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Abstract. Runge gave the ring of genus three Siegel modular forms as a quotient ring,
R3/〈J(3)〉. R3 is the genus three ring of code polynomials and J(3) is the difference of

the weight enumerators for the e8 ⊕ e8 and d+
16 codes. Freitag and Oura gave a degree 24

relation, R
(4)
0 , of the corresponding ideal in genus four; R

(4)
0 is also a linear combination of

weight enumerators. We take another step toward the ring of Siegel modular forms in genus
four. We explain new techniques for computing with Siegel modular forms and actually

compute six new relations, classifying all relations through degree 32. We show that the local
codimension of any irreducible component defined by these known relations is at least 3 and
that the true ideal of relations in genus four is not a complete intersection. Also, we explain
how to generate an infinite set of relations by symmetrizing first order theta identities and

give one example in degree 32. We give the generating function of R5 and use it to reprove
results of Nebe [25] and Salvati Manni [37].

§1. Introduction.

There is an important ring homomorphism, Th2 : Rg → Mg, from code polynomials
to Siegel modular forms of genus g. The ring of code polynomials is defined as the Hg-
invariant subring of C[Fa : a ∈ Fg

2] where the finite group Hg = 〈Tg, {DS}S〉 ⊆ GL(2g, C)
is defined by (Tg)ab = ( 1+i

2 )g (−1)a·b and DS = diag(iS[a]) for integral symmetric g × g
matrices S. The ring of Siegel modular forms is defined as follows: Let Hg denote the
Siegel upper half space of genus g. For σ =

(
A
C

B
D

)
and a function f : Hg → C, we write

(f |kσ)(Ω) = det(CΩ + D)−kf((AΩ + B)(CΩ + D)−1).
We then have a right action of Spg(R) on such functions. Let Γg = Spg(Z) be the modular
group of genus g and for any subgroup Γ of finite index in Γg let Mk(Γ) be the complex
vector space of Siegel modular forms of weight k with respect to Γ. These are the holo-
morphic f : Hg → C satisfying f |kσ = f for all σ ∈ Γ and for which f |kσ is bounded
in domains of type {Ω ∈ Hg : Im(Ω) ≥ Y0} for all σ ∈ Γg and any Y0 > 0. We denote
by M(Γ) = ⊕Mk(Γ) the graded ring of Siegel modular forms for Γ. Let S(Γ) = ⊕Sk(Γ)
be the ideal of cusp forms, defined by Sk(Γ) = {f ∈ Mk(Γ) : ∀σ ∈ Γg, Φ(f |kσ) = 0}
where Φ is the standard Siegel operator [14]. In the case Γ = Γg we write Mg, M

k
g , Sg, S

k
g

instead of M(Γg), Mk(Γg), S(Γg), Sk(Γg), respectively. The map Th2 is defined by sending
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the variables Fa to the second order theta consants θ2[a]. In genus three, B. Runge [34]
showed that the kernel of Th2 was generated by a degree 16 polynomial J (3) related to the
Schottky form. Thus B. Runge represented the complicated ring M3 as a quotient ring,
R3/〈J (3)〉.

E. Freitag and M. Oura [13] took a first step toward a similar goal in genus four by
computing R

(4)
0 , a polynomial relation of degree 24 among the second order theta constants.

They were able to do this because M. Oura [26] had computed the generating function
for R4, because the dimension of M12

4 was known and because these Siegel forms were
determined by their Fourier coefficients on root lattices.

In this article, we compute six additional relations, one of degree 28 and five of degree 32.
These relations, along with R

(4)
0 , linearly span all relations through degree 32. Let p4 be the

kernel of Th2 in genus four. It is natural to wonder how far our relations go toward defining
the 10 dimensional variety Z(p4) inside the 15 dimensional projective space P15(C). We
show that any irreducible component of the algebraic set defined by our relations that
contains Z(p4) has dimension at most 12. These new relations also show that p4 is not a
complete intersection.

The final section illustrates how to create many relations by using the known identities
among the first order theta constants. We give one example of this in degree 32 and verify
that it is a linear combination of our previous relations.

We also report progress on related topics. We give the generating function for R5.
Using this generating function we find all linear relations, in every genus, among the
weight enumerators of the 9 Type II binary codes of length 24. This result may also be
found in the forthcoming article [25] by G. Nebe where she also classifies length 32 by the
elegant technique of using the neighbor-graph to define formal Hecke operators on code
polynomials. Here we show that there is a unique genus six cusp code polynomial of degree
24 and that it defines a Siegel modular cusp form in S12

6 ; this Siegel modular cusp form
is the coding theory analogue of the Siegel modular cusp form constructed from Niemeier
lattices in [1]. This form has interesting Fourier coefficients and we give some in Table 9.
We also use the generating function of R5 to help reprove a result of R. Salvati-Manni [37]
that the map Th2 is not surjective for g ≥ 5. The surjectivity of Th2 remains open only
in g = 4 and perhaps this adds more interest to computations in this genus.

Although this article is a natural continuation of [13], entirely different computational
techniques are required because the relevant Siegel modular cusp forms are not determined
by their Fourier coefficients on root lattices. The difficulty in computing the Fourier
coefficients of images of Th2 lies in the multiplication of multivariable power series. Instead
of computing Fourier coefficients directly, we use the Restriction technique [30][32] to
specialize Siegel modular cusp forms to elliptic modular cusp forms with one variable
power series. Let L be an integral rank g lattice and L∗ the dual lattice of L. We
denote by ` = exp(L∗/L) the exponent of the abelian group L∗/L. If M ∈ GLg(R) is
a basis for L = ZgM then s = MM ′ is a Gram matrix for L. A change of basis UM
changes s to UsU ′ for some U ∈ GLg(Z). Let f be an element of Mk

g . We note that
for any τ ∈ H1 that sτ ∈ Hg and that f(sτ) is independent of the choice of basis M
because f(UsU ′τ) = det(U)kf(sτ) = f(sτ) when k is even. We define φ∗

Lf : H1 → C by
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(φ∗
Lf) (τ) = f(sτ). We use the following Theorem from [31].

Theorem 1.1. Let L be an integral rank g lattice with ` = exp(L∗/L). The map φ∗
L :

Mg → M1 (Γ0(`)) is a graded ring homomorphism that multiplies weights by g and takes
cusp forms to cusp forms.

The homomorphism φ∗
L has a transparent effect on Fourier expansions. We write

〈Ω, T 〉 = tr(ΩT ). If f(Ω) =
∑

T a(T )e (〈Ω, T 〉) then for q = e2πiτ we have

(φ∗
Lf) (τ) =

∑

T

a(T )e (〈sτ, T 〉) =
∞∑

j=0

qj


 ∑

T :〈s,T 〉=j

a(T )


 .

These one variable power series are more easily handled. The general strategy is to replace
the computation of Fourier coefficients of f by the specializations φ∗

Lf whenever possible.
The computations in this paper were done using C++, Fermat [11], GAP [15], Magma

[20], and Mathematica.

§2. Notation and Context

In this section we fix our notation and place our work in a broader context. For w ∈ C
write e(w) = e2πiw. For Ω ∈ Hg and column vectors z ∈ Cg, a, b ∈ Rg, we define the theta
function by

θ
[

a
b

]
(z, Ω) =

∑

m∈Zg

e

(
1
2
(m + a)′Ω(m + a) + (m + a)′(z + b)

)
,

where X ′ denotes the transpose of X. The r-th order theta function is defined by
θr

[
a
b

]
(z, Ω) = θ

[
a/r
rb

]
(rz, rΩ) and under this terminology the original definition becomes a

first order theta function. The function θr[a] defined by θr[a](Ω) = θr

[
a
0

]
(0,Ω) is called

an r-th order theta constant. We denote by ~θr = [θr[a]]a∈Zg/rZg the vector of r-th order
theta constants.

For every positive integer r, we denote by Γg(r, 2r) the subgroup of Γg of elements σ
satisfying

σ =
(

A
C

B
D

)
≡ 12g mod r, (B)0 ≡ (C)0 ≡ 0 mod 2r,

where (X)0 means to take the vector determined by the diagonal coefficients of a square
matrix X. If we drop the second condition, we get the principal congruence subgroup
Γg(r) of level r. We define rg variables Fa for a ∈ Zg/rZg. Let C[Fa : a ∈ Zg/rZg] be the
polynomial ring in these variables and C[Fa : a ∈ Zg/rZg](2) the subring of even degree.
For even r, there is a map

Thr : C[Fa : a ∈ Zg/rZg](2) → M(Γg(r, 2r))
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induced by sending F to ~θr and the ring M(Γg(r, 2r)) is the integral closure of Im Thr

inside its quotient field when r is divisible by 4. This theorem is called the ‘fundamental
lemma’ of Igusa. Runge proved the same conclusion in the case r = 2 for the map

Th2 : C[Fa : a ∈ Fg
2]

(2) → M(Γ∗
g(2, 4))

where Γ∗
g(2, 4) is a subgroup of Γg(2, 4) of index two [33]. Similar results hold for larger

subgroups by the process of taking invariant subrings.
We know that the group Γg is generated by the elements J =

(
0
−I

I
0

)
and t(S) =

(
I
0

S
I

)

for integral symmetric S. For these elements, we have

~θ2| 1
2
t(S) = DS

~θ2 and ~θ2| 1
2
J = ±Tg

~θ2.

The ±1 comes from the choice of square root. The group Hg = 〈Tg, {DS}S〉 ⊆ GL(2g, C) is
finite and the representation φ : Γg → Hg/± 1 defined by ~θ2|σ = ±φ(σ)~θ2 defines Γ∗

g(2, 4)
as its kernel. We see that an Hg-invariant polynomial goes to a level one Siegel form under
the map Th2. Let Rg be the Hg-invariant subring of C[Fa : a ∈ Fg

2]
(2) and Rm

g the vector
space of Hg-invariant homogeneous polynomials of degree m. Let the exact sequence

0 → pg → Rg
Th2→ Mg

define a prime ideal pg of height 2g −
(
g+1
2

)
− 1. For any ideal I ⊆ C[Fa : a ∈ Fg

2] let
Z(I) = {[F ] ∈ P2g−1 : ∀P ∈ I, P (F ) = 0}. The Zariski closure of {~θ2(Ω) : Ω ∈ Hg} in
P2g−1 is Z(pg).

Examples of Siegel modular forms are given by the Siegel theta series ϑ
(g)
Λ : Hg → C of

a rank n lattice Λ ⊆ Rn:

ϑ
(g)
Λ (Ω) =

∑

λ∈Λg

e(
1
2

tr (λΩλ′)).

We will write ϑΛ when the dependence on g is clear. The function ϑΛ depends only upon
the isometry class of the lattice. If Λ is even unimodular then we have ϑΛ ∈ M

n/2
g .

Useful properties are ϑΛ1⊕Λ2 = ϑΛ1ϑΛ2 and Φϑ
(g)
Λ = ϑ

(g−1)
Λ . Examples of Hg-invariant

polynomials are given by the weight enumerators W
(g)
C ∈ Rm

g of a Type II code C ⊆ Fm
2

of length m:

W
(g)
C (F ) =

∑

x∈Cg

m∏

i=1

Frowi(x),

in which each element of C is expressed as a column vector and rowi(x) denotes the i-th
row vector of x. A Type II code means a binary self-dual doubly-even code. Again, we
write WC unless the dependence on g is noteworthy. The weight enumerator has properties
analogous to those of the theta series: WC1⊕C2 = WC1WC2 and also Φ̃W

(g)
C = W

(g−1)
C for

Φ̃ : Rg → Rg−1 defined by

Φ̃(Fa) =

{
Fb, if ∃b ∈ Fg−1

2 : a = b0,

0, if ∃b ∈ Fg−1
2 : a = b1.
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It is known that Th2 WC = ϑΛ(C) for the lattice Λ(C) = 1√
2
{x ∈ Zm : x mod 2 ∈ C}, see

[6]. In fact, we have the following commutative diagram:

R2k
g

Th2−→ Mk
g

Φ̃ ↓ ↓ Φ

R2k
g−1

Th2−→ Mk
g−1 .

For F = Z, Q or R we let Vg(F) denote the g-by-g symmetric matrices with coefficients
in F and let Pg(F) ⊆ Vg(F) denote the positive definite ones. Sometimes we use the same
notation for an integral lattice in Rg and one of its Gram matrices in Pg(Z).

We now place our work in a broader context. There are at least four reasons to study
polynomial relations among the second order theta constants. These constants occur in the
theory of Prym varieties and relations among them have a natural place in the Schottky-
Jung theory where the search for such relations originated. Second, relations are elements
of the kernel of the map

Th2 : Rg → Mg.

Third, when these relations can be lifted from genus g to genus g+1 they provide examples
of Siegel modular cusp forms in genus g + 1. Finally, they are test cases to address
Mumford’s question [23, pp. 220-221]: are all relations among theta constants consequences
of the Riemann theta relation and its generalizations?

We briefly summarize the previous results in these areas. The Schottky-Jung identities
take a relation and produce a modular form of one higher genus that vanishes on the
Jacobian locus. This form, however, is not necessarily automorphic with respect to the full
modular group. There are no relations among the second order theta constants in genera
one and two. In his 1972 paper, Prym Varieties I, D. Mumford commented that simple
relations among the second order theta constants do not seem to be known. Based on the
existence of the Schottky form in S8

4 he pointed out that the essentially unique relation in
g = 3 appears to be of degree 16. The traditional theory circumnavigated these relations
by reformulating the Schottky-Jung identities in terms of first order theta constants and
applying them to the known relations among the first order theta constants. It is coding
theory that gave the first direct method for displaying relations among the second order
theta constants.

W. Duke [6] and B. Runge [33] both noticed that

J (g) = W
(g)
e8⊕e8

− W
(g)

d+
16

∈ R16
g

is zero in g = 2 but nonzero in g = 3. Witt’s conjecture, as proved by Igusa and Kneser,
tells us that Th2 J (3) = 0 so that J (3) is the degree 16 relation alluded to by D. Mumford.
B. Runge was the first to systematically investigate the process of taking invariant subrings
for higher genus and showed that J (3) is essentially the only relation in g = 3 by proving
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that R3/〈J (3)〉 ∼= M3. In g = 4 the only relation in degree 24, R
(4)
0 , was found by E.

Freitag and M. Oura, who showed

R
(g)
0 = 3W

(g)
C1

+ 20W
(g)
C2

− 75W
(g)
C3

+ 96W (g)
C4

− 55W
(g)
C6

+ 12W
(g)
C7

− W
(g)
C9

.

Here, the Ci are the 9 Type II codes of length 24 as indexed in [13], see our Table 1. From
Φ̃W

(g)
C = W

(g−1)
C we see that Th2 J (4) is a cusp form; in fact, by a result of Igusa, it is the

Schottky form J8 ∈ S8
4 [17] up to a constant. In a similar vein, E. Freitag and M. Oura

showed that Th2 R
(5)
0 is a nontrivial cusp form in S12

5 . Modular forms of higher genus
are large objects from a computational point of view. Some artifice is always needed to
identify the cusp forms and this technique of lifting relations is a good one.

Table 1.
Type II codes of length 24 (k = 12) and their root systems.

C1 C2 C3 C4 C5 C6 C7 C8 C9

d2
12 d10e

2
7 d3

8 d4
6 d24 d6

4 a24
1 d16e8 e3

8

Finally, B. Runge gave a construction of J (3) that is independent of coding theory, com-
pare [12]. He constructed J (3) from a quartic relation on the first order theta constants
that is indeed a consequence of the classical Riemann theta relations. The direct verifi-
cation of the H3-invariance of J (3) constructed in this way is a computation not so very
different from one given by Schottky in 1877, showing that some relations on the second
order theta constants have always been implicit in the Schottky-Jung literature [38, pp.
345-348]. We do not address the Schottky-Jung theory here but refer the reader to the
recent treatment by B. Runge [36] and note that five new Schottky relations of weight 16
and level Γ(2) could be generated from the relations we give here.

We now place the new contributions of this article in this context. E. Freitag and M.
Oura knew the generating function for R4 and the dimension of S12

4 . Subsequently, C.
Poor and D. Yuen computed dimMk

4 for k = 10, 14, 16 and gave bases [32]. Possessing
bases for both R2k

g and Mk
g allows the computation of all the polynomial relations among

the second order theta constants of degree 2k.
Table 2.

k 0 2 4 6 8 10 12 14 16 18 20

dimR2k
4 1 0 1 1 2 3 7 7 19 27 52

dimMk
4 1 0 1 1 2 3 6 6 14 ? ?

In g = 4 we give a basis for all relations of degree 32. In Table 3 this basis is denoted
by R

(4)
1 , . . . , R

(4)
5 , and is expressed as linear combinations of a chosen basis of 19 weight

enumerators. We use the numbering scheme of the 85 Type II codes of length 32 from [3],
[4]; this particular choice of a basis of 19 weight enumerators was arbitrary.
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Table 3.
Relations in g = 4 and k = 16

Coefficients of Relations

Basis Root system R
(4)
1 R

(4)
2 R

(4)
3 R

(4)
4 R

(4)
5

C1 d32 0 −5 −63 −944 −64

C2 d24e8 −3 110 990 11597 −2041

C3 d20d12 0 −616 −2016 −22624 15400

C4 d18e
2
7 0 880 −960 −6080 −880

C5 d2
16 0 121 957 1252 14559

C6 d16e
2
8 153 −121 −2610 3269 42186

C7 d16d
2
8 0 −385 2520 23660 −38465

C10 d2
12e8 −420 0 2520 −10500 50540

C11 d2
12d8 0 0 0 0 −117600

C16 d3
10a

2
1 0 0 0 0 −225792

C18 d10e8e
2
7 640 0 1280 −4480 3200

C23 d10a
22
1 0 16 −576 −5696 −26128

C24 e4
8 −83 0 498 −1931 −63675

C25 d3
8e8 −315 0 −1890 7245 −21315

C27 d6
4e8 28 0 280 −1092 16716

C29 d4
8 0 0 −1890 22260 −47985

C44 d4e
4
7 0 0 0 0 409600

C67 d8
4 0 0 960 −37440 −29760

C82 a32
1 0 0 0 21504 21504

We also give a generator R1 for the one dimensional space of relations in degree 28.
Since k ≡ 2 mod 4 in this case, we do no better than to store R1 as a large polynomial
[40]. We prove that the map

Th2 : R2k
4 → Mk

4

is onto for k ≤ 16, k ≡ 0 mod 2, and show that R
(4)
0 is the H4-invariant relation of lowest

degree in g = 4. Freitag and Oura’s result may be viewed as placing the 10 dimensional
variety Z(p4) inside the 14 dimensional hypersurface Z(R(4)

0 ); in these terms our new
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relations of degree 32 cut the dimension down to 12.

Theorem 4.2. Any irreducible component of the algebraic set Z(R(4)
1 , . . . , R

(4)
5 ) that con-

tains Z(p4) has dimension at most 12.

The hope, of course, is that someday generators of p4 will be known and that M4 can
be realized as R4/p4. This paper is another step toward that distant goal. It will not
be easy to compute sufficently many relations nor to prove that the ideal they generate
is prime nor that the quotient ring is integrally closed in its quotient field, if in fact it is.
These tasks are all the more difficult because p4 is not a complete intersection, a fact that
we can prove from the relations we have already found.

We also use relations to construct cusp forms. We show that Th2 Span(R(5)
1 , . . . , R

(5)
5 ) ⊆

S16
5 is 5 dimensional. This subspace depends upon which weight enumerators are chosen

for a basis but illustrates the technique of lifting relations. Finally, we construct a H4-
invariant relation of degree 32 among the second order theta constants by beginning with
first order quartic theta identities. Thus, at least one of the relations of degree 32 in p4 is
a consequence of Riemann’s theta relation.

§3. Theta relations of degree 32 in genus 4.

In this section we compute the kernel of the map Th2 : R32
4 → M16

4 . It is known [35]
that R2k

g is spanned by weight enumerators when k is divisible by 4. There are 85 classes of
Type II codes of length 32 and we follow the indexing of the Catalogue of Lattices, [3], [4].
Since dimR32

4 = 19 there exists a basis of 19 linearly independent weight enumerators, see
Table 3. The computation of weight enumerators is eased by the following considerations:
not all monomials may occur in a weight enumerator, a supported monomial must be
invariant under the subgroup 〈DS〉 to occur and such monomials are called admissible.
The condition on the multi-index I for the admissibility of F I is:

∀S ∈ Vn(Z),
∑

a∈Fg
2

IaS[a] ≡ 0 mod 4.

Many admissible monomials necessarily have the same coefficient in a weight enumerator.
The permutation subgroup of Hg is Hg ∩ S2g = AGL(g) and admissible monomials are
broken down into AGL(g)-orbits. A useful alternative description of AGL(g) is as {σ ∈
S2g : ∃U ∈ GLg(Z), b ∈ Fg

2 : σ(Fa) = FaU+b}.
In order to specify WC we need only give the coefficient for each AGL(g)-orbit of

admissible monomials. For g = 4, k = 16, there are 51 463 749 admissible monomials and
1083 AGL(4)-classes of admissible monomials. The coefficients for each of the 85 weight
enumerators on each class of admissible monomials may be viewed at [27]. There one will
also find the 66 nonbasis weight enumerators expressed in terms of the 19 chosen basis
elements. M16

4 satisfies the exact sequence

0 → S16
4 → M16

4
Φ→ M16

3 → 0
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and since dim M16
3 = 7 [39] we see that dim M16

4 = 14 follows from dimS16
4 = 7, a result

proved in [32]. Cusp forms in S16
4 are not determined solely by their Fourier coefficients on

root lattices, as is seen by the example J2
8 6= 0, and so linear relations among theta series

of lattices may not be deduced soley from the root systems of the lattices. A determining
set of Fourier coefficients T is given by 2T = D4, A4, A3A1, A2

2, A2A
2
1, A4

1 and 2D4. These
results from [32] were proven by the technique of restriction to modular curves.

To find the kernel of Th2 on R32
4 we write

Th2

(
nineteen∑

C

αCWC

)
=

nineteen∑

C

αCϑΛ(C).

We cannot hope to store each ϑΛ(C) as large pieces of power series in ten variables and so
some specialization technique is required. We can compute initial pieces of

∑19
C aCφ∗

LϑΛ(C)

however, because φ∗
LϑΛ(C) is a one variable q-expansion.

Let πN : MK
1 (Γ0(`)) → CN be the truncation of the Fourier series to O(qN ). We then

have maps

Mk
g

φ∗
L→ Mgk

1 (Γ0(`))
πN→ CN .

We will combine these for L = D4, A4 and consider:

Mk
4

φ∗
D4

⊕φ∗
A4−→ M4k

1 (Γ0(2)) ⊕ M4k
1 (Γ0(5))

πN1⊕πN2−→ CN1+N2 .

Calling the composition above β, the next Lemma will apply to the sequence

R32
4

Th2→ M16
4

β→ CN1+N2 .

Lemma 3.1. Let A
α→ B

β→ C be linear maps of finite dimensional vector spaces. If
dimB = dim(β ◦α)(A) then β injects, α surjects and the kernel of α is the kernel of β ◦α.

Proof. From the sequence A
α→ B

β→ C we have dim(β ◦ α)(A) ≤ dim β(B) ≤ dim B.
From the hypothesis dimB = dim(β ◦ α)(A) we have dim(β ◦ α)(A) = dimβ(B) = dim B.
Finite dimensionality implies that β injects and hence that ker(β ◦ α) = ker(α). Finite
dimensionality also implies that (β ◦ α)(A) = β(B) so that we have α(A) = B. ¤

The following theorem is analogous to Proposition 1.1 and Theorem 1.3 from [13] .

Theorem 3.2. The 19 weight enumerators Wi given in Table 3 are a basis of R32
4 . The

kernel of Th2 on R32
4 has dimension 5 and a basis is given in Table 3.

Proof. Let β = (πN ⊕ πN )
(
φ∗

D4
⊕ φ∗

A4

)
. By the Lemma, if we can find an N for which

dim(β ◦Th2)
(
R32

4

)
= dimM16

4 = 14, we will have proven that β injects, Th2 surjects and
ker(Th2) = ker(β ◦ Th2). We ran our programs with N = 10. Each β (Th2(Wi)) is a pair
of q-polynomials of degree at most 9 and we observed that dim(β ◦ Th2)

(
R32

4

)
= 14. By
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the Lemma β injects and we may calculate the linear relations among the Th2 W
(4)
i by

finding the linear relations among the β Th2 W
(4)
i . The computations of

(πNφ∗
L Th2 Wi) (τ) = (πNφ∗

LWi(θ2[a])) (τ) = πNWi (θ2[a](sτ)) = πNWi (πNθ2[a](sτ))

were performed by specializing each second order theta constant θ2[a](Ω) to πNθ2[a](sτ),
computing each of the 51 million specialized admissible monomials, and evaluating the
specialized weight enumerator πNWi (πNθ2[a](sτ)) as a linear combination of these spe-
cialized admissible monomials. Table 4 gives the values of β Th2 W

(4)
i and the coefficients

for a basis of linear dependence relations may be computed to be as in Table 3. In order
to show that the chosen 19 weight enumerators are linearly independent it now suffices to
show that the relations R

(4)
1 , . . . , R

(4)
5 are linearly independent. Table 5 accomplishes this

by giving the coefficients for the R
(4)
i on five admissible monomials as a rank 5 matrix. ¤
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Table 4.

C π10φ
∗
D4

Th2 W
(4)
C

C1

1 + 23808q2 + 3809280q3 + 790712064q4 + 101677301760q5 + 11406195194880q6 +
1030558541365248q7 + 79617119299305216q8 + 5257235129594216448q9

C2

1 + 16128q2 + 1769472q3 + 293011200q4 + 29554900992q5 + 3005136589824q6 +
259509205204992q7 + 21023497963208448q8 + 1528586760809349120q9

C3

1 + 12288q2 + 1044480q3 + 149554944q4 + 13139558400q5 + 1229633863680q6 +
102942760132608q7 + 8653855475187456q8 + 680225510739836928q9

C4

1 + 10368q2 + 755712q3 + 100949760q4 + 8072110080q5 + 724799632896q6 +
59253973438464q7 + 5116063423627008q8 + 422389215603572736q9

C5

1 + 11520q2 + 860160q3 + 116248320q4 + 9904619520q5 + 1005942881280q6 +
87289853460480q7 + 7123155471302400q8 + 534936846962196480q9

C6

1 + 11520q2 + 860160q3 + 121409280q4 + 9739468800q5 + 1037899545600q6 +
88543017123840q7 + 7279369018801920q8 + 541722447773368320q9

C7

1 + 8448q2 + 516096q3 + 63631104q4 + 4616847360q5 + 390827879424q6 +
31170012954624q7 + 2779434833084160q8 + 244380666976075776q9

C10

1 + 9216q2 + 552960q3 + 71550720q4 + 5212717056q5 + 524387856384q6 +
43451333959680q7 + 3680842807459584q8 + 292567115403264000q9

C11

1 + 7680q2 + 380928q3 + 44824320q4 + 3192471552q5 + 301273098240q6 +
24874195034112q7 + 2138196457012992q8 + 177848376370102272q9

C16

1 + 6528q2 + 276480q3 + 31037184q4 + 2092523520q5 + 193214292480q6 +
15723304562688q7 + 1373338788216576q8 + 118521925880659968q9

C18

1 + 8064q2 + 436224q3 + 55736064q4 + 3708297216q5 + 360342759936q6 +
28782893666304q7 + 2523852810600192q8 + 210812170505207808q9

C23

1 + 2688q2 + 92160q3 + 8427264q4 + 335093760q5 + 27014008320q6 +
1756971307008q7 + 195264403259136q8 + 22853207967449088q9

C24

1 + 11520q2 + 860160q3 + 126570240q4 + 9574318080q5 + 1069856209920q6 +
89796180787200q7 + 7462218074423040q8 + 546803376064757760q9

C25

1 + 6912q2 + 344064q3 + 43147008q4 + 2617049088q5 + 233865421824q6 +
17889543880704q7 + 1642833974492928q8 + 149087792867966976q9

C27

1 + 4608q2 + 233472q3 + 27866880q4 + 1199849472q5 + 82356639744q6 +
5294415716352q7 + 602572018007808q8 + 71712860211609600q9

C29

1 + 5376q2 + 172032q3 + 19664640q4 + 1266843648q5 + 116772707328q6 +
9399206952960q7 + 835043893313280q8 + 73032506428293120q9

C44

1 + 6336q2 + 261120q3 + 30083328q4 + 1923084288q5 + 183286071552q6 +
14614907295744q7 + 1297633329245952q8 + 111242267100880896q9

C67

1 + 2304q2 + 24576q3 + 4697856q4 + 248610816q5 + 20125584384q6 +
1549271678976q7 + 148779019337472q8 + 14926421059239936q9

C82

1 + 768q2 + 2191104q4 + 60948480q5 + 6206653440q6 + 459649056768q7 +
45528070684416q8 + 4856441173966848q9
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Table 4 (continued).

C π10φ
∗
A4

Th2 W
(4)
C

C1

1 + 19840q2 + 2380800q3 + 379152960q4 + 42324910080q5 + 3939620169600q6 +
303368206049280q7 + 19850777207081280q8 + 1118726703849308160q9

C2

1 + 13440q2 + 1105920q3 + 147026880q4 + 13154365440q5 + 1091273170560q6 +
79543588700160q7 + 5273655205688640q8 + 318089474385960960q9

C3

1 + 10240q2 + 652800q3 + 78610560q4 + 6076078080q5 + 469744704000q6 +
33042318151680q7 + 2219974040834880q8 + 140915798842306560q9

C4

1 + 8640q2 + 472320q3 + 54056160q4 + 3826621440q5 + 284769424320q6 +
19627937556480q7 + 1333644711750720q8 + 87388365564364800q9

C5

1 + 9600q2 + 537600q3 + 63489600q4 + 4780154880q5 + 384780566400q6 +
27602426880000q7 + 1826055288187200q8 + 114516377854771200q9

C6

1 + 9600q2 + 537600q3 + 63489600q4 + 4769832960q5 + 385167638400q6 +
27546430464000q7 + 1825199342971200q8 + 114380380107571200q9

C7

1 + 7040q2 + 322560q3 + 35077440q4 + 2244280320q5 + 160418190720q6 +
10835316940800q7 + 748588213903680q8 + 50906074555269120q9

C10

1 + 7680q2 + 345600q3 + 39000960q4 + 2632919040q5 + 203691264000q6 +
14139428474880q7 + 950215898744640q8 + 62147328282316800q9

C11

1 + 6400q2 + 238080q3 + 26269440q4 + 1645393920q5 + 124615054080q6 +
8518657536000q7 + 579657496814400q8 + 39024647361146880q9

C16

1 + 5440q2 + 172800q3 + 18771360q4 + 1109038080q5 + 82360123200q6 +
5568463226880q7 + 385014688687680q8 + 26550412870133760q9

C18

1 + 6720q2 + 272640q3 + 30108960q4 + 1901537280q5 + 141847103040q6 +
9637484267520q7 + 657190750420800q8 + 44340877336657920q9

C23

1 + 2240q2 + 57600q3 + 5144160q4 + 180034560q5 + 14470968000q6 +
834416302080q7 + 71960575318080q8 + 5534043961128960q9

C24

1 + 9600q2 + 537600q3 + 63489600q4 + 4759511040q5 + 385554710400q6 +
27490434048000q7 + 1824343397755200q8 + 114244382360371200q9

C25

1 + 5760q2 + 215040q3 + 23083200q4 + 1342771200q5 + 94976991360q6 +
6303360614400q7 + 439799651876160q8 + 30847127104757760q9

C27

1 + 3840q2 + 145920q3 + 13524480q4 + 590469120q5 + 36791036160q6 +
2209341173760q7 + 178980560735040q8 + 13461265132892160q9

C29

1 + 4480q2 + 107520q3 + 12563520q4 + 699310080q5 + 52294396800q6 +
3479643217920q7 + 243009857935680q8 + 17173493256683520q9

C44

1 + 5280q2 + 163200q3 + 17773200q4 + 1033574400q5 + 76674648480q6 +
5149476817920q7 + 357587516393280q8 + 24804993334179840q9

C67

1 + 1920q2 + 15360q3 + 3504960q4 + 150405120q5 + 10960920960q6 +
718905876480q7 + 55014006047040q8 + 4295551658803200q9

C82

1 + 640q2 + 1786560q4 + 38092800q5 + 3980342400q6 + 256196935680q7 +
21531393065280q8 + 1764817337794560q9
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Table 5.
Some coefficients of R

(4)
i on monomials.

monomial R
(4)
1 R

(4)
2 R

(4)
3 R

(4)
4 R

(4)
5

F 12
0010F

12
0011F

4
0111F

4
1101 −8515584 −11708928 −4257792 140507136 −10930816512

F 8
0001F

8
1001F

8
1010F

8
1100 −50577408 −149022720 73801728 2894782464 −84402984960

F 4
0010F

4
0011F

8
0100F

12
0111F

4
1101 −44556288 −217383936 −107433984 −9086128128 21135614976

F 8
0000F

4
0001F

4
0010F

8
0101F

8
1001 −101154816 −1170892800 −665247744 −48748879872 21050910720

F 6
0011F

4
0100F

2
0111F

8
1000F

6
1001F

6
1101 −283594752 −2552901120 −2497517568 −67229374464 −633092866560

Using β = (π11 ⊕ π11 ⊕ π11 ⊕ π11)
(
φ∗

D4
⊕ φ∗

A4
⊕ (φ∗

A3
◦ Φ) ⊕ (φ∗

A2
◦ Φ2)

)
, we ran our

programs again and obtained the same answer. This served as a consistency check in so
far as generic errors will increase the dimension of the image. As a further check we have
computed

32We8R
(4)
0 = R

(4)
1 .

We emphasize that by showing β injects the restriction technique has replaced the usual
technique of computing Fourier coefficients. Whereas a certain set of 14 Fourier coefficients
would have been required to determine an f ∈ M16

4 it turned out that 2 specializations to
order 10 sufficed.

Next we lift our 5 relations to cusp forms in S16
5 and show that these 5 cusp forms are

linearly independent. Let R
(5)
1 , . . . , R

(5)
5 be the linear combinations of the W

(5)
Ci

given by

the coefficients in Table 3. We have Th2 R
(5)
i ∈ S16

5 and we test for linear independence
of the Th2(R

(5)
i ) by computing a few Fourier coefficients. Although this is in general

computationally difficult, note that when R is a root lattice the coefficient a(R; ϑL) is
easier to compute because it depends only on the first shell of L, compare [8], [9] and the
PARI program of Borcherds [1](cf. [19]). For x(5) =

∑
i ciW

(5)
Ci

we have

a(R, Th2(x(5))) =
∑

i

cia(R, ϑ
(5)
Li

).

This is tractible since we know the root systems Li = Λ(Ci). Table 3 gives these root
systems. Table 6 gives the normalized values of a(R, Th2(R

(5)
j )) for j = 1, 2, 3, 4, 5 and

root lattices R.
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Table 6.
The normalized Fourier coefficients of Th2(R

(5)
j ), j = 1, 2, 3, 4, 5.

Root normalizing Th2(R
(5)
j )/f

lattice factor f j = 1 j = 2 j = 3 j = 4 j = 5

D5 123863040 −8 −11 −4 132 −10269

D4A1 1981808640 −24 55 72 7468 −70615

A5 82575360 48 −33 −1404 −47724 86609

A4A1 220200960 18 −1859 −18756 −530642 390869

A3A2 82575360 −1224 −17579 −110916 −2482648 −1732685

A3A
2
1 110100480 −4536 −57937 −1035756 −23203924 −11310215

A2
2A1 3963617280 −198 −3245 −60828 −1303426 −579993

A2A
3
1 3963617280 −1320 −43703 −758460 −16266348 −4930881

A5
1 21139292160 −2376 −90904 −1701441 −35156776 −13893854

Theorem 3.3. Span
(
Th2(R

(5)
j )

)
⊆ S16

5 is 5 dimensional.

Proof. The 9-by-5 matrix in Table 6 has rank 5. ¤

§4. Dimensions of Components

The 5-by-16 Jacobian matrix in the next Lemma appears to have rank exactly 3. This
is another consistency check in that generic errors would give rank 5. Augmenting the
Jacobian with the relation R1 does not seem to increase the rank.

Lemma 4.1. Let H =




4 0 1 1
0 4 0 1
1 0 4 2
1 1 2 6


 . Let j = 1, . . . , 5 and a ∈ F4

2. The following

5-by-16 Jacobian matrix has rank at least 3 for τ in an open dense set of H1:

(
∂R

(4)
j

∂Fa

)

Fa:=θ2[a](Hτ)

.

Proof. Each 3-by-3 minor is a holomorphic function in q = e(τ) and as such either vanishes
identically or is nonzero on an open dense set. Here is the q-expansion of one 3-by-3 minor,
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evaluated by restriction:

∣∣∣∣∣∣∣∣

∂R
(4)
1

∂F0000

∂R
(4)
1

∂F0001

∂R
(4)
1

∂F0010

∂R
(4)
2

∂F0000

∂R
(4)
2

∂F0001

∂R
(4)
2

∂F0010

∂R
(4)
3

∂F0000

∂R
(4)
3

∂F0001

∂R
(4)
3

∂F0010

∣∣∣∣∣∣∣∣
Fa:=θ2[a](Hτ)

= −13 969 614 962 861 087 124 029 561 634 816 000q117 + · · · ¤

Theorem 4.2. Any irreducible component of the algebraic set Z(R(4)
1 , . . . , R

(4)
5 ) that con-

tains Z(p4) has dimension at most 12.

Proof. Let q be an irreducible component of Z(R(4)
1 , . . . , R

(4)
5 ) that contains Z(p4). For

any τ ∈ H1 we have P = [~θ2(Hτ)] ∈ Z(p4) ⊆ q. First of all we have dimq =
minQ∈q dimTQ(q), see [22, pg. 24]. Second, we may pass back and forth between the
definitions of the tangent spaces on q and on an affine piece of q to assert that if I(q)
has generators g1, . . . , g` then dimTQ(q) = 15− rank

(
∂gi

∂Fa

)
1≤i≤`, a∈F4

2

, see [22, pp. 3, 24].

Since R
(4)
1 , . . . , R

(4)
5 ∈ I(q), we may use Lemma 4.1 for generic τ to deduce that

dimq ≤ dim TP (q) ≤ 15 − rank

(
∂R

(4)
j

∂Fa

)

1≤j≤5, a∈F4
2

(P ) ≤ 15 − 3 = 12. ¤

§5. Weights k congruent to 2 modulo 4

A different approach is used for weights congruent to 2 modulo 4. Weight k = 2 is simple
because both R4

g and M2
g are trivial. In order to find a basis of Hg-invariant polynomials

in the other cases we write an element from R2k
g as:

P (c, F ) =
∑

AGL(g)-classes [N ]
of degree 2k admissible monomials

cN

∑

M∈[N ]

M.

This is the most general form of a 〈DS〉-invariant polynomial of degree 2k. In order to
show Hg invariance it suffices to solve for cN such that P (c, F ) = P (c, TgF ). It is not
computationally feasible to expand out P (c, F ) = P (c, TgF ) and to solve for the cN so we
again proceed by specialization. Let f0 ∈ Z2g

be a choice of 2g integers, preferably small
integers like 0 or ±1. If P (c, F ) is Tg-invariant then P (c, f0) = P (c, Tgf0). In the case of
g = 4 and k = 14 when dimR28

4 = 7 there are 394 AGL-classes and a total of 11 005 344
admissible monomials. We continue specializing and wait for the linear equations

(5.1) P (c, fi) = P (c, Tgfi)
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in the variables cN to have rank 394 − 7 = 387. After about 350 integral specializations
the integral coefficients of the cN in (5.1) became uncomfortably large. The size of the
coefficients can be reduced by specializing the Fa to polynomials with integer coefficients
instead but this makes the specializations of admissible monomials harder to compute. A
happy medium was found in specializing to small bivariate polynomials and after using
300 of these the rank was computed to be indeed 387. The c̄N in the null space of these
linear equations are the only possibilities for H4-invariant polynomials in R28

4 . Since the
dimension of R28

4 is known to be 7 this proves that the P (c̄, F ) are H4-invariant. Knowledge
of the dimension of R28

4 saves us from having to directly show that any specific polynomial
is Tg-invariant, a computation that would not have been feasible. For k = 6, 10, 14 the
spaces R2k

4 have dimensions 1, 3 and 7, respectively. Bases for R2k
4 in these weights can

be viewed at [40]. In all three cases the restriction technique of section 3 shows that Th2

is onto. We may minimally use πN ◦ φ∗
D4

with N = 1, 5, 8, for k = 6, 10, 14, respectively,
but we ran N = 11 for purposes of consistency checking. There are no relations in k = 6
or 10 but k = 14 has one relation R1 which may be viewed at [40]. If we normalize the
code polynomial E6 ∈ R12

3 so that Th2 E6 is the Eisenstein series E6 ∈ M6
3 then we have

Φ̃R1 = 1344 E6 J (3).

Theorem 5.2. The map Th2 : R2k
4 → Mk

4 is surjective for k ≤ 16, k ≡ 0 mod 2.

Theorem 5.3. R28
4 has a basis of 7 polynomials and the kernel of Th2 on R28

4 has a basis
of one element, R1. These are as given at [40].

Corollary 5.4. The prime ideal p4 is not generated by 5 elements.

Proof. We have one relation only in degrees 24 and 28 and five relations in degree 32.
Since there is one invariant polynomial in degree 8 and none in degree 4, our assertion
follows. ¤

§6. Weight enumerators of degree 24.

We are now in a position to classify the linear relations, for every g, among the weight
enumerators of the 9 Type II codes of length 24. Compare Nebe [25] for a less compu-
tational proof. This is analogous to the classification of the linear relations among the
theta series of even unimodular lattices begun by Witt, Igusa, Kneser, Erokhin and Nebe-
Venkov. Let V be the Q-vector space spanned by classes of Type II codes of length m.
Let WEg : V → Rm

g be the linear map that sends a code C to its weight enumerator W
(g)
C .

For g = 0 we send each code to 1. Let Vg = ker(WEg), the space of relations among the
weight enumerators in genus g, so that we have a decreasing filtration

V = V−1 ⊇ V0 ⊇ V1 ⊇ · · · ⊇ Vm−1 = 0.

Before proceeding, we explain the notation of Tables 7 and 8. The codes Ci are those
from Table 1, τi is the kissing number of Ci, and coeff(µ,WCi

) is the coefficient of the
monomial µ in the polynomial WCi . The results for g ≤ 4 are due to [13].
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The first result we give here is the generating function of R5.

Theorem 6.1. The generating function of R5 is given by

∞∑

m=0

(dimRm
5 ) tm = 1 + t8 + 2t16 + 2t20 + 8t24 + 8t28 + 34t32 + 60t36

+ 203t40 + 553t44 + 2063t48 + 7359t52 + 30811t56

+ 127416t60 + 541644t64 + 2235677t68 + 8966371t72 + · · ·

=
N

D
.

The complete forms of N and D can be seen at [27].

Since the calculation is carried out by the same way as in [26], we omit the description
of the proof. Once we know that dimR24

5 = 8, it is enough to examine 8 appropriate
monomials to investigate R24

5 and to show that 7F (5) + 99G(5) = 0. To double-check this
result we classified all 457 AGL(5)-orbits of admissible monomials of degree 24 in genus 5.
These computations allow us to give a basis of R24

5 and linear relations among the weight
enumerators of Type II codes of length 24.

Table 7.
Relations among weight enumerators of Type II codes of length 24.

g Vg = ker(WEg) dim R24
g

0
∑9

i=1 αiWCi where
∑

αi = 0. 1

1
∑9

i=1 αiWCi where
∑

αi = 0 and
∑

αiτi = 0. 2

2
∑9

i=1 αiWCi where
∑

αi = 0,
∑

αiτi = 0 and
∑

αiτ
2
i = 0. 3

3

∑9
i=1 αiWCi where

∑
αi = 0,

∑
αiτi = 0,

∑
αiτ

2
i = 0,∑

αiτ
3
i = 0, and

∑
αiβi = 0

where βi = coeff(F 16
000

∏
a∈F3

2
Fa, WCi). 5

4

span of
F = WC5 − 66WC1 + 495WC3 − 880WC4 + 594WC6 − 144WC7 ,
G = WC9+14WC1−70WC3+112WC4−70WC6+16WC7−3WC8 . 7

5 span of 7F + 99G 8

g ≥ 6 0 9

Table 8.
Constants for Table 7.

C1 C2 C3 C4 C5 C6 C7 C8 C9

τi/24 22 18 14 10 46 6 2 30 30

βi/336 0 1 0 0 0 0 0 4 12
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In g = 6, there is a unique cusp form Th2(7F + 99G) ∈ S12
6 obtained at the end

of this process. This cusp form has interesting coefficients, see Table 9. If you mutilpy
by 26 159 874 048, you will get a correct number. For instance the Fourier coefficient of
Th2(7F (6) + 99G(6)) for the A6 lattice is 10 × 261 598 740 48 = 261 598 740 480.

Table 9.
Normalized Fourier Coefficients of Th2(7F (6) + 99G(6))

A6 A5A1 A4A2 A4A
2
1 A2

3 A3A2A1 A3A
3
1 A3

2

10 120 180 1600 160 2880 21120 5760

Table 9(continued).

A2
2A

2
1 A2A

4
1 A6

1 D6 D5A1 D4A2 D4A
2
1 E6

40320 276480 1735680 0 0 0 0 0

We have thus obtained the following Theorems.

Theorem 6.2. The linear combination Th2(7F (6) + 99G(6)) is a non-trivial cusp form of
weight 12 in genus 6.

Theorem 6.3. The weight enumerators of the 9 Type II codes of length 24 are linearly
independent if and only if g ≥ 6. All linear relations among them are given in Tables 7
and 8.

The Fourier coefficients of Th2(7F +99G) vanish on the more complicated root lattices
as indicated by Igusa in [18, pg. 105]. Can the image of Th2 be nicely characterized in
terms of the vanishing of Fourier coefficients?

We conclude this section by reproving a result of Salvati-Manni [37], which states that
Th2 is not surjective if g ≥ 5. We recall that dimM6

5 = 1 from [7]. Since we have
dimR12

5 = 0 by Theorem 6.1, we know that Th2 is not surjective in genus 5. For g ≥ 6,
we know that dimM12

g ≥ 11, see [24], and the fact dimM12
g > 9 implies that Th2 is not

surjective. We have thus shown the assertion.

§7. Construction of a relation from first order theta identities.

As for theta functions, we have so far been mainly concerned with the second order
theta functions. In this section, we shall construct a homogeneous polynomial in the first
order theta constants which vanishes identically as a Siegel modular form in genus 4. The
relation we obtain by converting to second order theta constants will be expressed as a
linear combination of our 5 relations R

(4)
1 , . . . , R

(4)
5 .

The half-integral characteristics of a first order theta function may be identified with
F2g

2 . We define an action of Spg(F2) on F2g
2 to mimick the action of Spg(Z) on the half-

integral characteristics of the first order theta function. In fact we put

ζ 7→
(

A B
C D

)′

ζ +
(

(A′C)0
(B′D)0

)
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for
(

A
C

B
D

)
∈ Spg(F2), ζ ∈ F2g

2 . When trying to bring some order into the maze of theta
identities it is natural to ask whether two sequences of theta characteristics are in the same
Spg(F2)-orbit. Frobenius found a complete set of invariants for this action, [16, pg. 212].

For ζ = [ a
b
], ζ1, ζ2, ζ3 ∈ F2g

2 , we put

e∗(ζ) = (−1)a·b,

e(ζ1, ζ2, ζ3) = e∗(ζ1)e∗(ζ2)e∗(ζ3)e∗(ζ1 + ζ2 + ζ3).

The Theorem of Frobenius can be stated as follows.

Theorem 7.1. Two sequences of characteristics, (ζ1, . . . , ζm) and (ξ1, . . . , ξm), are in the
same Spg(F2)-orbit if and only if sending ζi 7→ ξi preserves

(1) all linear relations with an even number of summands,
(2) all e∗ values and
(3) all e values.

We can restore linearity to the peculiar affine action of Spg(F2) on characteristics F2g
2 in

the following way: In F2g
2 ×F2 let the characteristics ζ ∈ F2g that we have been considering

be identified with (ζ, 1) ∈ Fg
2 × F2. Let the coset (P, 0) ∈ F2g

2 × F2 be identified with F2g
2

by calling P ∈ F2g
2 a period. Then we let Spg(F2) act on periods F2g

2 by P 7→
(

A
C

B
D

)′
P for(

A
C

B
D

)
∈ Spg(F2), P ∈ F2g

2 . If we note that the sum of two characteristics is a period, we
see that the action of Spg(F2) on the P ⊕ ζ ∈ F2g

2 × F2 is linear. The action of Spg(F2) on
periods is characterized by linear dependencies and by the invariant:

e2(P1, P2) = e∗(P1)e∗(P2)e∗(P1 + P2).

A characteristic ζ is called even or odd as e∗(ζ) is +1 or −1. A triple (ζ1, ζ2, ζ3) is called
syzygetic or azygetic as e(ζ1, ζ2, ζ3) is +1 or −1. A sequence of characteristics is called
syzygetic or azygetic if every triple in the sequence is. A set of sets of characteristics is
called syzygetic or azygetic if every sequence extracted by selecting one characteristic from
each set is. Periods are called syzygetic or azygetic as e2(P1, P2) is +1 or −1. Consider a
typical first order theta identity in g = 4 closely studied in [10, pp. 25, 217].
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Let G be the first row in the above identity; G is a syzygetic period group of rank 2. The
first column is an azygetic characteristic 4-sequence (ζ1, ζ2, ζ3, ζ4) with the ζi +G all even.
Thus the identity has the form

4∑

i=1

±
four∏

ζ∈ζi+G

θ[ζ] = 0.
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The Theorem of Frobenius and the transformation law of the theta function show that
there is such an identity for any syzygetic group G of rank 2 and azygetic 4-sequence
(ζ1, ζ2, ζ3, ζ4) with ζi + G all even. Denote an unordered set of this nature as Ξ =

{ζ1 + G, ζ2 + G, ζ3 + G, ζ4 + G}. Following [12] we use quadratic polynomials Q[ a
b
]

so that Th2 Q[ a
b
] = θ[ a

b
]2: we define Q[ a

b
] =

∑
α∈Fg

2
(−1)α·bFαFα+a, modeled after

θ[ a
b
]2 =

∑
α∈Fg

2
(−1)α·bθ2[α]θ2[α + a]. The action of the generators of Hg [33] is:

Q[ a
b
]|Tg = ig−2a·bQ[ b

a
]; Q[ a

b
]|DS = i−a·(Sa+2S0)Q[ a

b + Sa + S0
].

We put ri(Ξ) =
∏four

ζ∈ζi+G Q[ζ]. We define a homogeneous polynomial Norm of degree four
in four variables x1, . . . , x4:

Norm(x1, x2, x3, x4) =
eight∏

(
√

x1 ±
√

x2 ±
√

x3 ±
√

x4)

=
four∑

i

x4
i − 4

twelve∑

i 6=j

xix
3
j + 6

six∑

i<j

x2
i x

2
j + 4

twelve∑

i<j,i 6=k,j 6=k

xixjx
2
k − 40x1x2x3x4

and define Norm(Ξ) = Norm(r1(Ξ), . . . , r4(Ξ)) ∈ Z[Fa : a ∈ F4
2]

32. We write G =

{γ1, γ2, γ3, γ4} and γj = [ sj

tj
] so that we can define µ(G) =

∑4
j=1 sj s′j . To pass between

the groups Hg and Spg(F2) we use the interesting exact sequence [35] (cf. [2])

0 → Ng → Hg
ψ→Spg(F2) → 0.

Here we only need to know that ψ exists and that the following composite is the identity:

Hg/Ng
ψ→Spg(F2) ∼= Γg/Γg(2)

φ→Hg/Ng.

Theorem 7.2. Let g = 4.
(1) There are 5 355 syzygetic period 2-groups G. For each fixed G there are 10 distinct

ζ + G such that ζ ∈ F2g
2 and the ζ + G are all even. For each fixed G there are

15 ayzgetic Ξ = {ζ1 + G, ζ2 + G, ζ3 + G, ζ4 + G} such that the ζi + G are all even.
There are thus 15 · 5 355 = 80 325 distinct Ξ.

(2) We have ri(Ξ)|T4 = ri(Ξ|J) and ri(Ξ)|DS = i−〈S,µ(G)〉 ri(Ξ|t(S)).
(3) We have Norm(Ξ)|σ = Norm(Ξ|ψ(σ)) and {Norm(Ξ)} is a set of 80 325 distinct

polynomials in Z[Fa : a ∈ Fg
2]

32.
(4) Let BigNorm =

∑80 325
Ξ Norm(Ξ). The polynomial BigNorm is nontrivial and H4-

invariant. We have Th2 BigNorm = 0.
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Proof. Write G = (0, p1, p2, p1 + p2) as a list. There are 255 = 28 − 1 nontrivial periods
to choose for p1. Including {0, p1}, half of the periods p make (p1, p) syzygetic so there
are 126 = 27 − 2 choices for p2. The last period is then determined and we divide by 3! to
count sets instead of lists:

255 · 126/3! = 5 355.

It is long known [10, pg. 40] that the set of g characteristics with uniform parity modulo a
syzygetic period group of rank r behaves like a set of g − r characteristics. Thus there are
10 distinct ζ +G such that the ζ +G are all even because there are 10 even characteristics
in g = 2. There are 15 azygetic 4-sets in g = 2 so there are 15 Ξ for any given syzygetic
2-group G. This is, in fact, Theorem 19 in [10, pg. 54].

For even characteristics ζ = [ a
b
] we have

Q[ζ]|T4 = Q[ a
b
]|T4 = i4−2a·bQ[ b

a
] = Q[ b

a
] = Q[ζ|J ].

Looking at each factor, we have ri(Ξ)|T4 = ri(Ξ|J). For generators DS we have

Q[ζ]|DS = Q[ a
b
]|DS = i−a·(Sa+2S0)Q[ a

b + Sa + S0
] = i−a·(Sa+2S0)Q[ζ|t(S)].

Therefore for G = {γ1, γ2, γ3, γ4} and γj = [ sj

tj
] we have

ri(Ξ)|DS =
∏

j

Q[ζi + γj ]|DS =
∏

j

i−(ai+sj)·(S(ai+sj)+2S0)Q[(ζi + γj)|t(S)]

=
(
i−4S[ai]

)(
i−2a′

iS(
P

sj)
)(

i−
P

j S[sj ]
)(

i−2S0·
P

(ai+sj)
) ∏

j

Q[(ζi + γj)|t(S)]

= i−
P

j S[sj ]ri(Ξ|t(S)) = i−〈S,µ(G)〉ri(Ξ|t(S)).

We see that each ri(Ξ) transforms by the same factor independently of i. This factor
i−〈S,µ(G)〉 = ±1 because µ(G) is an even form. As a polynomial of even degree in the
ri, Norm(Ξ) satisfies Norm(Ξ)|DS = Norm(Ξ|t(S)). The H4-symmetrization of Norm(Ξ),∑

σ∈H4
Norm(Ξ)|σ, is a multiple of BigNorm because the stabilizers of Ξ in H4 all have

the same order by the Theorem of Frobenius. This shows that BigNorm is H4-invariant. A
computation using the specialization F = (1, 7,−1, 0, 3, 2,−2, 5, 2, 5, 1, 2,−3, 1, 5, 3) shows
that the Norm(Ξ) are all distinct and that BigNorm is nontrivial.

Finally, we show that Th2 BigNorm = 0. Actually, Th2 Norm(Ξ) = 0 for each Ξ. One
of the 8 factors Th2

(√
r1(Ξ) ±

√
r2(Ξ) ±

√
r3(Ξ) ±

√
r4(Ξ)

)
is an identity

4∑

i=1

±
four∏

ζ∈ζi+G

θ[ζ] = 0. ¤
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The invariant polynomial BigNorm should be a linear combination of R1, . . . , R5 and it is:

573 102 233 555 BigNorm =

151 595 494 160 R
(4)
1

−292 362 643 392 R
(4)
2

+82 765 857 152 R
(4)
3

+5300 722 416 R
(4)
4

+230 972 544R
(4)
5 .

If p(x1, x2, x3, x4) is any homogeneous symmetric polynomial of even degree in four
variables then

∑80 325
Ξ p(r1(Ξ), r2(Ξ), r3(Ξ), r4(Ξ))Norm(Ξ) is a relation in p4. In this way

we can construct many more relations. We tried to derive the Freitag-Oura relation, R
(4)
0 ,

by a variant of this scheme but the symmetrization gave zero.
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