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Abstract

Closed expressions are obtained for sums of products of Kronecker’s
double series of the form

∑(
n

j1,...,jN

)
Bj1(x

′
1, x1; τ) · · ·BjN (x′

N , xN ; τ),
where the summation ranges over all nonnegative integers j1, . . . , jN

with j1 + · · · + jN = n. Corresponding results are derived for func-
tions which are an elliptic analogue of the periodic Euler polynomi-
als. As corollaries, we reproduce the formulas for sums of products of
Bernoulli numbers, Bernoulli polynomials, Euler numbers, and Euler
polynomials, which were given by K. Dilcher.

1 Introduction

The Bernoulli polynomials Bm(x) are defined by means of the following gen-
erating function:

ξexξ

eξ − 1
=

∞∑
n=0

Bn(x)

n!
ξn.

The m-th Bernoulli number Bm is Bm(0). A well-known identity for the
Bernoulli numbers is

n−1∑
j=1

(
2n

2j

)
B2jB2n−2j = −(2n + 1)B2n, (n ≥ 2), (1)

which was found by many authors, including Euler (for references, see, e.g.,
[SD]). This identity was generalized to formulas including sums of products
of Bernoulli numbers of the forms∑ (

2n

2j1, . . . , 2jN

)
B2j1 · · ·B2jN

, (N = 3, 4, 5, 6, 7). (2)
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Here the summation is extended over all positive integers j1, . . . , jN with

j1 + · · · + jN = n, and

(
2n

2j1, . . . , 2jN

)
:=

(2n)!

(2j1)! · · · (2jN)!
. (see [SD] for

N = 3, [San] for N = 5, and [Zha1] for 3 ≤ N ≤ 7.) It should be noted that
(2) can be written in terms of the Riemann zeta function via Euler’s formula

ζ(2m) = (−1)m−1 (2π)2mB2m

2(2m)!
. (3)

In 1996, K. Dilcher [Di] gave formulas for sums of products of Bernoulli
numbers and polynomials which was the kind given in [SD], [San] and [Zha1].
His formulas include (2) for N ≥ 2 where the summation ranges over all
nonnegative integers j1, . . . , jN with j1 + · · ·+ jN = n. He also produced cor-
responding results for sums of products of Euler numbers, Euler polynomials,
and special values of the following zeta functions:

η(s) :=
∞∑

n=1

(−1)n−1

ns
, λ(s) :=

∞∑
n=0

1

(2n + 1)s
.

Recently Dilcher’s result has been generalized by many people: I-C.
Huang and S-Y. Huang [HH] have deduced some generalized formulas for
sums of products of Bernoulli numbers and polynomials via a method called
algebraic residues. J. Satoh [Sat] and T. Kim [Ki] have given formulas for
sums of products of Carlitz’s q-Bernoulli numbers. K-W. Chen and M. Eie
[CE] and K-W. Chen [Ch] have produced formulas for sums of products of
generalized Bernoulli numbers and polynomials by using special values of
some zeta functions at nonpositive integers. T. Kim and C. Adiga [KA] have
also obtained a relation between sums of products of generalized Bernoulli
numbers and higher order generalized Bernoulli numbers.

The principal purpose of this paper is to establish sums of products of
Kronecker’s double series Bm(x′, x; τ) which are defined by means of the
following generating function:

−
∑e e(n′x′ + nx)

−ξ + n′τ + n
=

∞∑
m=0

Bm(x′, x; τ)

m!
(2πi)mξm−1, (x′, x ∈ R).

Here
∑e denotes Eisenstein summation [We]. So we have

Bm(x′, x; τ) =


1 (m = 0),

− m!

(2πi)m

∑
(n′,n)
̸=(0,0)

e e(n′x′ + nx)

(n′τ + n)m
(m ≥ 1).
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E.V. Ivashkevich et al. [IIH Sect.3.1] and K. Katayama [Ka] noted that these
series can be considered as an elliptic generalization of the classical Bernoulli
functions. The author [Ma] mentioned a relation between the generating
function of Kronecker’s double series and that of the (Debye) elliptic poly-
logarithms studied by A. Levin [Le] in order to enforce the validity of their
elliptic generalization.

The formulas for sums of products of Kronecker’s double series induce
Dilcher’s results for Bernoulli numbers and polynomials, which guarantees
that the sums of products of Kronecker’s double series are a natural gen-
eralization of the sums of products of Bernoulli numbers and polynomials.
In addition these yield formulas for η(2m) which are slightly different from
Dilcher’s ones.

We also obtain corresponding results for functions which are an elliptic
analogue of the periodic Euler polynomials defined by L. Carlitz [Ca]. (We
call these functions elliptic Euler fuctions for short). These also produce
the formulas for sums of products of Euler numbers, Euler polynomials and
λ(2m), which were given by Dilcher. (The formulas for λ(2m) are slightly
different from Dilcher’s ones too.)

The paper is organized as follows: In Section 2 we obtain formulas for
sums of products of Kronecker’s double series, and produce Corresponding
results for sums of products of Bernoulli numbers, Bernoulli polynomials and
η(2m). Section 3 deals with formulas for sums of products of elliptic Euler
functions and related Dilcher’s results.

2 Kronecker’s double series

In this section we give formulas for sums of products of Kronecker’s double
series. As corollaries, we reproduce Dilcher’s formulas for sums of products of
Bernoulli numbers and polynomials, and produce fromulas for special values
of the zeta function η(s) which are slightly different from Dilcher’s ones.

We begin with introducing another expression of the generating function
of Kronecker’s double series Bm(x′, x; τ). Let τ be in the upper half-plane.
In what follows we shall use the following notations: e(x) := e2πix, q := e(τ),
and Jacobi’s theta function

θ(x; τ) :=
∑
m∈Z

e(
1

2
(m +

1

2
)2τ + (m +

1

2
)(x +

1

2
)).
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We define the function F (x, ξ; τ) as follows:

F (x, ξ; τ) =
θ′(0; τ)θ(x + ξ; τ)

θ(x; τ)θ(ξ; τ)
, (x, ξ ∈ C \ Z + τZ),

where θ′(x; τ) =
∂

∂x
θ(x; τ). For fixed x ∈ C \ Z + τZ, the function F (x, ξ; τ)

with respect to ξ is meromorphic with only simple poles on the lattice Z+τZ.
In addition, it satisfies the following properties (see, e.g.,[Jor, We]):

F (x, ξ + 1; τ) = F (x, ξ; τ), F (x, ξ + τ ; τ) = e(−x)F (x, ξ; τ). (4)

Set F (x′, x; ξ; τ) := e(xξ)F (−x′ + xτ, ξ; τ). It is necessary to suppose that
x′ /∈ Z or x /∈ Z if x′, x are real numbers because F (0, 0; τ) becomes infinity.
When x′ and x are real numbers with −1 < x < 0, Kronecker proved the
following equation [We].

F (x′, x; ξ; τ) = −
∑e e(n′x′ + nx)

−ξ + n′τ + n
,

where
∑e denotes Eisenstein summation [We], i.e.,

∑e = lim
N ′→∞

lim
N→∞

N ′∑
n′=−N ′

N∑
n=−N

.

So Kronecker’s double series Bm(x′, x; τ) are expressed as

F (x′, x; ξ; τ) =
∞∑

n=0

Bn(x′, x; τ)

n!
(2πi)nξn−1. (5)

We note that Bm(x′, x; τ) have the following periodicity by (4):

Bm(x′ + 1, x; τ) = Bm(x′, x + 1; τ) = Bm(x′, x; τ). (6)

Let us introduce the function F (m)(x′, x; ξ; τ):

F (m)(x′, x; ξ; τ) :=
1

(2πi)m

( ∂

∂ξ

)m

F (x′, x; ξ; τ), (m ≥ 0), (7)

especially F (0)(x′, x; ξ; τ) = F (x′, x; ξ; τ). We see from (4) that F (m)(x′, x; ξ; τ)
satisfy the following periodicity:

F (m)(x′, x; ξ + 1; τ) = e(x)F (m)(x′, x, ξ; τ),

F (m)(x′, x; ξ + τ ; τ) = e(x′)F (m)(x′, x; ξ; τ).
(8)
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They also have the following expression by (5):

F (m)(x′, x; ξ; τ) =
(−1)mm!

(2πi)mξm+1
+

∞∑
n=0

Bn+m+1(x
′, x; τ)

(n + m + 1)n!
(2πi)n+1ξn. (9)

Let N be a positive integer and n a nonnegative integer. We set xi =
(x′

i, xi) for i = 1, . . . , N . Our aim in this section is to evaluate the sum

Sτ
N(n;x1, . . . ,xN) :=

∑
j1,...,jN≥0

(j1+···jN =n)

(
n

j1, . . . , jN

)
Bj1(x

′
1, x1; τ) · · ·BjN

(x′
N , xN ; τ),

(10)

where

(
n

j1, . . . , jN

)
:=

n!

j1! · · · jN !
is the multinomial coefficient. The gener-

ating function of Sτ
N(n;x1, . . . ,xN) is

ξN

N∏
i=1

F (x′
i, xi; ξ; τ) =

∞∑
n=0

Sτ
N(n;x1, . . . ,xN)

(2πiξ)n

n!
. (11)

To produce our result, we need the following lemma:

LEMMA 2.1. For any i = 1, . . . , N , let x′
i and xi be real numbers with

x′
i /∈ Z. Set

xi = (x′
i, xi) (i = 1, . . . , N), (y′, y) = (x′

1 + · · · + x′
N , x1 + · · ·xN).

Suppose that y′ /∈ Z. Then we have

(N − 1)!

(2πi)N−1

N∏
i=1

F (x′
i, xi; ξ; τ) = (−1)N−1

N−1∑
m=0

(
N − 1

m

)
(−1)m

× Sτ
N(m;x1, . . . ,xN)F (N−1−m)(y′, y; ξ; τ). (12)

Proof. Set G(ξ) := (left-hand side of (12)) − (right-hand side of (12)). We
see from (8) that

G(ξ + 1) = e(y)G(ξ), G(ξ + τ) = e(y′)G(ξ). (13)

Using Liouville’s theorem, we will show that G(ξ) = 0. Let ξ be a complex
number near the origin. It follows from (9) that

F (m)(x′, x; ξ; τ) =
(−1)mm!

(2πi)mξm+1
+ O(1),
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where O denotes the Landau symbol. Thus

G(ξ) =
(N − 1)!

(2πi)N−1ξN

∞∑
n=0

Sτ
N(n;x1, . . . ,xN)

(2πiξ)n

n!

−
N−1∑
m=0

(
N − 1

m

)
Sτ

N(m;x1, . . . ,xN)
(N − 1 − m)!

(2πi)N−1−mξN−m
+ O(1)

= O(1).

So the function G(ξ) is holomorphic at ξ = 0. Since the function F (x, ξ; τ)
with respect to ξ is meromorphic with only simple poles on the lattice Z+τZ,
the possible poles of G(ξ) are on Z+τZ. These together with (13) imply that
G(ξ) is a holomorphic function. On the other hand one sees that |e(y′)| =
|e(y)| = 1 and e(y′) ̸= 1 since y′, y are real numbers and y′ /∈ Z. So it follows
by (13) that G(ξ) is a bounded function. By Liouville’s theorem, one can
obtain G(ξ) = 0. This completes the proof.

THEOREM 2.1 (Sums of products of Kronecker’s double series). Let n be
an integer with n ≥ N . For any i = 1, . . . , N , let x′

i and xi be real numbers
with x′

i /∈ Z. Set

xi = (x′
i, xi) (i = 1, . . . , N), (y′, y) = (x′

1 + · · · + x′
N , x1 + · · ·xN).

Suppose that y′ /∈ Z. Then we have

Sτ
N(n;x1, . . . ,xN) = (−1)N−1N

(
n

N

) N−1∑
m=0

(
N − 1

m

)
(−1)m

× Sτ
N(m;x1, . . . ,xN)

Bn−m(y′, y; τ)

n − m
. (14)

Proof. Comparing the coefficient of ξn−N in (12) together with (9) and (11)
induces (14).

Let us reproduce the sums of products of Bernoulli numbers and polyno-
mials given by Dilcher. In analogy to (10), we denote

SN(n; x1, . . . , xN) :=
∑

j1,...,jN≥0

(j1+···jN =n)

(
n

j1, . . . , jN

)
Bj1(x1) · · ·BjN

(xN),
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SN(n) :=


∑

j1,...,jN≥0

(2j1+···2jN =n)

(
n

2j1, . . . , 2jN

)
B2j1 · · ·B2jN

(n : even),

0 (n : odd).

We remark that SN(2n) in this paper corresponds to SN(n) in [Di, Section
2].

To give Dilcher’s results, we need the following proposition and lemma:

PROPOSITION 2.1. Let x be a real number and x′ a complex number with
x′ /∈ Z. The m-th Bernoulli function B̃m(x) is defined by B̃m(x) := Bm({x}),
where {x} denotes the fractional part of x. Then we have

lim
τ→i∞

Bm(x′, x; τ) =


1

2

1 + e(x′)

1 − e(x′)
(m = 1, x ∈ Z),

B̃m(x) (otherwise).
(15)

Proof. See, e.g., [Ma, Proposition 2.1] for the proof.

LEMMA 2.2.
(i) Let x1, . . . , xN be real numbers and x′

1, . . . , x
′
N complex numbers with

x′
1, . . . , x

′
N /∈ Z. Set xi = (x′

i, xi) for i = 1, . . . , N . If 0 ≤ x1, . . . , xN < 1,
then we have

lim
x′→−i∞

lim
τ→i∞

Sτ
N(n;x1, . . . ,xN) = SN(n; x1, . . . , xN). (16)

(ii) Set xi = (1/2, 0) for i = 1, . . . , N . Then we have

lim
τ→i∞

Sτ
N(n;x1, . . . ,xN) = SN(n). (17)

(iii) Set xi = (1/2, 0) for i = 1, . . . , N − 1 and xN = (x′
N , 0). Then we have[

the coefficient of x′0
n (= 1) of lim

τ→i∞
Sτ

N(n;x1, . . . ,xN)

]
= SN(n). (18)

Proof. If 0 ≤ x < 1, then it follows from (15) that

lim
x′→−i∞

lim
τ→i∞

Bm(x′, x; τ) = Bm(x)
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because B1 = −1/2. This induces (16). Since B2m+1 = 0 (m ≥ 1) and
limτ→i∞ B1(1/2, 0; τ) = 0, we can deduce (17). We will show (18). One sees
from (15) that

lim
τ→i∞

Sτ
N(n;x1, . . . ,xN) = SN(n)+

1

2

1 + e(x′
N)

1 − e(x′
N)

∑
j1,...,jN−1≥0

(j1+···jN−1=n−1)

(
n

j1, . . . , jN−1, 1

)
Bj1 · · ·BjN−1

.

We obtain (18) because
1

2

1 + e(x′
N)

1 − e(x′
N)

is an odd function.

The higher-order Bernoulli polynomials B
(N)
m (y) are defined by the fol-

lowing generating function (see, e.g., [Nör, p.145]):

ξNeyξ

(eξ − 1)N
=

∞∑
n=0

B
(N)
n (y)

n!
ξn. (19)

Thus B
(N)
m (y) = SN(m; x1, . . . , xN) when y = x1 + . . . + xN . K. Dilcher [Di]

obtained the following two identities:

THEOREM 2.2 (Sums of products of Bernoulli polynomials). Let x1, . . . , xN , y
be complex numbers with y = x1 + · · · + xN . Then for n ≥ N we have

SN(n; x1, . . . , xN) = (−1)N−1N

(
n

N

) N−1∑
m=0

(
N − 1

m

)
(−1)mB(N)

m (y)
Bn−m(y)

n − m
.

(20)

Proof. It is sufficient to show (20) when 0 ≤ x1, . . . , xN , y < 1 by analyticity
of Bm(x). This is derived from (14) and (16).

REMARK 2.1. The above theorem corresponds to [Di, Lemma 4]. One
can easily obtain [Di, Theorem 3] from the theorem by using [Di, (3,7)].

REMARK 2.2. Eq.(20) with x1 = · · · = xN = 0 was proved by H.S.
Vandiver [Van, Eq.(142)].
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THEOREM 2.3 (Sums of products of Bernoulli numbers). For 2n > N we
have

SN(2n) = (−1)N−1N

(
2n

N

) [(N−1)/2]∑
m=0

(
N − 1

2m

)
SN(2m)

B2n−2m

2n − 2m
, (21)

where [x] denotes the greatest integer not exceeding x.

Proof. Suppose that N is odd. Set xi = (1/2, 0) (i = 1, . . . , N) and (y′, y) =
(N/2, 0). It follows from 2n > N that

lim
τ→i∞

B2n−m(y′, y; τ) = B2n−m = 0, (1 ≤ m ≤ N − 1, m : odd).

This together with (14) and (17) induces (21). Next suppose that N is even.
Set

xi = (
1

2
, 0) (i = 1, . . . , N − 1), xN = (x′

N , 0), (y′, y) = (
N − 1

2
+ x′

N , 0).

By virtue of (14) and 2n − m ≥ 2 (m = 0, . . . , N − 1), we have[
the coefficient of x′0

n (= 1) of lim
τ→i∞

Sτ
N(2n;x1, . . . ,xN)

]
= (−1)N−1N

(
2n

N

) N−1∑
m=0

(
N − 1

m

)
(−1)m B2n−m

2n − m

×
[
the coefficient of x′0

n (= 1) of lim
τ→i∞

Sτ
N(m;x1, . . . ,xN)

]
This together with (18) induces (21).

REMARK 2.3. We can not derive directly Theorem 2.3 from Theorem 2.2.
In general SN(2n) ̸= SN(2n; 0, . . . , 0) since B1(0) = B1 = −1/2 ̸= 0.

REMARK 2.4. SN(2m) are expressed as the numbers b
(N)
m defined in [Di]

(see [Di, Theorem 2]). So Theorem 2.3 corresponds to [Di, Theorem 1].

As motivated by the work [SD], Dilcher also deal with formulas for sums
of products of special values of the following zeta function:

η(s) :=
∞∑

n=1

(−1)n−1

ns
.

We here produce formulas for η(2m) which are slightly different from [Di,
(3.12)].
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THEOREM 2.4 (Sums of products of η(2m)). For 2n ≥ N we have

∑
j1+···+jN≥0

(j1+···+jN =n)

η(2j1) · · · η(2jN) =
(−1)n+N−1(2π)2n

2N(N − 1)!(2n − N)!

×
[(N−1)/2]∑

m=0

(
N − 1

2m

)
B

(N)
2m

(N

2

)B̃2n−2m(N
2
)

2n − 2m
, (22)

with the convention η(0) = 1/2.

Proof. It follows from (19) that

∞∑
n=0

B
(N)
n (N

2
)

n!
ξn =

ξNe
Nξ
2

(eξ − 1)N
=

ξN

(eξ/2 − e−ξ/2)N
, (23)

and from this we see that B
(N)
m (N

2
) = 0 for odd m. Set xi = (x′

i, 1/2) for any
i = 1, . . . , N . By virtue of (14), (16) and (23), one obtains

SN(2n;
1

2
, . . . ,

1

2
) = (−1)N−1N

(
2n

N

) [(N−1)/2]∑
m=0

(
N − 1

2m

)
B

(N)
2m (

N

2
)
B̃2n−2m(N

2
)

2n − 2m
.

(24)
On the other hand, we can easily see that, for m > 1,

η(m) = (1 − 21−m)ζ(m).

Using Euler’s formula (3) and the identity Bm(1/2) = −(1 − 21−m)Bm (see,
e.g., [Nör, p22, (19)]), we obtain

B2m(
1

2
) = (−1)m 2(2m)!

(2π)2m
η(2m). (25)

We note that (25) with m = 0 also holds since η(0) = 1/2. Eqs.(24) and (25)
yield (22).

REMARK 2.5. The difference between (22) and [Di, (3.12)] is the Bernoulli
function B̃2n−2m(N/2) by virtue of [Di, (3.7)]; In [Di, (3.12)] the Bernoulli
polynomials B2n−2m(N/2) appeared because Dilcher used the sums of prod-
ucts of Bernoulli polynomials (Theorem 2.2) for his results. The right-hand
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side of (22) can be written in terms of η(2m) or ζ(2m) since

B̃2n−2m(
N

2
) =


(−1)n−m−1 2(2n − 2m)!

(2π)2n−2m
ζ(2n − 2m) (N : even),

(−1)n−m 2(2n − 2m)!

(2π)2n−2m
η(2n − 2m) (N : odd).

It is seems that (22) is better than [Di, (3.12)] for writing sums of products
of η(2m) in terms of η(2m) or ζ(2m) since we have to use the difference
equation Bm(x + 1) − Bm(x) = mxm−1 for it in [Di, (3.12)].

3 Elliptic Euler functions

We give formulas for sums of products of elliptic Euler fuctions which are
an elliptic analogue of the periodic Euler polynomials defined by L. Carlitz
[Ca]. In complete analogy to the method of Section 2, we obtain results
concerning Euler numbers, Euler polynomials, and special values of the zeta
function λ(s).

The Euler polynomials Em(x) are defined by means of the following gen-
erating function:

2exξ

eξ + 1
=

∞∑
n=0

En(x)

n!
ξn. (26)

They satisfy the following (see, e.g., [Nör, p24–26]):

Em(1) = (−1)mEm(0), E2m(0) = 0 (m > 0). (27)

In the course of study of a generalization of multiplication formulas (distribu-
tion property) for Bernoulli and Euler polynomials, L. Carlitz [Ca] introduced
the periodic Euler polynomials Ẽm(x):

Ẽm(x) := Em(x) (0 ≤ x < 1), Ẽm(x + 1) := −Em(x),

namely Ẽm(x) = (−1)[x]Em({x}) (x ∈ R).

REMARK 3.1. Ẽ0(x) is a discontinuous function because E0(x) = 1. The
others are continuous functions by virtue of (27).
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The elliptic Euler functions Em(x′, x; τ) are defined by means of the fol-
lowing generating function:

−2e(−x

2
)F (x′, x; ξ +

1

2
; τ) =

∞∑
n=0

En(x′, x; τ)

n!
(2πi)n+1ξn. (28)

Since −2(−x

2
)F (x′, x; ξ +

1

2
; τ) = −2e(ξx)F (−x′ + xτ, ξ +

1

2
; τ), it is seen

from (4) that
Em(x′, x + 1; τ) = −Em(x′, x; τ). (29)

The elliptic Euler functions degenerate into the periodic Euler polynomials:

PROPOSITION 3.1. Let x be a real number and x′ a complex number with
x′ /∈ Z. Then we have

lim
τ→i∞

Em(x′, x; τ) =

(−1)[x] e(x
′) + 1

e(x′) − 1
(m = 0, x ∈ Z),

Ẽm(x) (otherwise).
(30)

Proof. We have Em(x′, x; τ) = (−1)[x]Em(x′, {x}; τ) by (29) . So it is suffi-
cient to show (30) when 0 ≤ x < 1. Suppose that 0 ≤ x < 1. The function
F (x, ξ; τ) has the following expression [We]:

F (x, ξ; τ) = 2πi

[ ∞∑
j=1

qj

e(x) − qj
e(−jξ) −

∞∑
j=1

qj

e(−x) − qj
e(jξ)

+
1

e(x) − 1
+

1

e(ξ) − 1
+ 1

]
, (|Im x|, |Im ξ| < Im τ).

After direct calculation we can get by (28) that

Em(x′, x; τ) = −2

[ ∞∑
j=1

(x − j)m (−1)jqj

e(−x′ + xτ) − qj

−
∞∑

j=1

(x + j)m (−1)jqj

e(x′ − xτ) − qj
+ xm e(−x′ + xτ)

e(−x′ + xτ) − 1

]
+ Em(x).

Since limτ→i∞ e(xτ)qj = limτ→i∞ e(−xτ)qj = 0 (j ∈ Z≥1), and

lim
τ→i∞

xm e(−x′ + xτ)

e(−x′ + xτ) − 1
=


1

1 − e(x′)
(m = 0, x = 0),

0 (otherwise),

12



one obtains (30).

Set xi = (x′
i, xi) for i = 1, . . . , N . Our aim in this section is to evaluate

the sum

T τ
N(n;x1, . . . ,xN) :=

∑
j1,...,jN≥0

(j1+···jN =n)

(
n

j1, . . . , jN

)
Ej1(x

′
1, x1; τ) · · ·EjN

(x′
N , xN ; τ).

(31)
The generating function of T τ

N(n;x1, . . . ,xN) is

1

(2πi)N

N∏
i=1

(
−2e(−xi

2
)F (x′

i, xi; ξ +
1

2
; τ)

)
=

∞∑
n=0

T τ
N(n;x1, . . . ,xN)

(2πiξ)n

n!
.

(32)

THEOREM 3.1 (Sums of products of elliptic Euler functions). Let n be a
nonnegative integer. For any i = 1, . . . , N , let x′

i and xi be real numbers with
x′

i /∈ Z. Set

xi = (x′
i, xi) (i = 1, . . . , N), (y′, y) = (x′

1 + · · · + x′
N , x1 + · · ·xN).

Suppose that y′ /∈ Z. Then we have

T τ
N(n;x1, . . . ,xN) =

2N−1

(N − 1)!

N−1∑
m=0

(
N − 1

m

)
(−1)m

× Sτ
N(m;x1, . . . ,xN)En+N−1−m(y′, y; τ). (33)

Proof. It follows from (12) that

(N − 1)!

(2πi)N−1

N∏
i=1

(
−2e(−xi

2
)F (x′

i, xi; ξ +
1

2
; τ)

)
=

2N−1

N−1∑
m=0

(
N − 1

m

)
(−1)mSτ

N(m;x1, . . . ,xN)

(
−2e(−y

2
)F (N−1−m)(y′, y; ξ+

1

2
; τ)

)
.

(34)

It is seen from (7) and (28) that

−2e(−y

2
)F (m)(y′, y; ξ +

1

2
; τ) =

1

(2πi)m

( ∂

∂ξ

)m
(
−2e(−y

2
)F (y′, y; ξ +

1

2
; τ)

)
=

∞∑
n=0

En+m(y′, y; τ)

n!
(2πi)n+1ξn.

13



Comparing the coefficient of ξn in (34), one gets (33).

In complete analogy to the method of Section 2 one can reproduce Dilcher’s
formulas for sums of products of Euler polynomials and special values of the
zeta function λ(s):

λ(s) :=
∞∑

n=0

1

(2n + 1)s
.

We denote

TN(n; x1, . . . , xN) :=
∑

j1,...,jN≥0

(j1+···jN =n)

(
n

j1, . . . , jN

)
Ej1(x1) · · ·EjN

(xN),

T̃N(n) :=
∑

j1,...,jN≥1

(j1+···jN =n)

(
n

j1, . . . , jN

)
Ej1(0) · · ·EjN

(0).

We remark that the second summation is extended over all positive integers
j1, . . . , jN with j1 + · · ·+ jN = n, namely TN(n; 0, . . . , 0) ̸= T̃N(n) in general.
T̃N(n) is the same as that in the proof of [Di, Theorem 7].

LEMMA 3.1.
(i) Let x1, . . . , xN be real numbers and x′

1, . . . , x
′
N complex numbers with

x′
1, . . . , x

′
N /∈ Z. Set xi = (x′

i, xi) for i = 1, . . . , N . If 0 ≤ x1, . . . , xN < 1,
then we have

lim
x′→−i∞

lim
τ→i∞

T τ
N(n;x1, . . . ,xN) = TN(n; x1, . . . , xN). (35)

(ii) Set xi = (1/2, 0) for i = 1, . . . , N . Then we have

lim
τ→i∞

T τ
N(n;x1, . . . ,xN) = T̃N(n). (36)

(iii) Set xi = (1/2, 0) for i = 1, . . . , N − 1 and xN = (x′
N , 0). Then we have[

the coefficient of x′0
n (= 1) of lim

τ→i∞
T τ

N(n;x1, . . . ,xN)

]
= T̃N(n). (37)

Proof. We can prove this lemma as the same method of Lemma 2.2, so omit
the proof.

Dilcher gave the following two formulas:

14



THEOREM 3.2 (Sums of products of Euler polynomials). Let x1, . . . , xN , y
be complex numbers with y = x1 + · · · + xN . Then for n ≥ N we have

TN(n; x1, . . . , xN) =
2N−1

(N − 1)!

N−1∑
m=0

(
N − 1

m

)
(−1)m

× B(N)
m (y)En+N−1−m(y). (38)

Proof. It is sufficient to show (38) when 0 ≤ x1, . . . , xN , y < 1 by analyticity
of Em(x). This is derived from (33) and (35).

REMARK 3.2. The above theorem corresponds to [Di, Lemma 5]. One
can easily deduce [Di, Theorem 5] from the theorem.

THEOREM 3.3 (Sums of products of λ(2m)). For n ≥ N we have∑
j1+···+jN≥1

(j1+···+jN =n)

λ(2j1) · · ·λ(2jN) =
21−N

(2n − N)!(N − 1)!

×
[(N−1)/2]∑

m=0

(
N − 1

2m

)
(−1)mπ2m(2n − 2m − 1)!SN(2m)λ(2n − 2m). (39)

Proof. By [Di, (4.16)] we have

E2m−1(0) = (−1)m 22(2m − 1)!

π2m
λ(2m). (40)

In a similarly way of the proof of Theorem 2.3, one can derive

T̃N(n) =
2N−1

(N − 1)!

[(N−1)/2]∑
m=0

(
N − 1

2m

)
SN(2m)En+N−1−2m(0) (41)

from Lemma 3.1. One can also see from (40) that, for n ≥ N ,

T̃N(n) = (−1)
n+N

2
n!22N

πn+N

∑
j1+···+jN≥1

(2j1+···+2jN =n+N)

λ(2j1) · · ·λ(2jN),

namely

T̃N(2n − N) = (−1)n (2n − N)!22N

π2n

∑
j1+···+jN≥1

(j1+···+jN =n)

λ(2j1) · · ·λ(2jN). (42)

Eqs.(41) and (42) induce (39).
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REMARK 3.3. By virtue of [Di, Theorem 2.(b)] and [Di, Lemma 3] , we
obtain

S(2n) = (N − 2n − 1)!(2n)!N
2n∑
i=0

(
N − 1

i

)
s(N − i, N − 2n)

2i(N − i)!
,

where s(n, k) denotes the Stirling numbers of the first kind. By using this
and Theorem 3.3, we can get (4.18) in [Di, Theorem 7].

The Euler numbers are defined by means of the following generating func-
tions:

2

eξ + e−ξ
=

∞∑
n=0

En

n!
ξn.

Thus the generating function is an even function. So it follows from (26)
that

E2m(
1

2
) = 2−2mE2m, E2m+1 = 0. (43)

Finally we produce formulas for Euler numbers which are slightly different
from [Di, (4.9)]. The difference is the Euler functions Ẽ2n+N−1−2m(N/2) as
in Theorem2.4

THEOREM 3.4 (Sums of products of Euler numbers). For 2n ≥ N we
have ∑

j1+···+jN≥0

(j1+···+jN =n)

(
2n

2j1, . . . , 2jN

)
Ej1 · · ·EjN

=
22n+N−1

(N − 1)!

[(N−1)/2]∑
m=0

(
N − 1

2m

)
B

(N)
2m

(N

2

)
Ẽ2n+N−1−2m(

N

2
). (44)

Proof. Set xi = (x′
i, 1/2) for any i = 1, . . . , N . By virtue of (30), (33) and

(35), one gets

TN(2n;
1

2
, . . . ,

1

2
) =

2N−1

(N − 1)!

N−1∑
m=0

(
N − 1

m

)
(−1)m

× B(N)
m (

N

2
)Ẽ2n+N−1−m(

N

2
). (45)

This together with (43) induces (44).
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