundary2
of 2. A lower semicontinuous function : Q2 — (—o0, +o00], whereu # +o0, is called
superharmonion (Q if it satisfies the mean value inequality

1

>
u(x) 2Nk

/ u(y)dy whenevel) < r < jg(x),
B(z,r)

where B(z, r) denotes the open ball of centerand radius-, andv,, is the volume of the
unit ball. LetA be the Laplace operator d@&f. It is well known that ifu is a superharmonic
function on(?, then there exists a unique (Radon) meaguren 2 such that

/ o(x)dpy,(x) = — / u(z)A¢(z)dx  forall ¢ € C;°(Q2),
Q Q

where C§°(£2) is the collection of all infinitely differentiable functions vanishing outside

a compact set if2 (cf. [2, Section 4.3]). The measuye, is called theRiesz measure
associated with.. If 1, is absolutely continuous with respect to the Lebesgue measure and
du,(z) = f.(z)dz wheref, is a nonnegative locally integrable function @nthen we call
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fu the Riesz function associated withfor convenience. It is clear thgt, = —Awu when
u € C?*(9Q).

The classical Littlewood theorem states that every Green potential on the unit ball has ra-
dial limit 0 almost everywhere on the boundary. However, the nontangential and tangential
limits do not necessarily exist. To avoid this, many authors have imposed weighted integra-
bility conditions on the density functions of Green potentials (cf. [3, 8, 21] and references
therein). Such results were concerned with the boundary behavior of solutions of the Pois-
son equation, but are not applicable to positive solutions of stationarp@alyer equations
or nonlinear elliptic equations. For this reason, we study the boundary behavior of positive
superharmonic functions satisfying the nonlinear inequality

(1.2) 0 < fu < cdo(x) " “uP almost everywhere oft,

wheref, is the Riesz function associated withandc > 0, « > 0 andp > 0 are constants.
First of all, we note from the Poisson integral representation that every positive harmonic
functionh on the unit ballB of R satisfies
h(0)
2n
As seen in Lemma 3.1 below, the lower estimate is extendable to any positive superharmonic
functions. However the upper estimate does not necessarily hold even for positive superhar-
monic functions satisfying (1.1). Our main purpose is to determine the critical nupber
such that every positive superharmonic function satisfying (1.1) withp* is bounded by
a constant multiple of,(x)!~". By the symbol4, we denote an absolute positive constant
whose value is unimportant and may change from line to line. In what follows, we suppose
that() is a bounded’!'-domain inR", n > 3.

5p(z) < h(z) < 2h(0)65(x)'™™ forz € B.

Theorem 1.1.Letc > 0. Suppose thdt < p < (n+1)/(n—1)and0 < a < n+1—p(n—1).
Letu be a positive superharmonic function énsatisfying(1.1) for the Riesz functiorf,
associated with.. Then there exists a constaAtdepending only on, ¢, a, p and2 such
that

(1.2) u(z) < Adg(x)™™ forx € Q.
Furthermoreu € C*(Q).

As applications of Theorem 1.1, we have the Harnack inequality and the existence theo-
rem for nontangential limits of Green potentials satisfying (1.1).

Corollary 1.2. Letc > 0. Suppose thal < p < (n+1)/(n —1) and0 < a < min{n +
1 —p(n—1),1+ p}. Letu be a positive superharmonic function nsatisfying(1.1) for
the Riesz functiorf, associated with.. Then there exists a constaAtdepending only on
u, ¢, o, p and such that

(1.3) sup u < A inf w,
B(z,r) B(x,r)

wheneveB(z, 8r) C Q.



For¢é € 02 andd > 0, we define
Fp(§) ={zeQ: |z —& < (1+0)ia(x)}.

Corollary 1.3. Letc > 0. Suppose thal < p < (n+1)/(n —1) and0 < a < min{n +
1 —p(n—1),1+ p}. Letu be a positive superharmonic function ensatisfying(1.1) for
the Riesz functiorf, associated with:. If the greatest harmonic minorant ofis the zero
function, then for each > 0,

lim wu(x)=0 fora.e.& € oN.
Ty(§)32—¢

Remarkl.4. Actually, Corollary 1.2 is valid for arbitrary domains. Therefore Corollary 1.3
can be extended easily to Lipschitz and NTA domains. See proofs of them.

Note again that these results are applicable to positive solutien&?(2) of

(1.4) 0 < —Au < cdg(z) P in Q.
The following theorem shows that the boumel (n + 1)/(n — 1) is sharp in Theorem 1.1.
Theorem 1.5.Let¢ € 002 andc > 0 (assumed to be large enough when= 1 only).
Suppose thagt and « satisfy either

(i) p>(n+1)/(n—1)anda > 0, or

(i 0<p<(n+1)/(n—1)anda>n+1—pn—1).
Then, for eacly satisfying

2+a(n—2) . n
— ifp< —,
(1.5) n—1<g<{@=nptn n—2
n
ifp>——
> "p= n—2’
there exists a positive solutiane C?*(92) of (1.4) such that
(1.6) limsup dq(2) u(z) >0
INICIEESS

for anyd > 0. In particular, v does not satisf{1.2).

Remarkl1.6. Fromp > (n +1)/(n — 1) ora > n+ 1 — p(n — 1), we observe that
n—1<(2+a(n—2))/((2—-n)p+n). Thus we can takg satisfying (1.5).

Two positive functionsf andg are said to be comparable if there exists a constasuch
thatA=1f < g < Af. Then we writef ~ ¢ and callA the constant of comparison. Obvi-
ously, the Poisson kernel gives the sharpness of (1.2). The following theorem is interesting
itself and shows that the growth rate in (1.2) is sharp for positive solutions of nonlinear
elliptic equations as well.

Theorem 1.7.Let¢ € 02 andc > 0 (assumed to be small enough when= 1 only).
Supposethal < p < (n+1)/(n—1)and0 < o < min{n +1—p(n—1),1+p}. Ifg
is a locally Holder continuous function oft such thatig(x)| < cdq(z)~®, then there exist
infinitely many positive solutions € C?((2) of

2.7) —Au=guP InQ

3



such that

do(z)
(1.8) u(z) ~
|z =&
In contrast to Theorem 1.7, there are many results concerning the existence and nonexis-
tence of positive solutions of the Lane-Emden equatiaku = u?:

e the critical number for the homogeneous Dirichlet problerfnis- 2)/(n — 2) (e.g.
[20]),

e the critical number for the existence of positive solutions comparabjle|to™ near
the origin isn/(n — 2) (cf. [13, 16, 22] and references therein).

Theorems 1.7 and 6.1 assert that+ 1) /(n — 1) is the critical number for the existence of
positive solutions comparable to the Poisson or Martin kernel.

The plan of this paper is as follows. In Section 2, we shall prove Theorem 1.1 after
showing some elementary lemmas. Corollaries 1.2 and 1.3 will be shown in Section 3.
Section 4 includes the proof of Theorem 1.5. In Section 5, we introduce a generalized
Kato class and discuss the existence of positive solutions of the nonlinear elliptic equation
—Au+Vu = f(x,u) ratherthan (1.7). As a special case of this, we shall obtain Theorem 1.7
in Section 6. Also, we shall give a remark concerning the sharpngss.df. +1)/(n — 1)
in Theorem 1.7.

for x € Q.

2. PROOF OFTHEOREM 1.1

Let G(-,y) denote the Green function éf with pole aty € (2, i.e. the distributional
solution of

—AG(-,y) =9, InQ,
G(,y)=0 onox,

whereJ, is the Dirac measure gt Let{ € 90 andz, € €. Itis known from [12] that
the Martin boundary of a bounded!!-domain() coincides with the Euclidean boundary,
and therefore the rati&'(-, y)/G(x¢, y) converges to a positive harmonic function @Qras

y — &. The limit function, writtenK (-, £), is called theMartin kernelof €2 with pole at

¢. The following estimate for the Green function is well known (cf. [5, 23]), and yields an
estimate for the Martin kernel after elementary calculations.

Lemma 2.1. For z,y € Q and¢ € 01,

(2.1) G(z,y) %min{l,w} lz —y*™,
|z =y
— (59(%)

where the constants of comparisons depend onl.on

In what follows, letu be a positive superharmonic function énsatisfying (1.1) for
the Riesz functionf, associated with.. Then the Riesz decomposition theorem (cf. [2,
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Theorem 4.4.1]) yields that

(2.3) ule) = @) + [ Glo o)y foreeo,
Q
wherefh is the greatest harmonic minorant:0bn €2. Note thath is nonnegative.

Lemma 2.2. If h is a nonnegative harmonic function 6l then there exists a constast
depending only o andf2 such that

h(z) < Adg(x)'™" forax € Q.

Proof. By the Martin representation theorem and (2.2), we have

ba) = [ K(x,)dv(y) < Aba(a) (09,

wherevr is the measure ofi{) associated witlh. O

Lemma 2.3. There exists a constant depending only om and (2 such that

A%@h@@SA
Proof. Letx, € Q) be fixed, where(z,) < co. Then we observe from (2.1) th&{(x¢, y) >
A15q(y) for y € Q. Hence (2.3) concludes tht oo (y) fu(y)dy < Au(z). O

Lemma 2.4. For each;j € N, there exists a constanf > 0 depending only ori, v and 2
such that forz € Q andx € B(z,dq(z)/27T1),

Bleba(x)/20) [T —y[""2 7
Proof. Let 2 € Q andx € B(z,dq(z)/2711). By (2.1), we have
20leW00l) o Agusa()in(y) fory € Q\ Bz, sa(2)/2).

Sincef, > 0, it follows from Lemma 2.3 that

/ G, y) fuly)dy < AV 50(2) ",
Q\B(z,0a(z)/27)

and therefore

/ G, 1) fuly)dy < A2Y60(2)" + / _Fulv)_g,
Q

Bsda(z)/2) 1T — 9"

This, together with (2.3) and Lemma 2.2, concludes the required estimate. O

Proof of Theorem 1.1Letz € Q and;j € N. By Lemma 2.3, we have

da(z) / fuly)dy < A,
B(z.60(2)/2)
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whereA depends only on and(2. Letr = jq(z). Making the change of variablgs= z+r(
and lettingy.(¢) = r"*1 f.(z + r¢), we have

(2.4) [ wac<a
B(0,1/2)
and by Lemma 2.4,
_ (¢
(2.5) r"lu(z 4 §c~+/ —
( = B2 [1— ¢
Supposethat <p < (n+1)/(n—1)and0 < a <n+1—p(n—1),and let

n+1 n _ [log(q/(qg —1))
no1 9Ty E_l log(g/p)

DefineW¥, ; : B(0,1) — [0, 00) by
¥:(¢)
U.i(n) =c +/ BRI ViNS
i) ’ B(0,277) ln — (|2

To show (1.2), it is enough to prove thét ,,,(0) is bounded by a constant independent of
z sincer™tu(z) < U, ,.1(0) by (2.5). We claim that for > 1 there exists a constant
depending only om, ¢y, p, q, x and€2 such that forl < j </,

(2.6) 157l o026y < A+ AlYE 1 Bo2-5)-
Indeed, by the Jensen inequality for the unit meagyre (|>~"d(/ [ -, 1 — ([*7"dC,
(/ 0 dC) <o 1/ e forn e B(O,1).
B B

(0.2-3) [N — ¢|"72 (0,2-5) M= ¢|"~
This and the Minkowski inequality give that

/ (O
B(0,2—7) ‘ _C’n 2

< A4 Al b o2-i)-

Sincedq(z + rn) > r/2 forn € B(0,1/2), it follows from (1.1), 250 <p < (n+ 1 —
a)/(n — 1) and the boundedness Qfthat

Vo(n) =" fulz 4 ) < e oz + )"z + )
< AU, ;(n)?P fora.e.n e B(0, 2—(j+1))_

d¢ forn e B(0,270*Y),

1 and
}—i_ o= 15?3%#1{0]}

dc.

W7 il a2y <A+ A |

L3(B(0,277))

Therefore
’W’zi/p“Lq(B(o,zf@H))) <A+ AH@DfHLl(B(o,zfj)),
and so (2.6) holds. Let= ¢/p > 1. Then (2.6) implies that

q
[ wwrasaca([ wra) frisjse
B(O,Q‘(]"FU) B(O,Qij)
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We use thig times to obtain

q—1
_q 1
|’wzl‘Lﬁ(B(0,2*(Z+l))) <A+ A(/B(o,ge) Y.(n)i Sd??)

1 q
<A+ A(/ @wz(n)q—lsfdn)
B(0,1/2)

Sinceq/(s'(¢ — 1)) < 1 by the definition of¢, it follows from the Hblder inequality and
(2.4) that

-1

o (0) S A+ A, 2,

where A is independent of. Hence we obtain (1.2). Moreover, (1.1) and (1.2) imply the
local boundedness of,, which concludes from [18, Theorem 6.6] thate C*(2). This
completes the proof of Theorem 1.1. O

0,2=(¢+1))) = A’

3. PROOFS OFCOROLLARIES1.2AND 1.3

We have the following lower estimate for any positive superharmonic functions.

Lemma 3.1. Letu be a positive superharmonic function n Then there exists a constant
A depending only om and(2 such that

(3.1) u(z) > %59@) for x € Q.

Proof. Let 1, be the Riesz measure associated witBy the Riesz decomposition theorem,
we have

u(x) = hx) + / G y)dpraly),

whereh is a nonnegative harmonic function on If 1, (2) = 0, thenu = h. The Martin
representation theorem and (2.2) yields that

o) = [ Klgpanty) = 2

and so (3.1) holds in this case. /f,(2) > 0, then we findr, > 0 such thatu,(E) > 0,
whereE = {z € 2 : dq(x) > ro}. It follows from (2.1) that

v(09Q),

A 2

Also, the lower semicontinuity ofi yields thatu has a positive minimum oz € Q
do(z) > ry/2}. Hence (3.1) follows. O

u(z) > /E Gz, y)dpaly) > &l—muuw) whenevedy () < L.

The following Harnack inequality for stationary Sélinger equations is found in [9,
Theorem 8.20].



Lemma 3.2. Letr > 0 be a constant and let be a measurable function on a domdin
such that|p| < v% If u € W?(D) is a weak solution of\u + pu = 0 in D, then there
exists a constantl depending only on the dimensiarsuch that

sup u < AV inf
B(z,r) B(x,r)

wheneveB(z,4r) C D.

Proof of Corollary 1.2.Let B(y, 8r) C Q and letD = B(y, 4r). By Theorem 1.1, we have
u e CYQ) c W2(D). Letp(z) = fu(z)/u(x). Then it follows from the definition of,
that for¢ € Cg°(D),

/D pudds = /D fuddz = — /D uApdr = /D Vu - Voda.

Thereforeu is a weak solution oAu + pu = 0 in D. Also, we observe from (1.1) and (1.2)
thatifl <p < (n+1—-a)/(n—1),then

0 < p(r) < edo(a) u(z)™
< Abp(ysr (v)72TEDOT) < ASp g (2) 72 < Ar7? forz € D.
If 0 <p<1,then0 < a <1+ p, sothat we have by Lemma 3.1
0 < p(z) < cdo(x) “u(x)P" < Adpyem(z) *P 1 < Ar~? forz € D.
Hence (1.3) follows from Lemma 3.2. O

Proof of Corollary 1.3.Let u satisfy the assumption in Corollary 1.3. Theris the Green
potential of the density,,. By [15, Theoeme 21] (cf. [2, Corollary 9.3.8]), we see that
has minimal fine limit) at{ € 02 \ E, where the surface measure6fis zero. Let{x;}
be arbitrary sequence Iy (¢) converging tcf. Since the bubble s¢l; B(z;, da(z;)/8) is
not minimally thin at¢ (cf. [12, Lemma 5.3]), we find a sequengge € B(z;,dq(z;)/8)
converging tct such thatu(y;) — 0 asj — oo. By Corollary 1.2,

0 < u(z;) < Au(y;) — 0.
Thus Corollary 1.3 is proved. O

4. PROOF OFTHEOREM1.5
Proof of Theorem 1.5Let 5 be as in (1.5) and let

_a+Bp-1)

(4.1) 5

and \ = a+ fp.

Then we observe that > 1 and

(4.2) A <yn+1.

Without loss of generality, we may assume that theaxis is orthogonal t@)2 at¢ = 0.
Letz; = (277%3,0,...,0) andr; = 2777, Note thatB(xz;,8r;) C Q and B(z;,2r;) N
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B(xy,2ry) = 0if j # k. Let A; be a constant determined in the sequel and//die a
nonnegative smooth function éhsuch thatf; < A2Y and

f' . A12)\j on B(.Tj,?”j),
I 0 OnQ\B(ﬂf],QT])
Definef =377, f;. Then, by (4.2),

o0

[ i@y =3 [ sy < A2t 2 <,

j=1 7 B(z;,2r;) j=1

Thusu := [, G(-,y) f(y)dy is well defined or2. Sincef is locally Holder continuous on
Q, it follows from [18, Theorem 6.6] that € C?(Q2) is a positive solution of-Au = f in
(2. Also, we observe from the mean value property and (2.1) that 00 B(z;, 2r;),

. A )
uw)> [ Gy = APl > S,
B(xj,rj) 2n- A2

where A, is a constant depending only éhsuch thatG(z, ;) > A;'|z — x;/> ™. Let
Az = (A1r,)/(2"2A,). By the minimum principle,
(4.3) u(x) > A3203=2) forx € By, 2r)).
Hence it follows from (4.1) that
u(z;) > Az27O720 > 43208 = 432305 ()77,

and sau satisfies (1.6). We finally show thatAu < cdg(z)"*u? onQ. If = & |, B(x;, 2r)),
then

coo(z) “u(x)? > 0 = f(xr) = —Au(z).
Letx € B(z;,2r;). Then, by (4.3) and (4.1),
O ()" u(x)P > 2710 AL (HPA=2)) — pg—da ghoiA

Note that ifp # 1, then we can takeél; (large enough ip > 1; small enough ifp < 1) such
that

(4.4) 271AL > Ay,

Hence we obtain
oo () u(z)? > A2N > f(2) = —Au(x).

If p = 1, then the above inequality holds for> 24*t"=2 A, /u,,. Thus the proof of Theorem
1.5is complete. [



5. THE EXISTENCE OF POSITIVE SOLUTIONS WITH SINGULARITY OMN?

In this section, we consider the existence of positive solutions, with singulagty @i?2,
of the nonlinear elliptic equation

—Au+Vu= f(z,u) inQ,
u=0 onoN \ {¢},
whereV” and f are Borel measurable functions satisfying some appropriate conditions, and

the equation-Au+ Vu = f(z,u) is understood in the sense of distributions. We introduce
a new class of Borel measurable functions. Let

Gz, y)K(y,§)
K(:C7 é)
We say that a Borel measurable functipon (2 belongs tdhe generalized Kato clags; (2)

associated witlg if

(5.1)

He(z,y) = for x,y € .

(5.2) lir% (sup/ Hg(m,y)|gp(y)\dy) =0,
=Y \zeQ JonB(z,r)

(5.3) lim (Sup/ Hg(fv,y)lso(y)ldy) = 0.
r—=0 \we Jann(en

Note that the classical Kato clagg(?) is the set of all Borel measurable functiop®n

satisfying
lim (sup/ —|gp( >n’ 2aly) =0
r—0 e QNB(z,r) |3§ - y|

for eachz € R”. In view of [7, Theorem 3.1], we see that(2) C [C¢(Q2). Define

el = sup / He (e, ) o ()ldy.
zeQ JOQ

We impose the following conditions dri and f:

(AL) V € Ke(2) and ||V || o) < 1/2,

(A2) fis aBorel measurable function 6hx (0, oo) such thatf(x,¢) is continuous with
respect ta for eachx € (,

(A3) |f(x,t)| < ty(z,t), wheret) is a nonnegative Borel measurable functionforx
(0,00) such that for eachr € Q, i(z,t) is nondecreasing with respect taand
Y(z,t) — 0ast — 0,

(Ad) b (x, da(z)/|z — €|") € Ke(9).

Theorem 5.1.Let¢ € 0f). Suppose that” and f are Borel measurable functions satisfying
(A1)—A4). Then(5.1) has infinitely many positive solutionsc C'(2) such that

(5.4) @)~

Note that Theorem 1.7 far< p < (n+1)/(n — 1) is a special case of Theorem 5.1. For
the casé) < p < 1, we need to replace (A3) by

for x € Q.
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(A3) |f(z,t)] < t(x,t), wherey is a nonnegative Borel measurable function{orx
(0,00) such that for eaclr € Q, v (z,t) is nonincreasing with respect toand
Y(x,t) — 0ast — oo.

Theorem 5.2. Let{ € 0€). Suppose that” and f are Borel measurable functions satisfying
(A1), (A2), (A3) and (A4). Then(5.1) has infinitely many positive solutionse C'((2)
satisfying(5.4).

Remarkb.3. If K(€2) is replaced by the classical Kato clas$(2), then Theorems 5.1 and
5.2 do not cover Theorem 1.7. So we need to consider the generalized Kato class.

Theorems 5.1 and 5.2 will be proved by using some properties of functions in the gener-
alized Kato class and the Schauder fixed point theorem. Note that we do not use 3G inequal-
ities (cf. [1, 7, 10, 19]), which were applied widely to the studies of stationarydsiahger
equations and nonlinear elliptic equations (cf. [4, 6, 11, 14, 17, 22] and references therein).
We start with lower and upper estimates fdy.

Lemma5.4. Letr > 0 and{ € 09 Then, forjz —y| < r < |z —£]|/2,

A
K(y,€)* < —He(x,y),
whereA depends only of2.

Proof. It is enough to show that fde: — y| < r < |z — £|/2,

55) Glavy) 2 " K (@, K (1,).

If |z —y| < da(x)/2, then we have by (2.1)
1 1
> . 2—n > n.
Glay) = lo—yP " =
Also, sincedq(y) < 20q(z) < 2|z — &| and|x — &| < 2|y — |, it follows from (2.2) that

Sa(x)da(y)
A

Hence (5.5) holds in this case. |if — y| > 6Q($)/2, then we have by (2.1) and (2.2)

G(%ZJ)ZZW Z K(z, §)K(y, ),

sincely — &| > r. Thus the lemma is proved. O

A|l’ . 5‘2(1771) < AT2(1fn).

Lemma 5.5. Letr > 0 and¢ € 9. Then, forlz — y| > r,

He(z,y) < 2K (4,67,

where A depends only of2.
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Proof. By (2.1) and (2.2), we have

da(z)oa(y) A
Glr,y) <A———>= < —K(x 6 )s
(z,y) Ty = (2, §) K (y,¢€)
sincef? is bounded. Thus the lemma follows. O

Obviously, ifp € K¢(£2), then (5.2) and (5.3) imply that for sufficiently smalb> 0,

sup / He(,y)|o(y)|dy < e,
QNB(z,9)

e

(5.6)
sup [ He(wy)l(w)ldy < =
QNB(,9)

€N

Lemma 5.6. If ¢ € K¢(2), then for eachr > 0,

[ Kwerlewliy < o
Q\B(¢&r)

Moreover,||¢| k. ) < oo.

Proof. Let0 < § < /2 be small and let us covét by finitely many ballsB(z;, ¢), where
z; € Q\ B({,r). By Lemma 5.4 and (5.6), we obtain

/mB@r K. Ploly < 53 [ Heloglew)ldy < o

QNB(z;,0
Also, this and Lemma 5.5 give

sup | He(a,y)lo(y)ldy < oo.
O\ (B(z,0)UB(§,9))

e

Combining this and (5.6), we obtajip||x, ) < oo. O
Lemma 5.7.If p € K¢(12), then for each: € Q,

i (sup [ Helaletldy) =o.
r— z€Q JONB(z,r)

Proof. Let x € Q andr > 0. Then, by (5.6) and Lemma 5.5,

| Hwplewldy <2+ [ He(ar) ()l dy
QNB(z,r) QNB(z,m)\(B(x,6)UB(£,9))

A
<%+ K (y, €)?(y)dy.
QNB(z,r)\B(&,9)

In view of Lemma 5.6, we obtain the required property. O

The proofs of Theorems 5.1 and 5.2 are similar to each other. We give the proof only for
Theorem 5.1. FoA > 0, we let

A<w<
3= 2|IVlke o 3 =2V lke(o)

_ 2(1-=-2||V 4
Wy = {w eC(Q): ( IV lcete) —)\} ,
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and define the operat@y on W, by

ﬂwwsz—/ﬁam%ww%
Q

where

%(V(y)w(y)f((y,é) — fly,wy)K(y,9)).

For simplicity, we writep(y) = |V (y)| + ¥(y, da(y)/ly — &|™). Let A5 be the constant
of comparison appearing in (2.2). Then it follows from (Al), (A3), (A4) and (2.2) that
¢ € Ke(Q2) and that forw € W),

m@meSEMawww(W@»+w%

4\
< s He(z,y)0(y),
3 =2V lke (o) ¢

whenevel) < A < (3 —2|[V|lk )/ (44s).
Remarks.8. If f satisfies (A3’) instead of (A3), then

4\
| < —————H¢(z,y)p(y),
32V °

wheneven > A;(3 — 2[|[V{[x. @)/ (2 = 41V [l ce@)-
Let’];\(w,\) = {T)\w Tw E W)\}
Lemma 5.9. 7, (W,) is equicontinuous ofe. Moreover,Z,w(x) — A asz — &.

Proof. Letz € Q\ {¢} and letry, 25 € QN B(2,5/2), whered < 6 < |z —£[/2. 1f § > 0
is sufficiently small, then we have by (5.7) and Lemma 5.7

[ Tw(wy) — Thw(zs)|

H(z,y,w) =

ZD\ Aséa(y) )>

32V — ¢
(5.7) IV llxe 1y =&l

H(x,y, w)

(5.8) (z1,y)  G(72,9)

G

Q\Uﬂzﬁﬂ&%&é”’}(<$laf) K(x2,8) By &ely)dy.
Note that ify € Q\ B(z,0), thenG(z,y)/K(z, ) has afinite limit as: — z (cf. [2, Theo-
rem 8.8.6]). Since the integrand in (5.8) is bounded by a constant multigi&nf¢)o(y)
in view of Lemma 5.5, it follows from Lemma 5.6 and the Lebesgue convergence theorem
that the second term of the right hand side in (5.8) tends to zdrg asz,| — 0. ThusZ,w
is continuous at uniformly for w € W,.

Next, letz = £. Then, by (5.7) and Lemma 5.7,

\ﬁM@—M§€+A/ He (2, y)o(y)dy.

<e+4+ A

Q\B(&,6)
By the same reasoning as above, the second term of the right hand side tends to zero as
x — £ ThusTyw(z) — A uniformly forw € W, asz — &. O

Lemma 5.10. There exists a constant, > 0 such that if0 < A\ < ), thenZ,(W,) C W,.

Moreover,7,(W,) is relatively compact ir'(2).

13



Proof. Letw € W,. Forj € N, we define

W (z) = / Hg<x,y>w<y,§K<y,g>>dy.

As in the proof of Lemma 5.9, we see thiy € C(Q2) for sufficiently largej. Moreover
(A3) implies that for each: € Q, ¥, () is nonincreasing foj and¥;(z) — 0 asj — oo.
By the Dini theorem,

lim (sup \Ifj(a;)) = 0.

J—00

z€Q
Therefore there exists a constait> 0 such that fol) < A < A,
1 —2[[Vlke@)
Sup \11(3*2“‘/“&5(9))/(4)\)(1‘) < +
e

Here we note from (A1) that the right hand side is positive. Hence
AV ]lke@) 4

e o IO T ol MO
14+ 2|[Vllke@
T 32 Vllkew)
This andZ,w € C(Q) conclude thaZ,(W,) c W,. The relatively compactness follows
from Lemma 5.9 and the Ascoli-Arzetheorem. O

Remarks.11 If f satisfies (A3’) instead of (A3), then the first statement of Lemma 5.10 is
replaced by that there exists a constant- 0 such that if\ > X, thenZ, (W) C W,.

Lemma 5.12.1f 0 < A < )\, then7, is continuous oiV,.

Proof. If w; € W, converges tav € W, uniformly on (2, then we observe from (A2)
that7,w; converges pointwisely t@,w. The relatively compactness @f (V) implies the
uniform convergence. O

Proof of Theorem 5.1Note thatlV, is a nonempty bounded closed convex subsét(61).
Since7, is a continuous mapping fromy), into itself such thaf, (W) is relatively compact
in C(Q), it follows from the Schauder fixed point theorem (cf. [9]) that thereis W,
such that7yw = w. Letu(z) = w(x)K(z,£). Thenu € C() satisfies (5.4) in view of

(2.2) and
u(z) = AK(x,§) —/

Q
Therefore, using the Fubini theorem, we see that

/ u(2)Ad(z)dz = / (V)uly) — fly, u(y)dly)dy for 6 € C(),
Q Q

and sou is a distributional solution of (5.1). Moreover, we see from Lemma 5.9 that

G, y)V (y)uly)dy + / G, y) f (g uly))dy.

Q

- ou(z) B
R e =A
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Thus the proof of Theorem 5.1 is complete. O

6. PROOF OFTHEOREM 1.7
In this section, we prove Theorem 1.7 by applying Theorem 5.1 or 5.2.
Proof of Theorem 1.7We first show that
do(y)

6.1) o(0) = Saly) (|y d §|n>,,_ € Ke(9).

Suppose firstthat < p < (n+1)/(n—1)and0 < a<n+1—pn—1). Letz € Q and
r > 0. Put

E, =QnN B(z,r)N B(x,dq(z)/2),

By = (2N B(x,7)\ B(x,00(x)/2)) \ B(&, |z —£]/2),

Ey = (20 B(z,r) \ B(z,8a(z)/2)) N B, |z — £/2).
Observe from (2.1) and (2.2) that

da(y)P— |z — & A
H <A < foryc B
f(ZE, y)QO(y) — 5Q(l‘) |$ . y|n_2|y . §|np = |ZE N y|np+oé—1—p Yy S 1,
and
A
fory € Es,
Saly) ool — & f o —gpwraie VS
Helrwe ) < ATy — g A
fory € Es.

y— et

Note thatE; # () implies thatE; C B(&, r). Hence we see that satisfies (5.2). Also, (5.3)
is shown by using (5.2). Indeed, for sufficiently smalt 0,

/ He(, y)o(y)dy < < + / He (i, y)e(y)dy
QNB(&,r) QNB(&,r)\B(z,9)

<e+ A’$ ;nﬂ / |y . §|1+p—a—npdy
B(&r)

<e+ A oy
< 5
Hence (6.1) holds in this case.
Suppose next thét< p < 1 and0 < a < 1 4 p. Observe from (2.1) and (2.2) that

o = g0

He(z,y)p(y) < A‘x T fory € i,
and
A o = ¢ fory € B,
Hewyely) <4 177 y|nl+a_1_p
A fory € Fs.

y— o
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The same reasoning as above yields (6.1).

Now, let us apply Theorem 5.1 or 5.2.
Case 1ip # 1. SinceV = 0 andf(z,t) = g(x)t? fulfill (A1), (A2), (A4) and either (A3) or
(A3), it follows that (1.7) has infinitely many (distributional) positive solutiong C'(€2)
satisfying (1.8). The local boundednesswfnd (1.1) yield that: € C'(Q) (cf. [18,
Theorem 6.6]). Sinceu?” is locally Holder continuous of2, we conclude that € C?(Q)
and—Au = gu? in Q.
Case 2:p = 1. Sincep € K¢(Q), it follows from Lemma 5.6 thaty ||k, ) < oo. Therefore
if 0 < c<1/2[¢llke), then|lgllx., ) < 1/2. Applying Theorem 5.1 with” = g and
f = 0 and repeating the same argument as above, we concludethat= gu has infinitely
many positive solutions € C?(2) satisfying (1.8).

These complete the proof of Theorem 1.7. O

We finally remark the sharpnessok (n +1)/(n — 1) in Theorem 1.7,
Theorem 6.1.Let¢ € 092 andc > 0. Suppose that > 1 anda > n+ 1 —p(n —1). Then
(6.2) —Au = cdg(z) *uP inQ
has no positive solutions satisfyi.8).

Proof of Theorem 6.1Suppose to the contrary that there exists a positive solutmf{(6.2)
satisfying (1.8). Then it follows from (2.3), (2.1) and (1.8) that fog 2,

u(z) > / G, y)(~ Au(y))dy
O\B(z,60(x)/2)

> l 59(37)69(3/) 59(?/)_0‘ ( 59(3/) )pdy

A JaB@sa@/ |-yl ly — &

> 1 59(‘%) / 1+ ——dy.
A (diam Q)™ Jr, o)\ Baso@)/2) 1Y — §[PHe?
Sincenp + a — p — 1 > n, we conclude that = oo which is a contradiction. OJ
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