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Abstract

We consider a singular perturbation problem of Modica-Mortola
functional as the thickness of diffused interface approaches to zero.
We assume that sequence of functions have uniform energy and square-
integral curvature bounds in two dimension. We show that the limit
measure concentrate on one rectifiable set and has square integrable
curvature.
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1 Introduction

The Modica-Mortola functional [12] has been used widely as an approxi-
mation of hypersurface area of diffused interface, both in static and time-
dependent models and the functional often being coupled with other inter-
acting fields. After a suitable normalization it is defined for scalar-valued
function u : U ⊂ Rn → R by

Eε(u) =
∫

U

ε|∇u|2

2
+

W (u)
ε

dx, (1.1)

where W : R → [0,∞) is a double-well potential with two equal minima
at ±1 and ε > 0 is a small parameter. In mathematical literature some of
the first rigorous results are given by Modica [11], Sternberg [18] and others
who proved that Eε Γ-converges to the area functional as ε → 0. Namely,
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consider a sequence of minimizers {uε} of Eε(·), ε → 0, among functions
with

∫
U u dx = m fixed. Here −|U | < m < |U | and |U | is the n-dimensional

volume of U . One expects that uε is close to ±1 for the most part of U
and that it is advantageous to have as little transition region as possible.
It is also straightforward to see that the transition region should have the
thickness of order ε for Eε to be of constant order with respect to ε. The
aforementioned works show that there exist a converging subsequence and
the limit u0 such that u0 = ±1 a.e. on U and u0 minimizes the hypersurface
area of U ∩ ∂{u0 = 1} among such functions with equal integral value m.
Such area-minimizing hypersurfaces are known to be smooth constant mean
curvature hypersurfaces (CMC) if the dimension n of domain U is less than
8 and CMC with possible small singularities for n ≥ 8 [7, 17]. The functional
Eε approximates the hypersurface area in the sense that

lim
ε→0

Eε(uε) = 2σHn−1(U ∩ ∂{u0 = 1}),

where

σ =
∫ 1

−1

√
W (s)/2 ds

and Hn−1 is the (n − 1)-dimensional Hausdorff measure. It is also proved
[10] that the limit of Lagrange multipliers

λε = −ε∆uε +
W ′(uε)

ε

has the geometric meaning in that

σH = λ0,

where λ0 = limε→0 λε and H is the constant mean curvature of U ∩ ∂{u0 =
1}. It is of interest to study the limiting behavior of Eε without the energy-
minimizing properties in view of applications to various dynamical problems.
In [8, 19, 20] motivated by the Cahn-Hilliard equation [4] they gave a geo-
metric characterization of limit interfaces without minimizing property but
with W 1,p Sobolev norm control of

fε = −ε∆uε +
W ′(uε)

ε
, (1.2)

where p > n
2 , which corresponds to the chemical potential field in the frame-

work of van der Waals-Cahn-Hilliard theory of phase transitions. The con-
trol of such quantity may be seen as an analogue of control of mean curvature
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field in view of above result by Luckhaus and Modica [10] and also Schätzle
[16].

Recently there have been much interest in studying limit interface when
we have a control of

1
ε

∫
U
|fε|2 dx, (1.3)

in dimensions n ≤ 3 as ε → 0 [3, 9, 14, 5]. If one makes the ansatz that the
internal layer profile is the usual hyperbolic tangent shape, it is reasonable
to relate this quantity to the L2 norm of the mean curvature of interface. In
general one expects as ε → 0 that the limit interface should have L2 mean
curvature and that appropriately defined limit of fε should correspond to the
mean curvature. For this problem Moser [14] showed for dimension n ≤ 3
with some technical monotonicity assumption that the limit interface is a
rectifiable varifold [1] with L2 mean curvature. Bellettini and Mugnai [3]
considered the problem with radial symmetry assumption and showed that
the quantity (1.3) converges to the L2 norm of mean curvature for the limit
interface as ε → 0.

In this paper we extend the results of [3, 14] in that we make no assump-
tions on the sequence of functions {uε} except for the uniform bounds on
the energy (1.1) and L2 norm of the chemical potential in the form (1.3),
and conclude essentially the same results as in [3, 14] for the limit interface.
Unfortunately we can prove the result only for n = 2. Here we state our
main theorem. A few minor assumptions are made on the function W (see
Sect. 2.1).

Theorem 1.1. Suppose U ⊂ R2 is a bounded domain. Suppose a sequence
of functions {uεi}∞i=1 ⊂ W 2,2(U) satisfies for {εi}∞i=1 with limi→∞ εi = 0

lim inf
i→∞

Eεi(uεi) < ∞, lim inf
i→∞

1
εi

∫
U
|fεi |2 dx < ∞. (1.4)

Define a sequence of Radon measures on U by

µεi(φ) =
∫

U
φ

(
εi|∇uεi |2

2
+

W (uεi)
εi

)
dx

for φ ∈ Cc(U). By the weak star compactness of bounded measures there
exists a subsequence (denoted by the same indices) {µεi}∞i=1 and the limit
Radon measure µ on U . Then,

(i) uεi → ±1 locally uniformly on U \ suppµ.

3



(ii) There exist a closed countably 1-rectifiable set Σ and H1 measurable
function θ defined on Σ such that µ = θH1bΣ.

(iii) θ/(2σ) is H1 a.e. integer-valued on Σ.

(iv) The generalized curvature f of µ satisfies∫
U
|f |2 dµ ≤ lim inf

i→∞

1
εi

∫
U
|fεi |2 dx.

For the definition of rectifiable set and generalized (mean) curvature see
[1, 17]. The function f can be obtained as follows. Define any vector-valued
limit measure of {fεi∇uεi dx}∞i=1 as η. Note that the L1 norms are uniformly
bounded by∫

U
|fεi∇uεi | dx ≤

(
1
εi

∫
U
|fεi |2 dx

)1/2 (
εi

∫
U
|∇uεi |2 dx

)1/2

and (1.4). Since η is absolutely continuous with respect to µ we define f
as the Radon-Nikodym derivative dη

dµ . We show f is indeed the generalized
curvature of µ with property (iv).

Though it appears to us that it is not stated explicitly in the literature,
any 1-dimensional integral varifold [1] with Lp (p > 1) generalized curvature
should have support consisting of finite number of C

1,1− 1
p curves possibly

meeting at isolated junction points. The proof should follow more or less
from stationary case studied by Allard and Almgren [2], where they proved
that stationary integral varifold has support which are fininte number of
lines with possible junction points.

The main point of the paper is to establish a properly scaled monotonic-
ity formula for the energy density, which was also essential in [8, 19, 20].
There we assumed the Sobolev W 1,p norm for some p > n

2 is bounded:

lim inf
i→∞

||fεi ||W 1,p(U) < ∞.

Though we do not have any control of derivatives of fεi in this paper, we find
that we may still use many of the estimates in [8, 19, 20] if we regularize uε

appropriately. More specifically, we consider the convolution of uε, uε∗ψε1+β ,
where ψε1+β is the usual mollifier scaled by ε1+β , for a carefully chosen β > 0.
The function still satisfies a similar equation while nonlinear term produces
error terms. The regularization gives some control of derivatives of fε∗ψε1+β ,
to which we apply estimates for the so-called discrepancy measure

ξε(uε) =
ε|∇uε|2

2
− W (uε)

ε
(1.5)
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obtained in [19].
After the main part of the paper is completed we were informed that

Röger and Schätzle [15] obtained the similar results for n ≤ 3 using different
estimates for the discrepancy measure. Since our method is different from
theirs we believe that it should have an independent interest.

2 Assumptions and preliminaries

In the following we set up the assumptions, recall various definitions and
the rectifiablity theorem due to Moser [13] which we use later in Section 4.

2.1 Assumptions

We assume that the double-well potential W : R → [0,∞) is a C3 function
satisfying the following assumptions;

(i) W (1) = W (−1) = 0,

(ii) there exists γ ∈ (−1, 1) such that W ′ < 0 on (γ, 1) and W ′ > 0 on
(−1, γ),

(iii) there exist α ∈ (0, 1) and κ > 0 such that W ′′(s) ≥ κ for all |s| ≥ α.

Under the assumption (1.4) we may assume that there exist constants E0

and a1 such that

(A.1) Eεi(uεi) ≤ E0,

(A.2) 1
εi

∫
U |fεi |2 dx ≤ a1

for all i = 1, 2, · · · .
By defining ũεi(x) = uεi(εix) and f̃εi(x) = fεi(εix), (1.2), (A.1) and (A.2)
are equivalent to

εif̃εi = −∆ũεi + W ′(ũεi) (2.1)

and

(Ã.1)
∫
U/εi

|∇euεi |
2

2 + W (ũεi) dx ≤ ε−1
i E0,

(Ã.2)
∫
U/εi

|f̃εi |2 dx ≤ ε−1
i a1.

Throughout this paper, different positive constants will be denoted by the
same letter c. We write c(s) when it is helpful to write out the dependence
of c on s.
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2.2 The generalized L2 curvature functional

We find that it is convenient to work in the framework set out by Moser
[14]. In the following we only need results for n = 2.

Let F be the set of all symmetric, positive semidefinite real (n × n)-
matrices. We write M(U) for the set of all pairs M = (µ, ν) such that

(1) µ is Radon measure on U ,

(2) ν is Radon measure on U with values in F and

(3) there exists a function Φ ∈ L∞(µ,F) such that ν = µbΦ.

In the following we set Mεi = (µεi , νεi) with

µεi =
(

εi|∇uεi |2

2
+

W (uεi)
εi

)
dx, ναβ

εi
= εi

(
∂uεi

∂xα

∂uεi

∂xβ

)
dx (2.2)

and

Φαβ
εi

=
εi

∂uεi
∂xα

∂uεi

∂xβ

εi|∇uεi |2
2 + W (uεi )

εi

∈ L∞(µεi ,F) (2.3)

so that νεi = µεibΦεi
. Continuing with general framework, for M = (µ, ν) ∈

M(U) define the linear functional

δM(φ) =
∫

U
(divφ dµ − ∂φα

∂xβ
dναβ) (2.4)

on C1
c (U ;Rn). The usual summation convention is assumed. The functional

δM is an analogue of the usual first variation [1] and it was introduced by
Moser [13]. Using (1.2) and integration by parts, one verifies that

δMεi(φ) = −
∫

U
φαHβ

εi
dναβ

εi
, (2.5)

where
Hβ

εi
=

fεi

εi
∂uεi

∂xβ

. (2.6)

Now define the generalized L2 curvature functional C as the functional on
M(U) by

C(M) = sup
{

(δM(φ))2
∣∣∣∣ φ ∈ C1

c (U ;Rn),
∫

U
φαφβ dναβ ≤ 1

}
. (2.7)
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C(M) corresponds to the usual L2 norm square of mean curvature when M =
(µ, ν) is a pair of smooth objects, namely, µ is an (n−1)-Hausdorff measure
restricted to a smooth (n−1)-dimensional submanifold Σ and Φ(x) = p(x)⊗
p(x), where p(x) is the unit normal to the tangent space TxΣ at x. By (2.5)

(δMεi(φ))2 ≤
∫

U
Hα

εi
Hβ

εi
dναβ

εi

∫
U

φαφβ dναβ
εi

so that (2.6), (2.7) and (A.2) show

C(Mεi) ≤
∫

U
Hα

εi
Hβ

εi
dναβ

εi
=

1
εi

∫
U
|fεi |2 dx ≤ a1. (2.8)

Write
C(U) = {M ∈ M(U) | C(M) < ∞}.

Important subclass of C(U) we need is

C1(U) = {M ∈ C(U) | trace ν ≤ µ},

which has the following rectifiability property:

Proposition 2.1. ([14, Propostion 2.2]) If M = (µ, ν) ∈ C1(U), then the
set

Σ = {x ∈ U : θ(x) > 0}

is 1-rectifiable. Moreover,
µ = θH1bΣ.

If Φ is such that ν = µbΦ, then Φ(x) = proj⊥TxΣ(x) for µ-almost every x ∈ Σ.

Here θ(x) is the 1-dimensional density of µ:

θ(x) = lim
r→0

µ(Br(x))
2r

,

where Br(x) = {y ∈ R2; |y − x| < r}.
The main task in this paper is to show that trace ν ≤ µ holds for the

limit measure pair (µ, ν) of {Mεi}∞i=1 and θ(x) ≥ c > 0 uniformly on suppµ,
which follows once we establish the monotonicity formula in Section 3.
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3 Monotonicity formula

The main task of this section is to prove Theorem 3.10 which gives the
uniform lower bound of the scaled energy. It is the crucial ingredient for the
application of the rectifiability theorem, Proposition 2.1. In the following
we drop the index i for simplicity.

Lemma 3.1. ([14, Lemma 2.2]) Define µε, νε and ξε(uε) as in (2.2) and
(1.5). For any δ > 0 and for Bs(x0) ⊂ Br(x0) ⊂ U,

(1 + δ)
1
r
µε(Br(x0)) − (1 − δ)

1
s
µε(Bs(x0))

≥ −(
2
δ

+ 1)a1r −
∫ r

s

1
ρ2

∫
Bρ(x0)

ξε(uε) dxdρ.
(3.1)

Proof. We may assume x0 = 0 by a suitable translation. Write Br = Br(0).
By (2.4) and (2.5), for any φ ∈ C1

c (U ;R2),∫ (
divφ dµε −

∂φα

∂xβ
dναβ

ε

)
+

∫
φαHβ

ε dναβ
ε = 0. (3.2)

Suppose h ∈ C∞
c (R) satisfies h(s) = 0 for s ∈ [1,∞). By substituting

φ(x) = xh( |x|ρ ) into (3.2), we obtain

2
∫

h dµε −
∫

h trace dνε +
1
ρ

∫
|x|h′ dµε

−
∫ (

xαxβ

ρ|x|
h′ − hxαHβ

ε

)
dναβ

ε = 0.

(3.3)

By the definitions of µε and ναβ
ε we obtain

2
∫

h dµε −
∫

htrace dνε

=
∫

h dµε +
∫

h

(
ε|∇uε|2

2
+

W (uε)
ε

)
dx −

∫
hε|∇uε|2 dx

=
∫

h dµε −
∫

ξε(uε)h dx.

(3.4)

Substituting (3.4) into (3.3) and multiplying both sides by − 1
ρ2 , we obtain

d

dρ

(
1
ρ

∫
h dµε +

1
ρ

∫
hxαHβ

ε dναβ
ε

)
= − 1

ρ3

∫ (
h′x

αxβ

|x|
+ |x|h′xαHβ

ε

)
dναβ

ε − 1
ρ2

∫
hξε(uε) dx.

(3.5)
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Integrating over (s, r), we obtain

1
r

∫
h dµε +

1
r

∫
hxαHβ

ε dναβ
ε − 1

s

∫
h dµε −

1
s

∫
hxαHβ

ε dναβ
ε

=
∫ (∫ r

s

1
ρ

d

dρ
h dρ

)(
xαxβ

|x|2
+ xαHβ

ε

)
dναβ

ε −
∫ r

s

1
ρ2

∫
hξε(uε) dxdρ.

(3.6)

Let {hk}∞k=1 ⊂ C∞
c (R) be a sequence of approximate functions for the char-

acteristic function of (−∞, 1) and use h = hk in (3.6). Since
∫ r
s

1
ρ

d
dρhk(

|x|
ρ )dρ

converges to 1
|x| for |x| ∈ [s, r) and otherwise 0, we obtain

1
r
µε(Br) +

1
r

∫
Br

xαHβ
ε dναβ

ε − 1
s
µε(Bs) −

1
s

∫
Bs

xαHβ
ε dναβ

ε

=
∫

Br\Bs

(
xαxβ

|x|3
+

xαHβ
ε

|x|

)
dναβ

ε −
∫ r

s

1
ρ2

∫
Bρ

ξε(uε) dxdρ. (3.7)

By Φαβ
ε µε = ναβ

ε and (2.8), we obtain for any δ > 0∣∣∣∣∣1ρ
∫

Bρ

xαHβ
ε dναβ

ε

∣∣∣∣∣ ≤ 1
ρ

(∫
Bρ

xαxβΦαβ dµε

) 1
2
(∫

Bρ

Hα
ε Hβ

ε dναβ
ε

) 1
2

≤ 1
ρ

(∫
Bρ

ε|x|2|∇uε|2 dx

) 1
2

a
1
2
1

≤ δ

ρ
µε(Bρ) +

a1ρ

δ

(3.8)

and∣∣∣∣∣
∫

Br\Bs

xαHβ
ε

|x|
dναβ

ε

∣∣∣∣∣ ≤
∫

Br\Bs

xαxβ

|x|3
dναβ

ε + r

∫
Br\Bs

Hα
ε Hβ

ε dναβ
ε . (3.9)

Using (3.8) and (3.9) in (3.7), we proved (3.1).

Later we use the following L∞ estimates of uε away from 1.

Lemma 3.2. For each open set V ⊂⊂ U , there exist constants c1 depending
only on W , dist(∂U, V ), κ, E0 and a1 such that

sup
V

|uε| ≤ 1 + c1ε
1
2 (3.10)

for ε ≤ 1.
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Proof. Let x ∈ V be arbitrary and set r = 1
2dist(∂U, x). Write Br = Br(x).

First we show
‖(uε − 1)+‖L2(B r

2
) ≤ cε

3
2 , (3.11)

where (uε − 1)+ = max{(uε − 1), 0}. Let φ ∈ C∞
c (Br) be a smooth function

with φ = 1 on B r
2
. Multiplying (1.2) by (uε − 1)+φ2 and by integration by

parts we obtain∫
{uε>1}

ε|∇uε|2φ2 + 2ε(uε − 1)+φ∇uε · ∇φ

+
W ′(uε)

ε
(uε − 1)+φ2 dx =

∫
{uε>1}

fε(uε − 1)+φ2 dx.

(3.12)

By applying Cauchy’s inequality to (3.12), for any δ > 0∫
{uε>1}

ε|∇uε|2φ2 +
W ′(uε)

ε
(uε − 1)+φ2 dx

≤
∫
{uε>1}

ε

2
|∇uε|2φ2 + 2ε[(uε − 1)+]2|∇φ|2 +

ε

4δ
f2

ε φ2 +
δ

ε
[(uε − 1)+]2φ2 dx.

(3.13)

By the assumption on W ,

W ′(uε) ≥ κ(uε − 1)+ (3.14)

and∫
{uε>1}

2ε[(uε − 1)+]2|∇φ|2 dx ≤ c(κ)(sup |∇φ|2)ε
∫

Br∩{uε>1}
W (uε) dx

≤ c(κ, r)E0ε
2.

(3.15)

By (3.13-15) and (A.2),

ε

2

∫
{uε>1}

φ2|∇uε|2 dx + (
κ

ε
− δ

ε
)
∫
{uε>1}

φ2[(uε − 1)+]2 dx ≤
{

cE0 +
a1

4δ

}
ε2.

Since δ is arbitrary, we choose δ = κ
2 . Thus we have∫

B r
2

[(uε − 1)+]2 dx ≤ c(a1, κ, E0, r)ε3. (3.16)
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With a suitable choice of constant, (3.16) shows (3.11). Next we consider
ũ(x) = u(εx) and f̃(x) = f(εx) which satisfy (2.1). Set h(s) = s+ and
let {hk}∞k=1 ⊂ C3(R) be a sequence of approximate functions for h with
hk(s) = 0 for s ∈ (−∞, 0] and h′

k ≥ 0, h′′
k ≥ 0. Consider the functions

hk ◦ (ũε(x) − 1). Using (2.1),

∆hk ◦ (ũε − 1) = h′′
k ◦ (ũε − 1)|∇ũε|2 + h′

k ◦ (ũε − 1)∆ũε ≥ h′
k ◦ (ũε − 1)∆ũε

≥ h′
k ◦ (ũε − 1)(W ′(ũε) − εf̃ε) ≥ −h′

k ◦ (ũε − 1)εf̃ε.

(3.17)

By the standard elliptic estimate (cf.[6, Theorem 8.17.]) applied to (3.17),
we obtain for any B1 ⊂ U/ε

sup
B 1

2

hk ◦ (ũε − 1) ≤ c(‖hk ◦ (ũε − 1)‖L2(B1) + ‖h′
k ◦ (ũε − 1)εf̃ε‖L2(B1)).

By taking the limit k → ∞ we obtain

sup
B 1

2

(ũε − 1)+ ≤ c(‖(ũε − 1)+‖L2(B1) + ‖εf̃ε‖L2(B1)).

We have ‖(ũε − 1)+‖L2(B1) ≤ cε
1
2 from (3.11) and ‖εf̃ε‖L2(B1) ≤ a

1
2
1 ε

1
2 by

(Ã.2). Thus
sup
B 1

2

(ũε − 1)+ ≤ cε
1
2 .

With a suitable choice of c1 we have

sup
V

(uε − 1)+ ≤ c1ε
1
2 .

Repeating the same arguement, we obtain supV |(u + 1)−| ≤ c1ε
1
2 , which

proves (3.10).

Remark 3.3. In the following we often use the fact that the scaled function
ũε has uniform C0,γ estimate for any 0 < γ < 1. This follows from (2.1)
and the standard W 2,2 estimate

‖ũε‖W 2,2(B1) ≤ c(‖ũε‖L2(B1) + ‖W ′(ũε)‖L2(B1) + ‖εf̃ε‖L2(B1))

as well as the Sobolev inequality (recalling n = 2)

‖ũε‖C0,γ(B1) ≤ c(γ)‖ũε‖W 2,2(B1).
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Remark 3.4. In the remaining part of the paper we fix constants as follows.
First fix

0 < β2 <
1
2
, 0 < γ < 1.

Choose β1 > 0 to be small so that

0 <
1
2
− β2 − β1, 0 < γβ2 − 2β1

hold. Fix β0 so that
0 < β0 ≤ β1

and define

ι = max
{

β1 + β2 +
1
2
, 1 − γβ2 + 2β1, 1 − β0

}
.

We note that 0 < ι < 1 by above choice. Finally fix β3 so that

ι < β3 < 1.

We next quote the following from [19], which holds for W with the
properties stated in Sec. 2.1.

Lemma 3.5. ([19, Lemma 3.5]) There exist constants ε1 > 0 and c2 > 0
depending only on β0, β1, c3 and W with the following properties. Suppose
(A) ṽε ∈ C3(Bε−β1 ), g ∈ C1(Bε−β1 ) and ε ≤ ε1 satisfy

−∆ṽε + W ′(ṽε) = εg

on Bε−β1 and
(B) supB

ε−β1
|ṽε| ≤ 1 + εβ0, supB

ε−β1

(
|∇evε|2

2 − W (ṽε)
)
≤ c3.

Then

sup
B 1

2 ε−β1

(
|∇ṽε|2

2
− W (ṽε)

)
≤ c2(ε1−β1‖g‖W 1,2(B

ε−β1
) + εβ0).

The above estimate is derived via the Alexsandroff-Bakelman-Pucci es-
timate and it is essential that W is a double well potential.

Let us consider the estimate of the discrepancy measure ξε(uε) = ( ε|∇uε|2
2 −

W ′(uε)
ε ). Since we have no control of the derivative of fε, we cannnot apply

Lemma 3.5 to uε directly. Thus we consider the regularization of uε. Let
ψ ∈ C∞

0 (R2) be a positive radial symmetric function with suppψ ⊂ B1(0)
and

∫
R2 ψ(x)dx = 1. For ε > 0, set ψε1+β2 (x) = 1

ε2(1+β2) ψ( x
ε1+β2

) where β2 is
chosen in Remark 3.4. Next proposition follows from applying Lemma 3.5
to uε ∗ ψε1+β2 .
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Proposition 3.6. Define

vε = uε ∗ ψε1+β2 . (3.18)

For V ⊂⊂ U there exist a constant 0 < ε2 < ε1 and c4 depending only on
W , dist(V, ∂U), E0 and a1 satisfying that

sup
V

ξε(vε) ≤ c4ε
−ι (3.19)

if ε < ε2. Here ξε(vε) =
(
ε |∇vε|2

2 − W (vε)
ε

)
.

Proof. By scaling ṽε(x) = vε(εx) and ũε(x) = uε(εx), (3.18) is

ṽε = ũε ∗ ψεβ2 .

Since ũε satisfies (2.1), ṽε satisfies

−∆ṽε + W ′(ṽε) = εg (3.20)

with

g = f̃ε ∗ ψεβ2 +
W ′(ṽε)

ε
− W ′(ũε)

ε
∗ ψεβ2 .

In the following we apply Lemma 3.5 thus we need to estimate W 1,2-norm
of g on Bε−β1 ⊂ V

ε . First we consider the estimate of ‖g‖L2(B
ε−β1

). By

inserting the term ±W ′(euε)
ε we obtain

‖g‖L2(B
ε−β1

) ≤ ‖f̃ε ∗ ψεβ2‖L2(B
ε−β1

) + ‖W ′(ṽε)
ε

− W ′(ũε)
ε

‖L2(B
ε−β1

)

+‖W ′(ũε)
ε

− W ′(ũε)
ε

∗ ψεβ2‖L2(B
ε−β1

) := (I1) + (II1) + (III1). (3.21)

By (Ã.2),

(I1) ≤ ‖f̃ε‖L2(B
2ε−β1

)‖ψεβ2‖L1(B
εβ2

) ≤ a
1
2
1 ε−

1
2 . (3.22)

By C0,γ estimate for ũε we have

sup
B

ε−β1

|ṽε − ũε| ≤ cεγβ2 .

Thus with this sup bound

(II1) ≤
1
ε

{∫
B

ε−β1

(sup |W ′′|)2|ṽε − ũε|2 dx

} 1
2

≤ cεγβ2−β1−1. (3.23)
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Similarly with
|W ′(ũε) − W ′(ũε) ∗ ψεβ2 | ≤ cεγβ2 ,

(III1) ≤
1
ε

{∫
B

ε−β1

|W ′(ũε) − W ′(ũε) ∗ ψεβ2 |2 dx

} 1
2

≤ cεγβ2−β1−1. (3.24)

Next, we estimate ‖∇g‖L2(B
ε−β1

). By inserting the terms ±∇W ′(euε)
ε ,

‖∇g‖L2(B
ε−β1

) ≤ ‖∇(f̃ε ∗ψεβ2 )‖L2(B
ε−β1

) + ‖∇(
W ′(ṽε)

ε
− W ′(ũε)

ε
)‖L2(B

ε−β1
)

+‖∇(
W ′(ũε)

ε
− W ′(ũε)

ε
∗ ψεβ2 )‖L2(B

ε−β1
) := (I2) + (II2) + (III2). (3.25)

By (Ã.2),
(I2) ≤ cε−β2− 1

2 . (3.26)

For (II2) we have

|∇(W ′(ṽε) − W ′(ũε))| ≤ sup |W ′′||∇ṽε −∇ũε| + c(sup |W ′′′|)εγβ2 |∇ũε|.
(3.27)

Since

|∇ũε(x − y) −∇ũε(x)| ≤
∫ 1

0
|∇2ũε(x − ty)||y| dt,

we estimate the L2-norm of the first term of (3.27) as∫
B

ε−β1

|∇ṽε −∇ũε|2 dx ≤
∫

B
ε−β1

∫
B

εβ2

|∇ũε(x − y) −∇ũε(x)|2ψεβ2 (y) dydx

≤
∫

B
ε−β1

∫
B

εβ2

ψεβ2 (y) |y|2
∫ 1

0
|∇2ũε(x − ty)|2 dtdydx

≤ ε2β2

∫
B

2ε−β1

|∇2ũε|2 dx.

(3.28)

By the W 2,2 estimate of ũε in Remark 3.3 we have∫
B

2ε−β1

|∇ũε|2 + |∇2ũε|2 dx ≤ cε−2β1 . (3.29)

Substituting (3.29) into (3.28), we obtain∫
B

ε−β1

|∇ṽε −∇ũε|2 dx ≤ cε2β2−2β1 . (3.30)
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As the L2-norm of the second term of (3.27) can be estimated by (3.29), we
obtain

(II2) ≤ c(εβ2−β1−1 + εγβ2−β1−1) ≤ cεγβ2−β1−1. (3.31)

For (III2),

|∇(W ′(ũε(x))) −∇(W ′(ũε(x)) ∗ ψεβ2 )|2

≤
∫

B
εβ2

|∇(W ′(ũε(x))) −∇(W ′(ũε(x − y)))|2ψεβ2 (y)dy

≤ 2
∫

B
εβ2

(sup |W ′′|)2|∇ũε(x) −∇ũε(x − y)|2ψεβ2 (y)dy

+ 2
∫

B
εβ2

(c sup |W ′′′|)2ε2β2γ |∇ũε(x)|2ψεβ2 (y) dy.

(3.32)

In the same way as we obtained (3.31) we have from (3.32)

(III2) ≤ cε−1

{∫
B

ε−β1

∫
B

εβ2

|∇ũε(x) −∇ũε(x − y)|2ψεβ2 (y) dydx

+
∫

ε−β1

ε2β2γ |∇ũε(x)|2 dx

} 1
2

≤ c(εβ2−β1−1 + εγβ2−β1−1) ≤ cεγβ2−β1−1.

(3.33)

Estimates (3.21), (3.22), (3.23), (3.24), (3.25), (3.26), (3.31), (3.33) show

‖g‖W 1,2(B
ε−β1

) ≤ c(ε−β2− 1
2 + εγβ2−β1−1). (3.34)

Before we apply Lemma 3.5 we need to have a uniform estimate for ‖ṽε‖C1 .
By the choice of β1, β2 and γ we have

−β2 +
1
2

> 0 and γβ2 − β1 > 0.

so in particular we have ‖εg‖W 1,2(B
ε−β1

) ≤ c. Since ṽε satisfies (3.20), by
W 3,2-estimate of the elliptic PDE and Sobolev’s inequality, we obtain a
uniform C1 estimate for ṽε and thus we have ε-independent c3 such that

sup
B

ε−β1

(
|∇ṽε|2

2
− W (ṽε)

)
≤ c3.

Now we are ready to use Lemma 3.5 to conclude with (3.34) that

sup
B 1

2 ε−β1

(
|∇ṽε|2

2
− W (ṽε)

)
≤ c(ε

1
2
−β1−β2 + εγβ2−2β1 + εβ0).
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By scaling,

sup
V

(
ε|∇vε|2

2
− W (vε)

ε

)
≤ c(ε−

1
2
−β1−β2 + εγβ2−2β1−1 + εβ0−1).

We defined ι so that the right-hand side is bounded by cε−ι thus we proved
(3.19) with an appropriate choice of constant c4.

Proposition 3.7. There exist constants c5 > 0 and ε2 > 0 depending only
on W , dist(V, ∂U), E0 and a1 such that for ε ≤ ε2 and Br ⊂ V∫

Br

{ξε(uε)}+ dx ≤
∫

Br

{ξε(vε)}+ dx + c5ε
β2
2 {r + µε(Br)}.

Proof. Since |∇uε| ≤ |∇uε−∇vε|+ |∇vε|, by considering the square of both
sides and Cauchy’s inequality,

|∇uε|2 ≤ |∇vε|2 + |∇uε −∇vε|2 + 2|∇uε −∇vε||∇vε|
≤ |∇vε|2 + (1 + ε−β2)|∇uε −∇vε|2 + εβ2 |∇vε|2.

(3.35)

Similarly

|∇vε|2 ≤ |∇uε|2 + (1 + ε−β2)|∇uε −∇vε|2 + εβ2 |∇uε|2. (3.36)

By substituting (3.36) to (3.35) we obtain

|∇uε|2 ≤ |∇vε|2 + cε−β2 |∇uε −∇vε|2 + cεβ2 |∇uε|2. (3.37)

Using (3.37) we obtain

{ξε(uε)}+ ≤ {ξε(vε)}+ +
c

2
ε1−β2 |∇uε −∇vε|2

+
|W (vε) − W (uε)|

ε
+ cεβ2

(
ε|∇uε|2

2
+

W (uε)
ε

)
.

(3.38)

Integrating (3.38) on Br for ε ≤ r,∫
Br

{ξε(uε)}+ dx ≤
∫

Br

{ξε(vε)}+ dx + cε−β2

∫
Br

ε|∇uε −∇vε|2 dx

+
∫

Br

|W (vε) − W (uε)|
ε

dx + cεβ2

∫
Br

(
ε|∇uε|2

2
+

W (uε)
ε

) dx.

(3.39)

We estimate each term of (3.39). As we proved in (3.28),

cε−β2

∫
Br

ε|∇uε −∇vε|2 dx ≤ cε3+β2

∫
B

r+ε1+β2

|∇2uε|2 dx. (3.40)
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We estimate L2-norm of ∇2uε in Br+ε1+β2 . Write r̃ = r + ε1+β2 . By scaling

Br̃ to B1 by x̃ = x/r̃ and applying W 2,2 estimate to ∆uε = r̃2W ′(uε)
ε2 − r̃2fε

ε ,
we obtain after scaling back∫

Br̃

|∇2uε|2 dx ≤ 1
r̃4

∫
Br̃

|uε|2 dx +
1
ε4

∫
Br̃

(W ′(uε))2 dx +
1
ε2

∫
Br̃

f2
ε dx.

(3.41)
For the second term of (3.41), we split the integral to Br and Br̃ \Br. Since
|W ′(uε)|2 ≤ cW (uε) and |Br̃ \ Br| ≤ cε1+β2r, we obtain∫

Br̃

|W ′(uε)|2 dx ≤ ε

∫
Br

W (uε)
ε

dx+c

∫
Br̃\Br

dx ≤ ε(µε(Br)+rεβ2). (3.42)

By Lemma 3.2 for the first term and by (3.42) and (A.2), (3.41) is estimated
as ∫

Br̃

|∇2uε|2 dx ≤ c

r2
+

c

ε3
(µε(Br) + rεβ2) +

a1

ε
. (3.43)

By (3.40) and (3.43),

cε−β2

∫
Br

ε|∇uε −∇vε|2 dx ≤ c

{
εβ2+3

r2
+ rε2β2 + εβ2+2 + εβ2µε(Br)

}
≤ c

{
rεβ2 + εβ2µε(Br)

}
(3.44)

since r ≥ ε. For the estimate of the third term of (3.39),

|W (vε) − W (uε)| ≤ |vε − uε||W ′(uε)| +
sup |W ′′|

2
|vε − uε|2

≤ cε−
β2
2 |vε − uε|2 + cε

β2
2 |W ′(uε)|2.

(3.45)

Since |W ′(uε)|2 ≤ cW (uε),∫
Br

|W (vε) − W (uε)|
ε

dx ≤ cε−1−β2
2

∫
Br

|vε − uε|2 dx + cε
β2
2

∫
Br

W (uε)
ε

dx

≤ cε−1−β2
2

∫
Br

|vε − uε|2 dx + cε
β2
2 µε(Br).

(3.46)
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For the right-hand side of (3.46)∫
Br

|uε − vε|2 dx ≤
∫

Br\Br−ε1+β2

|uε − vε|2 dx +
∫

B
r−ε1+β2

|uε − vε|2 dx

≤ c

(
rε1+β2 + ε2+2β2

∫
Br

|∇uε|2 dx

)
≤ c

(
rε1+β2 + ε1+2β2µε(Br)

)
.

(3.47)

By substituting (3.47) to (3.46) we obtain∫
Br

|W (vε) − W (uε)|
ε

dx ≤ rε
β2
2 + cε

3β2
2 µε(Br) + cε

β2
2 µε(Br)

≤ rε
β2
2 + cε

β2
2 µε(Br).

(3.48)

The claim of the proposition follows from (3.39), (3.44), (3.48).

Next we estimate the lower bound of the energy density ratio for ‘small’
scale, namely, for ε ≤ r ≤ t1ε

ι with small t1 independent of ε.

Theorem 3.8. There exist constants c6 > 0, t1 > 0 and ε3 > 0 such that if
ε ≤ r ≤ t1ε

ι, Br(x0) ⊂ V , |uε(x0)| < α and 0 < ε ≤ ε3, then

c6 ≤ 1
r
µε(Br(x0)).

Proof. We may assume x0 = 0. For ũε(x) = uε(εx),

1
ε
µε(Bε) =

1
ε

∫
Bε

ε|∇uε|2

2
+

W (uε)
ε

dx =
∫

B1

|∇ũε|2

2
+ W (ũε) dx.

Since |ũε(0)| < α and ũε ∈ C0,γ there exists a constant c7 > 0 satisfying
W (ũε) > c7 on Bc7 and thus

1
ε
µε(Bε) ≥

∫
Bc7

W (ũε) dx ≥ c7L2(Bc7) = c8. (3.49)

Let t1 > 0 be a constant to be determined shortly. We claim that µε(Br)/r ≥
c8/2 for ε ≤ r ≤ t1ε

ι. To derive a contradiction assume that there exists a
constant r1 with ε ≤ r1 ≤ t1ε

ι satisfying

1
r1

µε(Br1) =
c8

2
.
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By continuity of 1
rµε(Br) with respect to r, there exists r0 with ε ≤ r0 < r1

satisfying 1
r0

µε(Br0) = c8 and c8
2 ≤ 1

rµε(Br) ≤ c8 for r0 ≤ r ≤ r1. By
Lemma 3.1, Proposition 3.6 and 3.7, for ε ≤ s ≤ r ≤ t1ε

ι,

(1 + δ)
1
r
µε(Br) − (1 − δ)

1
s
µε(Bs)

≥ −(
2
δ

+ 1)a1r −
∫ r

s
c4ε

−ιdr −
∫ r

s

c5ε
β2
2

r
{1 +

1
r
µε(Br)}dr.

(3.50)

Using (3.50) with s = r0 and r = r1 as well as r1 ≤ t1ε
ι we obtain

c8

2
(3δ − 1) ≥− (

2
δ

+ 1)a1t1ε
ι − c4t1 − c5ε

β2
2 (1 + c8) log(

t1ε
ι

ε
). (3.51)

Set δ = 1
6 so the left-hand side of (3.51) is equal to − c8

4 . Choose t1 small
so the right-hand side of (3.51) is greater than − c8

4 for sufficiently small ε.
This leads to a contradiction. We set c6 = c8/2.

Next we estimate the discrepancy ξε(vε) for ‘large’ r, namely, for t1ε
ι ≤ r.

The proof is a suitable modification of [19, Prop.3.5].

Proposition 3.9. Set β4 = min{2 − 2β2, 2β2, β3 − ι} > 0. There exist
constants c9 > 0 and ε4 > 0 such that, if Br ⊂ V , t1ε

ι ≤ r ≤ 1 and
0 < ε ≤ ε4∫

Br

{ξε(vε)}+ dx ≤ c9

(
rεβ3−ι + ε2−2β2 + εβ4µε(Br)

)
. (3.52)

Proof. We estimate the integral on three domains,

A = {x ∈ Br \ Br−εβ3}, B = {x ∈ Br−εβ3 |dist({|uε | ≤ α}, x) < εβ3},

C = {x ∈ Br−εβ3 |dist({|uε | ≤ α}, x) ≥ εβ3}.

Case 1. (estimate on A)
By Proposition 3.6 and L2(A) ≤ crεβ3 ,∫

A
{ξε(vε)}+ dx ≤ c5ε

−ιL2(A) ≤ crεβ3−ι. (3.53)

Case 2. (estimate on B)
We first estimate L2(B). We apply Vitali’s covering lemma to the family
of balls {Bεβ3 (x)}x∈{|uε|≤α}∩B (which covers B), so that {Bεβ3 (xi)

}N
i=1 is a

19



pairwise disjoint subset of the family and so that B ⊂ ∪N
i=1B5εβ3 (xi). Then

we have
L2(B) ≤ c(5εβ3)2N = cNε2β3 . (3.54)

Since ι < β3 (Remark 3.4), εβ3 < t1ε
ι for all sufficiently small ε. Thus by

Theorem 3.8
c6ε

β3 ≤ µε(Bεβ3 (xi))

holds for each i = 1, ..., N . Since they are pairwise disjoint, summing over i
we have

Nc6ε
β3 ≤ µε(Br) (3.55)

and (3.54) and (3.55) show that

L2(B) ≤ cεβ3µε(Br). (3.56)

Finally, with Proposition 3.6 and (3.56)∫
B
{ξε(vε)}+ dx ≤ c4ε

−ιL2(B) ≤ cεβ3−ιµε(Br). (3.57)

Case 3. (estimate on C)
We define a Lipschitz function ρ as follows;

ρ(x) = min{1, 2ε−β3dist({|x| ≥ r − εβ3/2} ∪ {|uε| ≤ α}, x)}.

ρ is 0 on the set {|x| ≥ r − εβ3/2} ∪ {|uε| ≤ α}, 1 on C and |∇ρ| ≤ 2ε−β3 .
Using this ρ, we estimate 1

2ε|∇vε|2. By (3.18) and (3.20), vε (without scaling)
satisfies −ε∆vε + W ′(vε)

ε = g where g = fε ∗ψε1+β2 + W ′(vε)
ε − W ′(uε)

ε ∗ψε1+β2 .
Differentiating this equation with respect to the k-th variable, multiplying
it by Dkvερ

2 and integrating on Br, we have∫
(ε∆Dkvε)Dkvερ

2 dx =
∫

(
W ′′(vε)

ε
Dkvε − Dkg)Dkvερ

2 dx. (3.58)

By integrating by parts, the left-hand side of (3.58) is∫
(ε∆Dkvε)Dkvερ

2 dx = −ε

∫
|∇2vε|2ρ2 dx − 2ε

∫
DikvεDkvερDiρ dx.

(3.59)
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Since W ′′ ≥ κ on {|uε| ≥ α} and κ
2 ≥ sup |W ′′′|εγβ2 for sufficiently small ε,

by Cauchy’s inequality, the right-hand side of (3.58) is∫
(
W ′′(vε)

ε
Dkvε − Dkg)Dkvερ

2 dx

≥
∫

W ′′(uε)
ε

|∇vε|2ρ2 − |W ′′(vε) − W ′′(uε)|
ε

|∇vε|2ρ2 − |∇g||∇vε|ρ2 dx

≥
∫

κ|∇vε|2

ε
ρ2 − sup |W ′′′|εγβ2

|∇vε|2

ε
ρ2 dx −

∫
|∇g||∇vε|ρ2 dx

≥
∫

κ|∇vε|2

2ε
ρ2 dx −

∫
(
ε

κ
|∇g|2ρ2 +

κ

4ε
|∇vε|2ρ2) dx.

(3.60)

By (3.58), (3.59) and (3.60), we obtain∫
κ|∇vε|2

4ε
ρ2 dx +

ε

2

∫
|∇2vε|2ρ2 dx

≤ 2ε

∫
|∇vε|2|∇ρ|2 dx +

ε

κ

∫
|∇g|2ρ2 dx.

(3.61)

We estimate the L2-norm of ∇g in a similar manner as in the proof of
Proposition 3.6 and 3.7. Now the scale is different from Proposition 3.6 and
3.7. By inserting the term ±∇W ′(uε)

ε like (3.25),∫
B

r− εβ3
2

|∇g|2 dx ≤
∫

B
r− εβ3

2

|∇(fε ∗ ψ1+εβ2 )|2 dx

+
∫

B
r− εβ3

2

|∇(
W ′(vε)

ε
− W ′(uε)

ε
)|2 dx

+
∫

B
r− εβ3

2

|∇(
W ′(uε)

ε
− W ′(uε)

ε
∗ ψ1+εβ2 )|2 dx

:= (I3) + (II3) + (III3).

(3.62)

By (A.2) like (3.26),
(I3) ≤ cε−2β2−1. (3.63)

For (II3) we have

|∇(W ′(vε) − W ′(uε))| ≤ sup |W ′′||∇vε −∇uε| + c(sup |W ′′′|)εγβ2 |∇uε|.
(3.64)
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By the similar calculation to (3.28),∫
B

r− εβ3
2

|∇vε −∇uε|2 dx ≤ ε2β2+2

∫
B

r− εβ3
2 +ε1+β2

|∇2uε|2 dx. (3.65)

Write r̃ = r − εβ3

2 + ε1+β2 . We estimate
∫
Br̃

|∇2uε|2 dx by the same way as
the proof of Proposition 3.7. By scaling B

er to B1 by x̃ = x
r̃ and apply the

W 2,2 estimate to ∆uε = r̃2W ′(uε)
ε2 − r̃2fε

ε , we obtain after scaling back,∫
Br̃

|∇2uε|2 dx ≤ 1
r̃4

∫
Br̃

|uε|2 dx +
1
ε4

∫
Br̃

(W ′(uε))2 dx +
1
ε2

∫
Br̃

f2
ε dx.

(3.66)
Since |W ′(uε)|2 ≤ cW (uε) and B

er ⊂ Br,

1
ε4

∫
Br̃

|W ′(uε)|2 dx ≤ 1
ε3

∫
Br̃

cW (uε)
ε

dx ≤ c

ε3
µε(Br) (3.67)

Thus by (3.66), (3.67) and (A.2), we obtain∫
Br̃

|∇2uε|2 dx ≤ c(a1)(ε−1 + ε−3µε(Br)). (3.68)

By (3.65) and (3.68),∫
B

r− εβ3
2

|∇uε −∇vε|2 dx ≤ c(ε2β2+1 + ε2β2−1µε(Br)). (3.69)

As the L2 norm of the second term of (3.64) can be estimated by µε(Br),
we obtain

(II3) =
∫

B
r− εβ3

2

|∇(
W ′(uε)

ε
− W ′(vε)

ε
)|2 dx ≤ c(ε2β2−1 + ε2β2−3µε(Br)).

(3.70)
For (III3),

|∇(W ′(uε(x))) −∇(W ′(uε(x)) ∗ ψε1+β2 )|2

≤
∫

B
ε1+β2

|∇(W ′(uε(x))) −∇(W ′(uε(x − y)))|2ψε1+β2 (y)dy

≤ 2
∫

B
ε1+β2

(sup |W ′′|)2|∇uε(x) −∇uε(x − y)|2ψε1+β2 (y)dy

+ 2
∫

B
ε1+β2

(c sup |W ′′′|)2ε2β2γ |∇uε(x)|2ψε1+β2 (y) dy.

(3.71)
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In the same way as we obtained (3.69) we have

(III3) ≤ c(ε2β2−1 + ε2β2−3µε(Br) + ε2β2γ−3µε(Br))

≤ c(ε2β2−1 + ε2β2−3µε(Br)).
(3.72)

Estimates (3.62), (3.63), (3.70) and (3.72) show∫
B

r− εβ3
2

|∇g|2 dx ≤ c(ε−2β2−1 + ε2β2−3µε(Br)). (3.73)

With |∇ρ| ≤ 2ε−β3 , (3.61) and (3.73), we obtain∫
C

κ|∇vε|2

4ε
dx ≤ cε1−2β3

∫
B

r−εβ3/2

|∇vε|2 dx +
c

κ
(ε−2β2 + ε2β2−2µε(Br)).

Since
∫
B

r−εβ3/2

ε|∇vε|2
2 dx ≤

∫
Br

ε|∇uε|2
2 dx ≤ µε(Br), multiplying above by

2ε2κ−1, we have∫
C
{ξε(vε)}+ dx ≤

∫
C

ε|∇vε|2

2
dx ≤ c(ε2−2β3µε(Br) + ε2β2µε(Br) + ε2−2β2).

(3.74)
Combining (3.53), (3.57) and (3.74), and recalling the definition of β4, we
obtain the desired estimate.

Next, we obtain the lower bound of the energy density ratio for t1ε
ι ≤

r ≤ t2.

Theorem 3.10. There exist constants c10 > 0, t2 > 0 and ε5 > 0 such that
if Br(x0) ⊂ V, |uε(x0)| < α and ε ≤ ε5, then for t1ε

ι ≤ r ≤ t2,

c10 ≤ 1
r
µε(Br(x0)).

Proof. By Theorem 3.8, c6 ≤ 1
rµε(Br) with r = t1ε

ι. The proof of the claim
is similar to that of Theorem 3.8. Let t2 > 0 be a constant to be determined
shortly. We claim that µε(Br)/r ≥ c6/2 for t1ε

ι ≤ r ≤ t2. To derive a
contradiction assume that there exists a constant r3 with t1ε

ι ≤ r3 ≤ t2
satisfying

1
r3

µε(Br3) =
c6

2
.
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By continuity of 1
rµε(Br) with respect to r, there exists r2 with t1ε

ι ≤ r2 < r3

satisfying 1
r2

µε(Br2) = c6 and c6
2 ≤ 1

rµε(Br) ≤ c6 for r2 ≤ r ≤ r3. By Lemma
3.1, Proposition 3.7 and 3.9, for t1ε

ι ≤ s ≤ r ≤ t2,

(1 + δ)
1
r
µε(Br) − (1 − δ)

1
s
µε(Bs)

≥ −(
2
δ

+ 1)a1r −
∫ r

s
ρ−2{c9(ρεβ3−ι + ε2−2β2 + εβ4µε(Bρ))

+ c5ε
β2
2 (ρ + µε(Bρ))} dρ.

(3.75)

Using (3.75) with s = r2 and r = r3 as well as r3 ≤ t2 we obtain

c6

2
(3δ − 1) ≥− (

2
δ

+ 1)a1t2 − c9{εβ3−ι log(
r3

r2
) + ε2−2β2−2ι t2

t21

+ c6ε
β4 log(

r3

r2
)} − c5ε

β2
2 log(

r3

r2
)(1 + c6).

(3.76)

Set δ = 1
6 so the left-hand side of (3.76) is equal to − c6

4 . Choose t2 small
so the right-hand side of (3.76) is greater than − c6

4 for sufficiently small ε.
This leads to a contradiction. We set c10 = c6/2.

Similarly, we can also show the upper bound of the energy density ratio.

Proposition 3.11. There exist constants c11 > 0 and ε6 > 0 such that if
Br(x0) ⊂ V, |uε(x0)| < α and ε ≤ ε6, then for ε ≤ r ≤ t2,

1
r
µε(Br(x0)) ≤ c11.

Proof. By (A.1), we obtain 1
t2

µε(Bt2) ≤ E0
t2

where t2 is the same constant
as Theorem 3.10. By using Proposition 3.7 and 3.9 for discrepancy term
in (3.1), and by the similar proof to Theorem 3.8 and 3.10, we obtain the
upper bound.

Similarly, as the consequence of Proposition 3.7 and 3.9, by Proposition
3.11, we can establish the following monotonicity estimates.

Theorem 3.12. For Bs(x0) ⊂ Br(x0) ⊂ V , ε < s < r < t2,

(1 + δ)
1
r
µε(Br(x0)) − (1 − δ)

1
s
µε(Bs(x0))

≥ −(
2
δ

+ 1)a1r +
∫ r

s

1
ρ2

∫
Bρ(x0)

(
W (uε)

ε
− ε|∇uε|2

2

)
+

dxdρ − K(ε).

(3.77)

Here, K(ε) satisfies limε→0 K(ε) = 0.
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4 Rectifiability of limit interface

In this section we show that the support of the limit measure µ is a 1-
rectifiable set and that it has generalized L2 curvature expressed as the
Radon-Nikodym derivative as we described after Theorem 1.1. Define the
(signed) vector-valued measure ναβ on U

ναβ(φ) = lim
i→∞

∫
(εi

∂uεi

∂xα

∂uεi

∂xβ
)φdx

for φ ∈ Cc(U).

Theorem 4.1. There exist constants 0 < D1 ≤ D2 < ∞ and t2 > 0 which
depend only on E0, a1, dist(V, ∂U) and W such that

D1r ≤ µ(Br(x)) ≤ D2r

for all 0 < r < t2 and x ∈ suppµ with Br(x) ⊂ V .

Proof. The existence of D2 follows immediately from Proposition 3.11. We
show the existence of D1. Let x0 ∈ suppµ. We claim that on passing
to a subsequence, there exist {xi}∞i=1 ⊂ V such that uεi(xi) ∈ [−α, α] and
xi → x0 as i → ∞. We show the claim by contradiction. Suppose there exists
s > 0 satisfying Bs(x0) ⊂ V and Bs(x0)∩ {|uεi | ≤ α} = ∅ for all sufficiently
large i. Suppose uεi > α without loss of generality. Let φ ∈ C1

c (Bs(x0)) be
a function satisfying φ = 1 on B s

2
(x0). Multiplying φ2(uεi − 1) to (1.2) and

using Cauchy’s inequality and (A.2), we obtain∫
B s

2
(x0)

W ′(uεi)
εi

(uεi − 1) + cεi|∇uεi |2 dx

≤ a
1/2
1

(∫
εiφ

2(uεi − 1)2 dx

)1/2

+ cεi sup |∇φ|2
∫

Bs(x0)
(uεi − 1)2 dx.

(4.1)

Since (u − 1)W ′(u) ≥ cW (u) for 2 > u > α for some c > 0, (4.1) shows
limi→∞ µεi(B s

2
(x0)) = 0, which is a contradiction to x0 ∈ suppµ. Thus for

r ≤ t2 Theorem 3.10 shows

1
r
µ(Br(x)) ≥ lim

i→∞

1
r
µεi(Br(x)) ≥ lim

i→∞

1
r
µεi(B r

2
(xi)) ≥ c10/2.

We set D2 = c10/2.
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From the proof of Theorem 4.1, next proposition follows.

Proposition 4.2. uεi → +1 or uεi → −1 uniformly on each compact subset
of U\suppµ and supp ‖∂{u0 = 1}‖ ⊂ suppµ, where u0 = limi→∞ uεi and
‖∂{u0 = 1}‖ is a measure on U defined by ‖∂{u0 = 1}‖(U) =

∫
U |Du0|.

(For the details of the measure
∫
U |Du0|, see [7].)

The proof of next proposition is similar to [19, Proposition 4.3] but we
include it for the convinence of the reader.

Proposition 4.3.

lim
i→∞

∫
V
|ξεi(uεi)| dx = 0. (4.2)

Proof. Let |ξ| be a Radon measure defined as the limit of |ξεi(uεi)|. We need
to prove that |ξ| = 0. First we show

lim inf
r→0

1
r
|ξ|(Br(x)) = 0 (4.3)

for all x ∈ supp |ξ| by contradiction. Thus we assume that there exist
x0 ∈ supp |ξ|, R > 0 and b > 0 with |ξ|(Br(x0)) ≥ br for 0 < r < R. Fix δ
(e.g. δ = 1/2) and fix r1 = min{R, t2} and

r2 = r1 exp[−4
b
{(2

δ
+ 1)a1r1 + 4D2}]. (4.4)

By Theorem 4.1 and the definition of |ξ|, we may choose large enough i such
that t1ε

ι
i ≤ r2 and

1
τ

∫
Bτ (x0)

εi|∇uεi |2

2
+

W (uεi)
εi

dx ≤ 2D2,
1
τ

∫
Bτ (x0)

|ξεi(uεi)| dx ≥ b

2

for all r2 ≤ τ ≤ r1. By Propositon 3.7 and 3.9 we have for r2 ≤ τ ≤ r1

1
τ

∫
Bτ (x0)

{ξεi(uεi)}+ dx ≤ o(1)

as i → ∞. Thus for all large i and r2 ≤ τ ≤ r1 we have

1
τ

∫
Bτ (x0)

(
W (uεi)

εi
− εi|∇uεi |2

2

)
+

dx

≥ 1
τ

∫
Bτ (x0)

|ξεi(uεi)| dx − 1
τ

∫
Bτ (x0)

{ξεi(uεi)}+ dx ≥ b

4
.

(4.5)
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By Theorem 3.11 with s = r2 and r = r1 and using (4.5) we obtain

(1 + δ)2D2 ≥ −(
2
δ

+ 1)a1r1 +
b

4
log

r1

r2
. (4.6)

By (4.4), the right-hand side of (4.6) is estimated from below by 4D2. This
is a contradiction. The claim with Theorem 4.1 shows

lim inf
r→0

|ξ|(Br(x))
µ(Br(x))

≤ lim inf
r→0

|ξ|(Br(x))
D1r

= 0

for all x ∈ supp|ξ|. A standard result in measure theory then shows that
|ξ| = 0.

Next we show that the limit measure µ has a well-defined curvature.

Theorem 4.4. The support of µ is a 1-rectifiable set. Moreover, η defined
as the vector-valued limit measure of {fεi∇uεi}∞i in Sect.1 is absolutely con-
tinuous with respect to µ. f = dη

dµ ∈ L2(µ) is the generalized curvature of µ
and satisfies ∫

|f |2 dµ ≤ lim inf
i→∞

1
εi

∫
|fεi |2 dx. (4.7)

Proof. We consider the rectifiability of suppµ first. By Proposition 4.3 and
by recalling the definitions (2.2), we have |µε − trace ναβ

ε | = |ξε(uε)| → 0 in
L1

loc(U). This shows
trace ν = µ (4.8)

in the limit. The lower density bound (Theorem 4.1), (4.8) and the rec-
tifiability theorem (Propostion 2.1) show that suppµ is a 1-rectifiable set
and

Φ(x) = proj⊥Tx(supp µ)(x), (4.9)

where Φ = dν
dµ ∈ L∞(µ,F). The fact that η is absolutely continuous with

respect to µ follows from(∫
φd|η|

)2

≤ lim inf
i→∞

1
εi

∫
|fεi |2 dx lim

i→∞

∫
φ2εi|∇uεi |2 dx ≤ a1

∫
φ2d µ

(4.10)
for φ ∈ Cc(U), where we used (A.2) and (4.2). Moreover, by taking supre-
mum of the left-hand side over φ with

∫
φ2 dµ ≤ 1, (4.10) shows (4.7). To

show that f is the curvature of µ, (2.4-5) gives∫
divφdµεi −

∫
∂φα

∂xβ
dναβ

εi
= −

∫
φ · ∇uεifεi dx (4.11)
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for φ ∈ C1
c (U,R2). The limit of (4.11) gives∫

divφdµ −
∫

∂φα

∂xβ
dναβ = −

∫
φ · f dµ. (4.12)

By (4.9), the left-hand side is
∫

divTx(suppµ)φ dµ, where the integrand is the
divergence restricted to the tangent line which exists a.e. on supp µ. The
relation (4.12) shows that f is the generalized (mean) curvature in the sense
of varifold [1].

5 Integrality of the limit interface

The remaining part of the paper concerns (iii) of Theorem 1.1, namely, we
need to prove that the densities of the measure µ are integer multiple of
2σ for a.e. on suppµ. The proof is very similar to [8, Section 5] though
one needs to modify the argument as in [15, Section 5]. Thus we write the
outline and often omit the details.

Lemma 5.1. Suppose B2 ⊂ V . Given s > 0 there exist constants b > 0 and
ε9 > 0 depending only on a1, E0, W and s such that∫

B1∩{|uε|≥1−b}

(
ε|∇uε|2

2
+

W (uε)
ε

)
dx ≤ s (5.1)

if ε ≤ ε9.

Proof. The estimate for
∫
B1∩{|uε|≥1−b}

W (uε)
ε dx can be obtained by the same

argument as in [20, Prop. 4.5]. To estimate the gradient term, one shows
that replacing uε by vε causes a small error, which can be estimated as
in Section 3. One then uses (3.19) to show that the gradient term is also
small.

We define T : R2 → R by T (x1, x2) = x1 and T⊥ : R2 → R by
T⊥(x) = x2. Also we define n = (n1, n2) = ∇u

|∇u| where |∇u| 6= 0 and
n = (0, 0) where |∇u| = 0.

Lemma 5.2. Suppose

(1) N ≥ 1 is an integer, Y is a subset of R2, 0 < R < ∞, 1 < M < ∞,
0 < a < ∞, 0 < ε < 1, 0 < η < 1, 0 < E0 < ∞ and −∞ ≤ t1 < t2 ≤
∞.
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(2) Y has no more than N + 1 elements, T (x) = 0 and t1 + a < T⊥(x) <
t2 + a for all x ∈ Y and |x − x̃| > 3a for any distinct x, x̃ ∈ Y .

(3) (M + 1)diamY < R, and denote R̃ = MdiamY .

(4) On {y ∈ R2 |dist(y, Y ) < R}, uε and fε satisfy (1.2),
∫
BR(x) |fε|2 dx ≤

ηε and
∫ R
a

1
r2

∫
Br(x){ξε(uε)}+ dxdr ≤ η for each x ∈ Y .

(5) For each x ∈ Y ,∫ R

0

dτ

τ2

∫
Bτ (x)∩{y2=tj}

|eε(uε)(y2−x2)−ε(y−x) ·∇uεD2uε| dH1(y) ≤ η

(5.2)
for j = 1, 2. Here eε(uε) = ε

2 |∇uε|2 + W (uε)
ε .

(6) For each x ∈ Y and a ≤ r ≤ R,∫
Br(x)

|ξε(uε)| + (1 − (n2)2)ε|∇uε|2 dy ≤ ηr (5.3)

and ∫
Bτ (x)

ε|∇uε|2 dy ≤ E0r. (5.4)

Then the following hold:

(A) There exists t3 ∈ (t1, t2) such that |T⊥(x) − t3| ≥ a and∫
eR

0

dτ

τ2

∫
Bτ (x)∩{y2=t3}

|eε(uε)(y2 − x2) − ε(y − x) · ∇uεD2uε| dH1(y)

≤ 3(N + 1)NM(η + E
1
2
0 η

1
2 )

(5.5)

holds for each x ∈ Y .

(B) Define Y1 = Y ∩{x | t1 < T⊥(x) < t3}, Y2 = Y ∩{x | t3 < T⊥(x) < t2},
S0 = {x | t1 < T⊥(x) < t2 and dist(Y, x) < R},
S1 = {x | t1 < T⊥(x) < t3 and dist(Y1, x) < R̃},
S2 = {x | t3 < T⊥(x) < t2 and dist(Y2, x) < R̃},
Then Y1 and Y2 are non-empty and for all 0 < δ < 1

1

R̃
{µε(S1) + µε(S2)}

≤ (1 +
1
M

)(
1

1 − δ
){(1 + δ)

1
R

µε(S0) + (
2
δ

+ 1)ηR + 3η}.
(5.6)
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Proof. Set S = {t1 < T⊥(x) < t2}. We establish the monotonicity formula
restricted on S. Let ρ(y) : R2 → R be a smooth approximation to the
charactaristic function of S. For x ∈ Y we may assume x = 0 by a suitable
translation. Let ζ be a smooth approximation to the characteristic function
of (−∞, 1). We substitute φ = yζ( |y|r )ρ(y) into (3.2) and multiply the result
by − 1

r2 . After letting ζ → χ(−∞,1) and ρ → χS and by similarly proceeding
as in Lemma 3.1, we obtain for 0 < δ < 1

(1 − δ)
1
s
µε(Bs ∩ S) ≤ (1 + δ)

1
R

µε(BR ∩ S) + (
2
δ

+ 1)ηR

+
∫ R

s

1
r2

∫
Br∩S

{ξε(uε)}+ dxdr

+
∫ R

s

1
r2

∫
Br∩∂S

|y2eε(uε) − εD2u(y · Du)| dH1(y)dr.

(5.7)

By (4) and(5) applied to (5.7) we obtain

(1 − δ)
1
s
µε(Bs ∩ S) ≤ (1 + δ)

1
R

µε(BR ∩ S) + (
2
δ

+ 1)ηR + 3η. (5.8)

By the definition of R̃, S1 ∪ S2 ⊂ B
( eR+diamY )

∩ S ⊂ S0. Thus by (5.8) we
obtain

1

R̃
{µε(S1) + µε(S2)} ≤ 1

R̃
µε(B( eR+diamY )

∩ S)

≤ 1

R̃
(
R̃ + diamY

1 − δ
){(1 + δ)

1
R

µε(S0) + (
2
δ

+ 1)ηR + 3η}.
(5.9)

Since R̃ = MdiamY we obtain (B). The proof of (A) is similar to [8, Lemma
5.4].

Next lemma can be proved by using Lemma 5.2 inductively.

Lemma 5.3. Corresponding to each R, E0, s and N such that 0 < R < ∞,
0 < E < ∞, 0 < s < 1 and N is a positive integer, there exists η > 0 with
the following property.
Assume the following.

(1) Y ⊂ R2 has no more than N + 1 elements, T (y) = 0 for all y ∈ Y,
a > 0, |y − z| > 3a for all y, z ∈ Y and diamY ≤ ηR.

(2) On {x ∈ R2 |dist(x, Y ) < R}, uε and fε satisfies (1.2),
∫
|fε|2 dx ≤ ηε

and ∫ R

a

dr

r2

∫
Br(x)

{ξε(uε)}+ dy ≤ ηR for each x ∈ Y.
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(3) For each y ∈ Y and a ≤ r ≤ R,∫
Br(y)

|ξε(uε)| + (1 − (ν2)2)ε|∇uε|2dy ≤ ηr,

∫
Br(x)

ε|∇uε|2 dy ≤ E0r.

Then we have∑
y∈Y

1
a
µε(Ba(y)) ≤ s +

1 + s

R
µε({x |dist(Y, x) < R}). (5.10)

The next Lemma 5.4 is identical to [15, Lemma 5.5] .

Lemma 5.4. Given 0 < s < 1 and 0 < b < 1, there exist 0 < η < 1 and
1 < L < ∞, depending on W, with the following property. Let 0 < ε < 1.
Suppose uε and fε satisfies (1.2) on B4εL(0), with

∫
|f |2 dx ≤ εη, |u(0)| ≤

1 − b and ∫
B4εL(0)

(|ξε(uε)| + (1 − (n2)2)ε|∇uε|2) dy ≤ η(4εL).

Then we have

|uε(0, x2)| ≥ 1 − b

2
for Lε ≤ |x2| ≤ 3Lε, (5.11)∣∣∣∣ 1

2Lε
µε(BLε(0)) − 2σ

∣∣∣∣ ≤ s (5.12)

and ∣∣∣∣∫ Lε

−Lε

W (u(0, x2))
ε

dx2 − σ

∣∣∣∣ ≤ s. (5.13)

Proof. We rescale the domain by ε for convenience. Let q : R2 → (−1, 1)
be the unique solution of the ODE

q′(t) = {2W (q(t))}
1
2 for t ∈ R

q(0) = u(0).
(5.14)

We note that∫ ∞

−∞

|q′(t)|2

2
dt =

∫ ∞

−∞
{W (q(t))

2
}

1
2 q′(t) dt =

∫ 1

−1
{W (s)

2
}

1
2 ds = σ. (5.15)
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We also identify q on R2 by q(x1, x2) = q(x2). Let b and s be given. For
large L, we have∣∣∣∣ 1

2L

∫
BL

|∇q|2

2
+ W (q) dx − 2σ

∣∣∣∣ ≤ s

8
,

∣∣∣∣∫ L

−L
W (q(t)) dt − σ

∣∣∣∣ ≤ s

8
, (5.16)

and
|q(t)| ≥ 1 − b

4
for L ≤ t ≤ 3L. (5.17)

We show the claim of the theorem by contradiction. Assume that there
exists a sequence {ηi}∞i=1 ⊂ R and {ũi} with ηi → 0 as i → ∞ satisfying for
0 < L < ∞,

|ũi(0)| ≤ 1 − b,

∫
BL

|εif̃i|2 dx ≤ ηiεi, (5.18)∫
BL

|ξ(ũi)| + (1 − (n2)2)|∇ũi|2 dx ≤ 4ηiL (5.19)

but one of the following fails,∣∣∣∣ 1
2L

∫
BL

|∇ũi|2

2
+ W (ũi) dx − 2σ

∣∣∣∣ ≥ s,

∣∣∣∣∫ L

−L
W (ũi(0, x2)dx2 − σ

∣∣∣∣ ≥ s

(5.20)
or there exist x2 with L ≤ |x2| ≤ 3L satisfying

|ũi(0, x2)| ≤ 1 − b

2
. (5.21)

By W 2,2 bound there exists a subsequence of {ũi} (denoted by the same
notation) converging weakly to ũ∞ ∈ W 2.2. By (5.18) ũ∞ satisfies

−∆ũ∞ + W ′(ũ∞) = 0. (5.22)

By (5.19) we also have
∫
BL

|D1eu∞|2
2 dx = 0 and |D2ũ∞|2 = 2W (ũ∞). As we

may assume D2ũ∞ > 0, we obtain D2ũ∞ = {2W (ũ∞)}
1
2 . Thus, ũ∞ = q.

Since ũ∞ satisfies (5.15-17), and the convergence is strong in W 1,p for any
1 ≤ p < ∞, we obtain a contradiction to (5.20-21).

The proof of Theorem 5.5 proceeds just like [15, Prop. 5.2].

Theorem 5.5. The density of the limit measure µ is an integer multiple of
σ for H1 a.e. on suppµ.
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Proof. By the rectifiability of suppµ and the lower density bound µ has an
approximate tangent line for H1 a.e. on suppµ. Fix such a point and choose
coordinates so that the point is the origin and the approximate tangent line
is P = {x = (x1, x2) |x2 = 0}. We consider the scaling ũεi(x) = uεi(rix)
and f̃εi(x) = fεi(rix) with ri → 0. Let ε̃i = εi

ri
. ũεi satisfies

−ε̃i∆ũεi +
W ′(ũεi)

ε̃i
= rif̃i.

Define a sequence of measures µri

eεi
by eεi|∇eui|2

2 + W (eui)
eεi

dx. By the rectifiability
of suppµ we may choose a suitable subsequence (by choosing smaller εi if
necessary)

lim
i→∞

µri

eεi
(B1(0)) = θ

∫
P∩B1

dH1 = 2θ. (5.23)

Here, θ is density of µ, that is,

θ = lim
r→0

1
2r

µ(Br(0)). (5.24)

Write ũεi = uεi and µri

eεi
= µεi . Since ν11 = 0, we obtain

lim
i→∞

∫
B3(0)

(1−n2
2)

εi|∇uεi |2

2
dx = lim

i→∞

∫
B3(0)

εi(D1uεi)
2

2
dx =

∫
B3(0)

dν11 = 0.

(5.25)
Suppose N is the smallest positive integer greater than θ

2σ . Fix an arbitrary
small s > 0. By Lemma 5.1 we may choose b > 0 so that∫

B3(0)∩{|uεi |≥1−b}

(
εi|∇uεi |2

2
+

W (uεi)
εi

)
dx ≤ s (5.26)

for sufficiently large i. With those s, b and R = 1, we choose η and L via
Lemma 5.3 and 5.4. For large i we define

Gi = B2(0) ∩ {|uεi | ≤ 1 − b}∩{
x

∣∣∣∣∣
∫

Br(x)
|ξε(uεi)| + (1 − (n2)2)εi|∇uεi |2 dx ≤ ηr for all 4εiL ≤ r ≤ 1

}
.

(5.27)

By Besicovich’s covering theorem and monotonicity formula,

µεi(B2(0) ∩ {|uεi | ≤ 1 − b} \ Gi) + L1(T (B2(0) ∩ {|uεi | ≤ 1 − b} \ Gi))

≤ c

η

∫
B3(0)

|ξε(uεi)| + (1 − n2
2)εi|∇uεi |2

(5.28)
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which goes to 0 as i → ∞ by (4.2) and (5.25). For any x = (x1, 0) ∈ B1(0)∩P
define Y = {x1} × ∪m

k=1{sk} ⊂ T−1(x) ∩ Gi with s1 < s2 < · · · < sm where
m is the largest integer so the each element of Y is separated by at least
3Lεi. We prove that Y does not contain more than N − 1 elements. First
note that all the assumptions for applying Lemma 5.3 and 5.4 are satisfied
. Since

sup
x∈B1(0)∩P

1
2

∫
B1(x)

(
εi|∇ui|2

2
+

W (ui)
εi

) dy ≤ θ + s (5.29)

for large i, Y having more than N − 1 elements would imply that

2σN ≤ s(N + 1) + (1 + s)(θ + s) (5.30)

by Lemma 5.4. This would be a contradiction to θ
2σ < N for sufficiently

small s depending only on N . Finally

2θ = lim
i→∞

µεi(B1(0)) = lim
i→∞

µεi(B1(0) ∩ {|uεi | ≤ 1 − b} ∩ Gi)

+ lim
i→∞

µεi(B1(0) ∩ {|uεi | ≤ 1 − b} \ Gi) + lim
i→∞

µεi(B1(0) ∩ {|uεi | ≥ 1 − b}).

(5.31)

Note that m ≤ N − 1. As T−1(x) ∩ Gi ⊂ {x1} × ∪m
k=1(sk − Lεi, sk + Lεi),

by Lemma 5.4, we obtain

lim
i→∞

µεi(B1(0) ∩ {|uεi | ≤ 1 − b} ∩ Gi)

≤ lim
i→∞

{∫
B1(0)∩Gi

|ξεi(uεi)| dy + 2
∫

B1(0)∩P

∫
T−1(x)∩Gi

W (uεi)
εi

dH1dy

}

≤ lim
i→∞

{∫
B1(0)∩Gi

|ξεi(uεi)| dy + 2
N−1∑
k=1

∫
B1(0)∩T (Gi)∩P

∫ sk+Lεi

sk−Lεi

W (uεi)
εi

dx2dx1

}
≤ s + 4(σ + s)(N − 1),

(5.32)

where we note that H1(B1) = 2. By (5.26) and (5.28), we obtain

lim
i→∞

µεi(B1(0)∩ {|uεi | ≤ 1− b} \Gi) + lim
i→∞

µεi(B1(0)∩ {|uεi | ≥ 1− b}) ≤ s.

(5.33)
Since s > 0 is arbitrary, 2θ ≤ 4σ(N −1). By the assumption of N we obtain
θ = 2σ(N − 1). This shows that the density at this point is integer multiple
of 2σ.
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