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Abstract. We consider initial value problems for the semirelativistic Hartree

equations with cubic convolution nonlinearity F (u) = (V ∗ |u|2)u. Here V is

a sum of two Coulomb type potentials. Under a specified decay condition and

a symmetric condition for the potential V we show the global existence and

scattering of solutions.

1. Introduction

In this paper we consider the following Cauchy problem:
{

i∂tu =
√

m2 −∆u + F (u) in Rn × R, n ≥ 1,
u(x, 0) = ϕ(x) in Rn.

(1)

Here m > 0 denotes the mass of Bosons in units ~ = c = 1 and F (u) is nonlinear
functional of Hartree type such that F (u) = (V ∗ |u|2)u, where V = V1 + V2 and ∗
denotes the convolution in Rn. We assume that the potentials V1 and V2 are real
valued functions with the estimate

|Vi(x)| . |x|−γi ,(2)

where 0 < γi < n, i = 1, 2. The typical examples of V are the Coulomb potential
V (x) = λ|x|−1 corresponding to the case γ1 = γ2 = 1 and the Yukawa potential
V (x) = λ e−µ|x|

|x| corresponding to the case γ1 = 1 and any γ2 > 0, where λ is a
real number and µ is a nonnegative real number. For the energy conservation we
assume that

V (x) = V (−x).(3)

The equation (1) is called the semirelativistic Hartree equation, which describes
the Boson stars with Coulomb potential. See [4, 5, 7] and the references therein.

The main purpose of this paper is to improve the known results in [1, 8] for
the local and global existence theory to the equation (1) with a general class of
potentials as above and the scattering theory of the global solutions. For this
purpose we study the Cauchy problem (1) in the form of the integral equation:

u(t) = U(t)ϕ− i

∫ t

0

U(t− t′)F (u)(t′)dt′,(4)
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where

(U(t)ϕ)(x) = (e−it
√

m2−∆ϕ)(x) =
1

(2π)n

∫

Rn

ei(x·ξ−t
√

m2+|ξ|2)ϕ̂(ξ) dξ.

Here ϕ̂ denotes the Fourier transform of ϕ such that ϕ̂(ξ) =
∫
Rn e−ix·ξϕ(x) dx.

The solution of the equation (1) enjoys two conservation laws to be used for the
global existence in the case 0 < γ1, γ2 ≤ 2. If the solution u of (1) has sufficient
decay at infinity and smoothness and V satisfies the condition (3), then it satisfies

‖u(t)‖L2 = ‖ϕ‖L2 ,

E(u) ≡ Km(u) + V (u) = E(ϕ),
(5)

where Km(u) = 1
2 〈
√

m2 −∆ u, u〉, V (u) = 1
4 〈F (u), u〉 and 〈, 〉 is the complex inner

product in L2. For a rigorous proof of (5) see [8] in the case of 0 < γ1, γ2 ≤ 1 and
[11] in the case of 1 < γ1, γ2 ≤ 2.

We show the global existence case by case. In section 2 we consider the potential
with 0 < γ1, γ2 ≤ 1. This can be done by adapting exactly the same arguments
(conservation laws (5) and contraction mapping theorem) as in [1]. The crucial
estimate for local existence is the following Hardy inequality

‖V ∗ |u|2‖L∞ . ‖u‖2
Ḣ

γ1
2 ∩Ḣ

γ2
2

.(6)

For the global existence we use the time-continuity argument via the energy con-
servation. On the other hand, from the energy conservation, we get an estimate of
solution which is uniform in the mass m on any finite time interval, if m is bounded
from above, and then get a strong convergence of solutions of (1) to a solution of
the massless equation (m = 0). If m is large, then the situation is quite different.
The kinetic energy Km(u) is not bounded globally in time any more. This can
be overcome by a phase modulation and a uniform bound of local solutions in Hs

for which we need s ≥ γ1
2 . The modulated solution is closely approximated by a

solution of a Schrödinger equation of Hartree type if m is sufficiently large. We in-
terpret this phenomenon as a non-relativistic limit and eventually as a semi-classical
or vanishing dispersion limit. For the details see Remark 1 below and Propositions
2.4. and 2.5 of [1].

In sections 3, 4 and 5 we consider the large values of γ1, γ2. The main tools
are the Strichartz estimates and conservations laws (5). If we use the estimate (9)
for this case, then on account of the range of γ1 and γ2 the right hand side of (9)
cannot be bounded by energy (actually the estimate (9) for the case γ1, γ2 > 1
is an energy supercritical estimate). Hence we exploit the well-known Strichartz
estimate for the unitary group U(t) which is stated as follows (see [9, 10]):

‖U(t)ϕ‖
L

q0
T H

s0−σ0
r0

. ‖ϕ‖Hs0 ,
∥∥∥∥
∫ t

0

U(t− t′)f(t′) dt′
∥∥∥∥

L
q1
T H

s1−σ1
r1

. ‖f‖L1
T Hs1 ,

(7)

where (qi, ri), i = 0, 1, satisfy that for any θ ∈ [0, 1]

2
q i

= (n− 1 + θ)
(

1
2
− 1

r i

)
, 2σi = (n + 1 + θ)

(
1
2
− 1

r i

)
,

2 ≤ qi, ri ≤ ∞, (qi, ri) 6= (2,∞).
(8)
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We call the pair (q, r, σ) satisfying (8) admissible pair. If θ = 0, it is called wave
admissible and if θ = 1, then Schrödinger admissible. Here Hs

r = (1 − ∆)−s/2Lr

is the usual Sobolev space and Hs = Hs
2 . Hereafter, we denote the space Lq

T (B)
by Lq(0, T ; B) and its norm by ‖ · ‖Lq

T B for some Banach space B, and also Lq(B)
with norm ‖ · ‖LqB by Lq(0,∞;B), 1 ≤ q ≤ ∞. For the related weighted Strichartz
estimates, see [2, 3] in which some global existence and scattering of radial solutions
are considered.

On the right hand side of the second inequality of (7), only the space L1
T Hs1 for

f is used because contrary to the case of Klein-Gordon equation, inhomogeneous
estimate for U(t) preserves a regularity. One of course can consider the general space
like LqHs

r with additional regularity. In section 3, we use the wave and Schrödinger
admissible pairs to prove the global existence. In [1] the global existence is proved
for 0 < γ1 = γ2 < 2n

n+1 , n ≥ 2. When the potentials are competing each other,
the Sobolev embedding argument on the single potential as in [1] is not enough,
especially if the difference of γ1 and γ2 is big and γ1, γ2 ≥ n

n+1 . To overcome this
difficulty, we proceed an interpolation together with Sobolev embedding for the
proof. In case that one of γ1 and γ2 is smaller than n

n+1 and the other is larger
than n

n+1 , we use the Hardy inequality as in section 2 together with an interpolation
argument.

In section 4, we use the end point Schrödinger admissible ones for the small data
scattering in the case 2 < γ1, γ2 < n. This case can be treated in a similar way to
the single potential case.

The most difficult case occurs when γ1 < 2 < γ2, or γ2 < 2 < γ1. To control
potentials of these types we have to use non-endpoint admissible pair and endpoint
one simultaneously, but this seems to be impossible. To avoid this difficulty, in sec-
tion 5 we assume stronger condition on V1 and V2 such that |V1(x)| . χ{|x|≤R}|x|−γ1

and |V2(x)| . χ{|x|>R}|x|−γ2 for γ1 < 2 and γ2 > 2. For this potentials V becomes
an L

n
2 function. Hence this enables us to use a wider range of γ1 and the end point

Schrödinger admissible pair to obtain the global existence. With potentials of these
types, the case γ1 = 2 can be treated on account of the endpoint wave admissible
pair.

Unfortunately, we do not have any idea of the global existence for the potentials
as stated above in case that γ2 ≤ 2 < γ1. The decay of V at space infinity becomes
slower and the singularity at the origin stronger, which make the competition be-
tween the potentials more significant. We have another unsolved problem, that is,
the global existence for the case that one of γ1 and γ2 is between 2n

n+1 and 2. We
need to establish a new method. As a future works, these topics seem to be worth
being pursued on account of not only the mathematical concern but applications
to the another equations like Dirac and Klein-Gordon, etc.

If not specified, throughout this paper, the notation A . B and A & B denote
A ≤ CB and A ≥ C−1B, respectively. Different positive constants possibly depend-
ing on n,m, λ and γ might be denoted by the same letter C. A ∼ B means that both
A . B and A & B hold. For γ with 0 < γ < n, we use the integral operators In−γ

by convolution with the homogeneous potential |x|−γ as In−γ(f)(x) = | · |−γ ∗f(x).

2. Case 0 < γ1, γ2 ≤ 1

We can handle this case by using only conservation laws as in [1]. Let us first
introduce the following local existence result.
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Proposition 1. Let 0 < γ1, γ2 < n and n ≥ 1. Suppose that V1 and V2 satisfy the
condition (2) and ϕ ∈ Hs(Rn) with s ≥ max(γ1

2 , γ2
2 ). Then there exists a positive

time T independent of m such that (4) has a unique solution u ∈ C([0, T ];Hs) with
‖u‖L∞T Hs ≤ C‖ϕ‖Hs , where C does not depend on m.

Proof. The method of proof is almost the same as of [1]. From the decays of V1, V2

and Hardy inequality it follows that

‖V ∗ |u|2‖L∞ . ‖u‖2
H

γ1
2

+ ‖u‖2
H

γ2
2

. ‖u‖2Hs .(9)

This inequality enables us to get the uniform boundedness of the existence time T

and the constant C on the mass m. For the details, see the proof of Proposition 1
in [1] or [8]. ¤

Now using the conservation laws (5), we establish the global time existence.

Theorem 1. Assume that V1 and V2 satisfy the conditions (2) and (3). Let 0 <

γ1, γ2 ≤ 1 for n ≥ 2, 0 < γ1, γ2 < 1 for n = 1 and s ≥ 1
2 . Let T ∗ be the maximal

existence time of the solution u as in Proposition 1. Then if V ≥ 0, or if V is
not positive and ‖ϕ‖L2 is small enough for the energy to be positive, then T ∗ = ∞.
Moreover ‖u(t)‖Hs ≤ C‖ϕ‖HseC(E(ϕ)+‖ϕ‖2

L2 )t, where C does not depend on m.

Proof. From the estimate (9) and L2 conservation, we have that if V is not positive,
0 < γ1, γ2 ≤ 1 (actually it is possible up to γ1, γ2 < 2) and n ≥ 2, then

|V (u)| . ‖V ∗ |u|2‖Ln‖u‖2
L

2n
n−1

.
∑

i=1,2

‖u‖2
L

2n
n−γi+1

‖u‖2
L

2n
n−1

. ‖u‖θ
L2‖u‖4−θ

L
2n

n−1
= ‖ϕ‖θ

L2‖u‖4−θ

Ḣ
1
2

for some small positive number θ < 2. Hence

E(u) ≥ Km(u)− |V (u)| ≥ m

2
‖ϕ‖2L2 +

1
2
‖u‖2

Ḣ
1
2
− C‖ϕ‖θ

L2‖u‖4−θ

Ḣ
1
2
.

Thus we can always make E(u) be strictly positive, provided ‖ϕ‖L2 is sufficiently
small. Using the estimate

|V (u)| . (‖u‖2
Ḣ

γ1
2

+ ‖u‖
Ḣ

γ2
2

)‖u‖2L2 . ‖u‖2γ

Ḣ
1
2
‖ϕ‖4−2γ

L2

the same argument as above holds for n = 1.
Hence if V ≥ 0 or if V is not positive and ‖ϕ‖L2 is sufficiently small, then

‖u(t)‖2
Ḣ

γ
2
≤ C(E(u) + ‖ϕ‖2L2) = C(E(ϕ) + ‖ϕ‖2L2).(10)
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From (10) and the generalized Leibniz rule, we have

‖u(t)‖Hs

. ‖ϕ‖Hs +
∫ t

0

‖F (u)‖Hs dt′

. ‖ϕ‖Hs +
∑

i=1,2

∫ t

0

(‖In−γi
(|u|2)‖L∞‖u‖Hs

+ ‖In−γi(|u|2)‖Hs
2n
γi

‖u‖
L

2n
n−γi

) dt′

. ‖ϕ‖Hs +
∫ t

0

‖u‖2
H

γ
2
‖u‖Hs dt′

. ‖ϕ‖Hs + (E(ϕ) + ‖ϕ‖2L2)
∫ t

0

‖u‖Hs dt′.

(11)

Gronwall’s inequality shows that

‖u(t)‖Hs ≤ C‖ϕ‖Hs exp(C(E(ϕ) + ‖ϕ‖2L2)t).

This completes the proof. ¤

Remark 1. From the uniform boundedness on m for the solution u in Proposition
1 and Theorem 1, we obtain the similar results to those in [1] on the limit problem
as m → 0 and m →∞.

The first is the following. If um ∈ (C ∩ L∞)(Hs) is the global solution of (4)
satisfying the same condition as in Theorem 1, then for any finite time T , um → u0

in L∞T (Hs) with s ≥ 1
2 as m → 0, where u0 is the global solution to the massless

(m = 0) equation (1) with u0(0) = ϕ.
Now let us consider the phase modulated function vm = eimtum. Then one can

easily verify that the function vm satisfies the equation

i∂tvm = (
√

m2 −∆−m)vm + F (vm), vm(0) = ϕ,

and equivalently

vm(t) = Um(t)ϕ− i

∫ t

0

Um(t− t′)F (vm)(t′) dt′,(12)

where Um(t) = e−it(
√

m2−∆−m). Let wm be a solution of the nonlinear Schrödinger
equation:

i∂twm = − 1
2m

∆wm + F (wm), wm(0) = ϕ.(13)

Let T ∗vm
and T ∗wm

be the maximal existence time of the solutions um and wm, respec-
tively. Let T ∗ ≡ infm>1 min(T ∗vm

, T ∗wm
) If s ≥ γ1

2 and T < T ∗, then vm − wm → 0
in L∞T (Hs) as m →∞. For the details of proof, see Propositions 2.4 and 2.5 of [1].
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3. Case 0 < γ1, γ2 < 2n
n+1

In [1] the global existence was shown with homogeneous potential |x|−γ for the
ranges of 0 < γ < 2n

n+1 and n ≥ 2 by using the wave admissible Strichartz estimate.
Adapting and modifying the method of proof of Theorem 1, we have the following.

Theorem 2. Assume that V1 and V2 satisfy the conditions (2) and (3). Let n
n+1 ≤

γ1, γ2 < 2n
n+1 and n ≥ 2. Then if ϕ ∈ H

1
2 and if V ≥ 0, or V is not positive

but ‖ϕ‖L2 is sufficiently small, then (4) has a unique solution u ∈ C([0,∞); H
1
2 )∩

Lq
loc(H

1
2−σ
r ), where q = 4n

(n−1)α , r = 2n
n−α and σ = (n+1)α

4n for some α < 2n
n+1 but

arbitrarily close to 2n
n+1 .

Proof. Given n, γ1 and γ2 choose a number α so close to 2n
n+1 that min(1+ (n−1)α

2n −
γ1, 1 + (n−1)α

2n − γ1) > 0. Then for some positive number T to be chosen later, let
us define a complete metric space (XT,ρ, dT ) with metric dT by

XT,ρ =
{

v ∈ C([0, T ];H
1
2 ) ∩ Lq

T (H
1
2−σ
r ) : ‖v‖

L∞T H
1
2

+ ‖v‖
Lq

T H
1
2−σ

r

≤ ρ

}
,

dT (u, v) = ‖u− v‖
L∞T H

1
2 ∩Lq

T H
1
2−σ

r

,

where q, r, σ are the same indices as stated in Theorem 2.
Now we define a mapping N : u 7→ N(u) on XT,ρ by

N(u)(t) = U(t)ϕ− i

∫ t

0

U(t− t′)F (u)(t′) dt′.(14)

Our strategy is to use the standard contraction mapping argument. From now on,
we will prove that the nonlinear mapping N is a contraction on XT,ρ, provided T

is sufficiently small. We will use another version of Hardy inequality which can
be easily shown by splitting integral regions, inside the ball with radius R and its
outside and by optimizing over R.

Lemma 1. Let 0 < γ < n. Then for any 0 < ε < n− γ we have

∥∥In−γ(|u|2)∥∥
L∞ . ‖u‖

L
2n

n−γ−ε
‖u‖

L
2n

n−γ+ε
.

Taking θ by 0 in the Strichartz estimate (7) and (8), the pair

(q, r, σ) =
(

4n

(n− 1)α
,

2n

n− α
,

(n + 1)α
4n

)

becomes a wave admissible one. Hence the Strichartz estimate together with the
estimate (9), Plancherel theorem, Lemma 1 and generalized Leibniz rules, enables
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us to deduce that for some small 0 < ε < n− γ2

‖N(u)‖
L∞T H

1
2 ∩Lq

T H
1
2−σ

r

. ‖ϕ‖
H

1
2

+ ‖F (u)‖
L1

T H
1
2

. ‖ϕ‖
H

1
2

+
∑

i=1,2

‖In−γi
(|u|2)‖L1

T L∞‖u‖L∞T H
1
2

+
∑

i=1,2

∫ T

0

‖In−γi(|u|2)‖
H

1
2
2n

γi+ε

‖u‖
L

2n
n−(γi+ε)

dt

. ‖ϕ‖
H

1
2

+
∑

i=1,2

‖u‖
L2

T L
2n

n−(γi+ε)
‖u‖

L2
T L

2n
n−(γi−ε)

‖u‖
L∞T H

1
2

+
∑

i=1,2

∫ T

0

‖|u|2‖
H

1
2

2n
2n−(γi−ε)

‖u‖
L

2n
n−(γi+ε)

dt

. ‖ϕ‖
H

1
2

+
∑

i=1,2

‖u‖
L2

T L
2n

n−(γi+ε)
‖u‖

L2
T L

2n
n−(γi−ε)

‖u‖
L∞T H

1
2

+
∑

i=1,2

∫ T

0

‖u‖
L

2n
n−(γi−ε)

‖u‖
H

1
2
‖u‖

L
2n

n−(γi+ε)
dt.

(15)

Using Hölder’s inequality for time integral, we have

‖N(u)‖
L∞T H

1
2 ∩Lq

T H
1
2−σ

r

. ‖ϕ‖
H

1
2

+
∑

i=1,2

‖u‖
L2

T L
2n

n−(γi+ε)
‖u‖

L2
T L

2n
n−(γi−ε)

‖u‖
L∞T H

1
2
.

(16)

Now if we choose ε > 0 so that ε < mini=1,2

(
n− γi, 1 + (n−1)α

2n − γi

)
, then

2 <
2n

n− (γi − ε)
<

2n

n− (γi + ε)
≤ 2n

n− α− (1− 2σ)
.(17)

From the interpolation between L2 and L
2n

n−α−(1−2σ) , it follows that

‖u‖
L

2n
n−(γi±ε)

. ‖u‖1−θi

L2 ‖u‖θi

L
2n

n−α−(1−2σ)
,

where θi = 2γi

α+(1−2σ) . Since n
n+1 ≤ γi < 2n

n+1 , if we choose α sufficiently close to
2n

n+1 , then we can make θi be the value in the closed interval [1, 2].

Now using (16) and Sobolev embedding H
1
2−σ
r ↪→ Lr ∩ L

2n
n−α−(1−2σ) , we deduce

that

‖N(u)‖
L∞T H

1
2 ∩Lq

T H
1
2−σ

r

≤ C(‖ϕ‖
H

1
2

+
∑

i=1,2

T 1−θi‖u‖3−θi

L∞T H
1
2
‖u‖θi

Lq
T H

1
2−σ

r

)

≤ C(‖ϕ‖
H

1
2

+ (T 1−θ1 + T 1−θ2)ρ3)

for some constant C. Here we have used the conventional embedding that if 2(1
2 −

σ) ≥ n − α then H
1
2−σ
r ↪→ Lr1 for any r1 ≥ r. Thus if we choose ρ and T so that

C‖ϕ‖
H

1
2
≤ ρ

2 and C(T 1−θ1 + T 1−θ2)ρ3 ≤ ρ
2 , then we conclude that N maps from

XT,ρ to itself.
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For any u, v ∈ XT,ρ, we have

dT (N(u), N(v))

. ‖F (u)− F (v)‖
L1

T H
1
2

.
∑

i=1,2

(‖In−γi
(|u|2 − |v|2)u‖

L1
T H

1
2

+ ‖In−γi
(|v|2)(u− v)‖

L1
T H

1
2
).

(18)

By Lemma 1 and Hölder’s inequality, we have for sufficiently small ε > 0

‖In−γi(|u|2 − |v|2)u‖L1
T H

1
2

. ‖In−γi
(|u|2 − |v|2)‖L2

T L∞‖u‖L∞T H
1
2

+ ‖In−γi
(|u|2 − |v|2)‖L2

T Hs
2n

γi+ε

‖u‖
L2

T L
2n

n−(γi+ε)

. ρ‖|u|2 − |v|2‖
1
2

L1
T L

n
n−(γi+ε)

‖|u|2 − |v|2‖
1
2

L1
T L

n
n−(γi−ε)

+ ρ‖u− v‖
L∞T H

1
2
(‖u‖

L2
T L

2n
n−(γi−ε)

+ ‖v‖
L2

T L
2n

n−(γi−ε)
)

+ ρ‖u− v‖
L2

T L
2n

n−(γi−ε)
(‖u‖

L∞T H
1
2

+ ‖v‖
L∞T H

1
2
).

(19)

Since L2 ∩H
1
2−σ
r ↪→ L

2n
n−(γi±ε) , by another Hölder’s inequality with respect to the

time variable, we have

‖In−γi(|u|2 − |v|2)u‖L1
T H

1
2

. (T + T 1− 2
q )ρ2dT (u, v).

Similarly,

‖In−γi(|v|2)(u− v)‖
L1

T H
1
2

. ‖In−γi(|v|2)‖L1
T L∞‖u− v‖

L∞T H
1
2

+ ‖In−γi(|v|2)‖
L2

T L
2n

γi+ε
‖u− v‖

L2
T L

2n
n−(γi+ε)

. ‖v‖
L2

T L
2n

n−(γi−ε)
‖v‖

L2
T L

2n
n−(γi+ε)

dT (u, v)

+ ‖v‖
L∞T H

1
2
‖v‖

L2
T L

2n
n−(γi−ε)

‖u− v‖
L2

T L
2n

n−(γi+ε)
.

(20)

Hence we get

‖In−γi(|v|2)(u− v)‖
L1

T H
1
2

. (T + T 1− 2
q )ρ2dT (u, v).

Substituting these two estimates into (18) and then using the fact CT 1− 2
q ρ2 ≤ 1

2

for smaller T , we conclude that N is a contraction mapping.
For the global existence we adapt the time-continuity argument. Let T ∗ be the

maximal existence time for the local solution u constructed as above. Then we
claim that T ∗ = ∞. In fact, from the estimates (10) and (16), we have

‖u‖
Lq

T H
1
2−σ

r

. ‖ϕ‖2L2 + |E(ϕ)|+
∑

i=1,2

T 1−θi(‖ϕ‖2L2 + |E(ϕ)|) 3−θi
2 ‖u‖θi

Lq
T H

1
2−σ

r

.
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If we assume that T ∗ < ∞, then for sufficiently small T depending on ‖ϕ‖2L2 +
|E(ϕ)|,

‖u‖
Lq(Tj−1,Tj ;H

1
2−σ

r )
≤ C(‖ϕ‖2L2 + |E(ϕ)|),

where Tj − Tj−1 = T for j ≤ k − 1 and Tk = T ∗. This means that

‖u‖q

Lq(0,T∗;H
1
2−σ

r )
≤

∑

1≤j≤k

‖u‖q

Lq(Tj−1,Tj ;H
1
2−σ

r )
≤ (kC(‖ϕ‖2L2 + |E(ϕ)|))q < ∞.

This is a contradiction to the hypothesis T ∗ < ∞. We have just finished the
proof. ¤

Now using Theorem 1 and Theorem 2, we can also treat the potentials V1, V2

with γ1 < n
n+1 , n

n+1 ≤ γ2 < 2n
n+1 or n

n+1 ≤ γ1 < 2n
n+1 , γ2 < n

n+1 , respectively.

Theorem 3. Assume that V1 and V2 satisfy the conditions (2) and (3). Let 0 <

γ1 < n
n+1 , n

n+1 ≤ γ2 < 2n
n+1 and n ≥ 2. Then if ϕ ∈ H

1
2 and if V ≥ 0, or

V is not positive but ‖ϕ‖L2 is sufficiently small, then (4) has a unique solution

u ∈ C([0,∞); H
1
2 ) ∩ Lq

loc(H
1
2−σ
r ), where q = 4n

(n−1)α , r = 2n
n−α and σ = (n+1)α

4n for
some α < 2n

n+1 but arbitrarily close to 2n
n+1 .

Proof. For the proof we have only to consider the boundedness of nonlinear term
F (u). It can be easily seen by (11) and (15) that

‖F (u)‖
L1

T H
1
2
≤ ‖(V1 ∗ |u|2)u‖

L1
T H

1
2

+ ‖(V2 ∗ |u|2)u‖
L1

T H
1
2

. T‖u‖3
L∞T H

1
2

+ T 1−θ2‖u‖3−θ2

L∞T H
1
2
‖u‖θ2

Lq
T H

1
2−σ

r

,

which enables us to conclude the local existence by contraction argument and the
global one by time-continuity argument. ¤

4. Case 2 < γ1, γ2 < n

In this case, the small data scattering is considered as in [1].

Theorem 4. Assume that V1 and V2 satisfy the condition (2). Let 2 < γ1, γ2 < n,
n ≥ 3 and s > s0 ≡ maxi=1,2 si, where si = γi

2 − n−2
2n . Then if ϕ ∈ Hs with ‖ϕ‖Hs0

sufficiently small, (4) has a unique solution u ∈ (C ∩ L∞)(Hs) ∩ L2(Hs−n+2
2n

2n
n−2

).

Moreover there is ϕ+ ∈ Hs such that

‖u(t)− U(t)ϕ+‖Hs → 0 as t →∞.

Proof. We will use the Strichartz estimate (7) with θ = 1 and endpoint admissible
pair (q, r, σ) =

(
2, 2n

n−2 , n+2
2n

)
.
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To proceed the same strategy as proofs of above theorems, let us define a com-
plete metric space (Y s

R,ρ, d) with metric d by

Y s
R,ρ =

{
v ∈ L∞(Hs) ∩ L2(Hs−σ

r ) : ‖v‖L∞Hs∩L2Hs−σ
r

≤ R,

‖v‖
L∞Hs0∩L2H

s0−σ
r

≤ ρ
}

,

d(u, v) = ‖u− v‖L∞Hs∩L2Hs−σ
r

,

Then from the estimate (16) with s instead of 1
2 , we have

‖N(u)‖L∞Hs∩L2Hs−σ
r

≤ C‖ϕ‖Hs +
∑

i=1,2

‖u‖
L2L

2n
n−(γi+ε)

‖u‖
L2L

2n
n−(γi−ε)

‖u‖L∞Hs .

If we choose ε > 0 so small that

ε < min
i=1,2

(
n− γi, γi − 2, 2s +

n− 2
n

− γi

)
,

then we have
2n

n− 2
≤ 2n

n− (γi − ε)
<

2n

n− 2− 2(si − σ)
<

2n

n− (γi + ε)
≤ 2n

n− 2− 2(s− σ)

and hence by Sobolev embedding

‖N(u)‖L∞Hs∩L2Hs−σ
r

≤ C‖ϕ‖Hs + ‖u‖
L2H

s0−σ
r

‖u‖L2Hs−σ
r

‖u‖L∞Hs .

Similarly, we also have

‖N(u)‖
L∞Hs0∩L2H

s0−σ
r

≤ C‖ϕ‖Hs0 + C‖u‖
L2H

s0−σ
r

‖u‖L2Hs−σ
r

‖u‖L∞Hs0

≤ C‖ϕ‖Hs0 + Cρ2R.

Hence if for any given ϕ we choose ρ satisfying that C‖ϕ‖Hs0 ≤ ρ
2 and Cρ2R ≤ ρ

2 ,
then

‖N(u)‖
L∞Hs0∩L2H

s0−σ
r

≤ ρ

and hence for some R and smaller ρ such that C‖ϕ‖Hs ≤ R
2 and CρR2 ≤ R

2 , we
have

‖N(u)‖L∞Hs∩L2Hs−σ
r

≤ R

2
+ CρR2 ≤ R.

This implies that N maps Y s
R,ρ to itself. Similarly, from (18)–(20), one can show

that d(N(u), N(v)) ≤ 1
2d(u, v). This proves the existence part.

To prove the scattering, let us define a function ϕ+ by

ϕ+ = ϕ− i

∫ ∞

0

U(−t′)F (u)(t′) dt′.

Then since u ∈ Y s
ρ , we have ϕ+ ∈ Hs, and therefore

‖u(t)− U(t)ϕ+‖Hs .
∫ ∞

t

‖F (u)‖Hs dt′

. ‖u‖L∞Hs

∫ ∞

t

‖u‖2
Hs−σ

r
dt′ → 0 as t →∞.

¤
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Remark 2. In case that γi > 2, more generally, we may assume that the potentials
V1 and V2 are time dependent. If they are uniformly bounded with respect to the time
variable, every estimate concerning potentials works very well. For example, we can
take V1(x, t) = a(t)Ṽ1(x) and V2(x, t) = b(t)Ṽ2(x) for some functions a, b ∈ L∞(R)
and Ṽi with |Ṽi(x)| . |x|−γi .

5. Case 0 < γ1 ≤ 2 < γ2 < n

In this section, we consider the potentials V1 and V2 with 0 < γ1 ≤ 2 < γ2 < n
such that

|V1(x)| . χ{|x|≤1}|x|−γ1 , |V2(x)| . χ{|x|>1}|x|−γ2

Then V ∈ L
n
2 if 0 < γ1 < 2, γ2 > 2, and also V ∈ L

n−1
2 if γ1 = 2, γ2 > 2n

n−1 . Thus
we have

‖V ∗ |u|‖L∞ . ‖V ‖
L

n
2
‖u‖2

L
2n

n−2
for 0 < γ1 < 2, γ2 > 2, n ≥ 3,

‖V ∗ |u|‖L∞ . ‖V ‖
L

n−1
2
‖u‖2

L
2(n−1)

n−3
for γ1 = 2, γ2 >

2n

n− 1
, n ≥ 4.

(21)

With this potential estimate we show the following theorem.

Theorem 5. (1) Let 0 < γ1 < 2 < γ2 < n and n ≥ 3. Then if s ≥ n+2
2n , then there

exists ρ > 0 such that for any ϕ ∈ Hs with ‖ϕ‖Hs ≤ ρ, (4) has a unique solution

u ∈ (C ∩ L∞)(Hs) ∩ L2(Hs−n+2
2n

2n
n−2

).

(2) Let γ1 = 2, γ2 > 2n
n−1 and n ≥ 4. Then if s ≥ n+1

2n , then there exists ρ > 0 such
that for any ϕ ∈ Hs with ‖ϕ‖Hs ≤ ρ, (4) has a unique solution u ∈ (C∩L∞)(Hs)∩
L2(Hs−n+1

2n
2(n−1)

n−3

).

Moreover there is ϕ+ ∈ Hs such that

‖u(t)− U(t)ϕ+‖Hs → 0 as t →∞,

where u is the solution constructed as above.

Proof. For the simplicity of proof, we consider only the estimate of nonlinear term
F (u). The remaining parts follow readily from the same argument as in the proof
of Theorem 4.

As for the first part (1), we use the endpoint Strichartz estimate with Schrödinger
admissible pair (q, r, σ) = (2, 2n

n−2 , n+2
2n ) and have

‖F (u)‖L1Hs . ‖V ∗ |u|2‖L1L∞‖u‖L∞Hs + ‖V ∗ |u|2‖L2Hs
n
‖u‖

L2L
2n

n−2
.

Using (21), Young’s convolution inequality (1 + 1
n = 2

n + n−2
2n + 1

2 ) for the term
‖V ∗ |u|2‖L2Hs

n
, we have

‖F (u)‖L1Hs . ‖u‖2
L2L

2n
n−2

‖u‖L∞Hs .

The condition s ≥ n+2
2n is necessary for the embedding H

s−n+2
2n

2n
n−2

↪→ L
2n

n−2 .
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For the second part (2), we use the endpoint Strichartz estimate with wave
admissible pair (q, r, σ) = (2, 2(n−1)

n−3 , n+1
2n ) and have

‖F (u)‖L1Hs . ‖V ∗ |u|2‖L1L∞‖u‖L∞Hs + ‖V ∗ |u|2‖L2Hs
n−1

‖u‖
L2L

2(n−1)
n−3

.

If we apply Young’s inequality as above with (1 + 1
n−1 = 2

n−1 + n−3
2(n−1) + 1

2 ), then
we have that

‖F (u)‖L1Hs . ‖u‖2
L2L

2(n−1)
n−3

‖u‖L∞Hs .

For the embedding we need s ≥ n+1
2n . This completes the proof of the theorem. ¤
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