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A singular perturbation problem with integral
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Abstract

We consider a singular perturbation problem of Modica-Mortola
functional as the thickness of diffused interface approaches to zero.
We assume that sequence of functions have uniform energy and square-
integral curvature bounds in two dimension. We show that the limit
measure concentrate on one rectifiable set and has square integrable
curvature.
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1 Introduction

The Modica-Mortola functional [12] has been used widely as an approxi-
mation of hypersurface area of diffused interface, both in static and time-
dependent models and the functional often being coupled with other inter-
acting fields. After a suitable normalization it is defined for scalar-valued
function v : U C R™ — R by

E.(u) :/U5|V“|2 RO (1.1)

2 €

where W : R — [0,00) is a double-well potential with two equal minima
at £1 and € > 0 is a small parameter. In mathematical literature some of
the first rigorous results are given by Modica [11], Sternberg [18] and others
who proved that E. I'-converges to the area functional as ¢ — 0. Namely,
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consider a sequence of minimizers {u.} of E.(-), ¢ — 0, among functions
with [;; udz = m fixed. Here —|U| < m < |U| and |U| is the n-dimensional
volume of U. One expects that u. is close to +1 for the most part of U
and that it is advantageous to have as little transition region as possible.
It is also straightforward to see that the transition region should have the
thickness of order € for E. to be of constant order with respect to . The
aforementioned works show that there exist a converging subsequence and
the limit ug such that ug = £1 a.e. on U and ug minimizes the hypersurface
area of U N 0{up = 1} among such functions with equal integral value m.
Such area-minimizing hypersurfaces are known to be smooth constant mean
curvature hypersurfaces (CMC) if the dimension n of domain U is less than
8 and CMC with possible small singularities for n > 8 [7, 17]. The functional
E. approximates the hypersurface area in the sense that

lim e (u) = 20H" (U N {up = 1}),

where

1
o= /_1 VW (s)/2ds

and H" ! is the (n — 1)-dimensional Hausdorff measure. It is also proved
[10] that the limit of Lagrange multipliers

!
Ae = —eAug + T/stug)

has the geometric meaning in that
cH = )\0,

where \g = lim._,o A\: and H is the constant mean curvature of U N d{ug =
1}. It is of interest to study the limiting behavior of E. without the energy-
minimizing properties in view of applications to various dynamical problems.
In [8, 19, 20] motivated by the Cahn-Hilliard equation [4] they gave a geo-
metric characterization of limit interfaces without minimizing property but
with W1 Sobolev norm control of

fe = —eAu. + Wliu) (1.2)

where p > 5, which corresponds to the chemical potential field in the frame-
work of van der Waals-Cahn-Hilliard theory of phase transitions. The con-
trol of such quantity may be seen as an analogue of control of mean curvature



field in view of above result by Luckhaus and Modica [10] and also Schétzle
[16].

Recently there have been much interest in studying limit interface when
we have a control of

1 2
> i (1.3

in dimensions n < 3 as e — 0 [3, 9, 14, 5]. If one makes the ansatz that the
internal layer profile is the usual hyperbolic tangent shape, it is reasonable
to relate this quantity to the L? norm of the mean curvature of interface. In
general one expects as ¢ — 0 that the limit interface should have L? mean
curvature and that appropriately defined limit of f. should correspond to the
mean curvature. For this problem Moser [14] showed for dimension n < 3
with some technical monotonicity assumption that the limit interface is a
rectifiable varifold [1] with L? mean curvature. Bellettini and Mugnai [3]
considered the problem with radial symmetry assumption and showed that
the quantity (1.3) converges to the L? norm of mean curvature for the limit
interface as € — 0.

In this paper we extend the results of [3, 14] in that we make no assump-
tions on the sequence of functions {u.} except for the uniform bounds on
the energy (1.1) and L? norm of the chemical potential in the form (1.3),
and conclude essentially the same results as in [3, 14] for the limit interface.
Unfortunately we can prove the result only for n = 2. Here we state our
main theorem. A few minor assumptions are made on the function W (see
Sect. 2.1).

Theorem 1.1. Suppose U C R? is a bounded domain. Suppose a sequence

of functions {ue,}52, C W2(U) satisfies for {;}32, with lim; .ooe; =0

1
liminf E., (ue,) < oo, lim inf / | fo,|? da < o0. (1.4)
U

1—00 i—00  &;

Define a sequence of Radon measures on U by

| Ve, |2 Ug,
o) = [ o (204 Fed) g

€

for ¢ € C.(U). By the weak star compactness of bounded measures there
exists a subsequence (denoted by the same indices) {pe, }32, and the limit
Radon measure p on U. Then,

(i) ue, — £1 locally uniformly on U \ supppu.



(ii) There exist a closed countably 1-rectifiable set ¥ and H' measurable
function 0 defined on ¥ such that = 0H!|x.

(iii) 0/(20) is H' a.e. integer-valued on Y.

(iv) The generalized curvature f of u satisfies

1
[P <tmine = [ 17 P
U 1— 00 El U

For the definition of rectifiable set and generalized (mean) curvature see
[1, 17]. The function f can be obtained as follows. Define any vector-valued
limit measure of { f-, Vue, dz}22, as n. Note that the L' norms are uniformly
bounded by

1 1/2 1/2
/ |fe, Vue,| dz < </ |f€i|2daz) <el/ |Vu5i\2dx)
U & JU U

and (1.4). Since 7 is absolutely continuous with respect to u we define f
as the Radon-Nikodym derivative g—z. We show f is indeed the generalized
curvature of p with property (iv).

Though it appears to us that it is not stated explicitly in the literature,
any 1-dimensional integral varifold [1] with L? (p > 1) generalized curvature

should have support consisting of finite number of C’l’l_% curves possibly
meeting at isolated junction points. The proof should follow more or less
from stationary case studied by Allard and Almgren [2], where they proved
that stationary integral varifold has support which are fininte number of
lines with possible junction points.

The main point of the paper is to establish a properly scaled monotonic-
ity formula for the energy density, which was also essential in [8, 19, 20].
There we assumed the Sobolev WP norm for some p > 5 is bounded:

liminf [| f2; [[w1.e ) < o0
1—00

Though we do not have any control of derivatives of f., in this paper, we find
that we may still use many of the estimates in [8, 19, 20] if we regularize u.
appropriately. More specifically, we consider the convolution of u., us*\1+5,
where 9_1+5 is the usual mollifier scaled by el*8  for a carefully chosen 3 > 0.
The function still satisfies a similar equation while nonlinear term produces
error terms. The regularization gives some control of derivatives of f. . 145,
to which we apply estimates for the so-called discrepancy measure

5|vus|2 . W (ue)

Ee(ue) = 5 - (1.5)
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obtained in [19].

After the main part of the paper is completed we were informed that
Roger and Schétzle [15] obtained the similar results for n < 3 using different
estimates for the discrepancy measure. Since our method is different from
theirs we believe that it should have an independent interest.

2 Assumptions and preliminaries

In the following we set up the assumptions, recall various definitions and
the rectifiablity theorem due to Moser [13] which we use later in Section 4.

2.1 Assumptions

We assume that the double-well potential W : R — [0, 00) is a C? function
satisfying the following assumptions;

(i) W(1) =W(-1) =0,
(ii) there exists v € (—1,1) such that W' < 0 on (v,1) and W’ > 0 on
(_177)7
(iii) there exist a € (0,1) and s > 0 such that W”(s) > & for all |s| > a.

Under the assumption (1.4) we may assume that there exist constants Ejy
and aq such that

(A'l) EEi (u&) < EUa

(A.2) 8% Jo 1f)? do < ay
foralli=1,2,---. B
By defining u., () = ue,(g;x) and f;,(z) = f.,(siz), (1.2), (A.1) and (A.2)
are equivalent to B

5if€i = —Au, + W/(a5i> (2'1)
and

|V, |?

(A1) fye, —5= + W (i) dv < &' Ey,

(A.2) Juse, o2 de < &7ty

Throughout this paper, different positive constants will be denoted by the
same letter c. We write ¢(s) when it is helpful to write out the dependence
of c on s.



2.2 The generalized L? curvature functional

We find that it is convenient to work in the framework set out by Moser
[14]. In the following we only need results for n = 2.

Let F be the set of all symmetric, positive semidefinite real (n x n)-
matrices. We write M(U) for the set of all pairs M = (u,r) such that

(1) p is Radon measure on U,
(2) v is Radon measure on U with values in F and
(3) there exists a function ® € L>®(u, F) such that v = p|s.

In the following we set M., = (fie,, Ve;) With

5i|vu€¢|2 W(usz) 8 811,51. 8u€i
:U’Ei = ( 5 + € dZL', Ug_ =£; axa 8x5 d.%' (22)
and -
e, Oue,
6‘. 2z 7
af _ t x> 9zP 00
<I>6i - 8i|Vu5i‘2 + %/(ual) € L (/J’ENJ:) (23)

&
so that Ve, = fic, |¢.,. Continuing with general framework, for M = (u,v) €
M(U) define the linear functional
09°

M (p) = /U (divg dp— =5 dv®P) (2.4)

on C1(U;R™). The usual summation convention is assumed. The functional
dM is an analogue of the usual first variation [1] and it was introduced by
Moser [13]. Using (1.2) and integration by parts, one verifies that

SMe, () = — / 6 HP s, (2.5)
U
where f
H? o (2.6)
( 8:):/51

Now define the generalized L? curvature functional C as the functional on

M(U) by

C(M) = sup {<5M<¢>>2

¢ € CHU;R™), / ¢*P° dvP < 1} (27
U



C(M) corresponds to the usual L? norm square of mean curvature when M =
(1, v) is a pair of smooth objects, namely, u is an (n — 1)-Hausdorff measure
restricted to a smooth (n—1)-dimensional submanifold ¥ and ®(z) = p(z)®
p(z), where p(x) is the unit normal to the tangent space T,% at x. By (2.5)

(6M.,(9))? < /U HE HE e /U 9% 6P dvo

so that (2.6), (2.7) and (A.2) show
1
C(M.,) < [ HEHE v’ = 5/ |fo, | do < ay. (2.8)
U t JU

Write
CU)={M e MU)|C(M) < oo}.

Important subclass of €(U) we need is
€1 (U) ={M € &U) |tracev < u},
which has the following rectifiability property:

Proposition 2.1. ([14, Propostion 2.2]) If M = (u,v) € €1 (U), then the
set
Y={xeU: 6(z) >0}

is 1-rectifiable. Moreover,
m = (97'[1 LE.
If @ is such that v = p| e, then ®(x) = projiz(x) for p-almost every x € X.

Here 0(z) is the 1-dimensional density of pu:

o) = iy M,

where B,.(zr) = {y € R* |y — x| < r}.

The main task in this paper is to show that tracerv < p holds for the
limit measure pair (u,v) of {M,}?°, and 6(x) > ¢ > 0 uniformly on suppu,
which follows once we establish the monotonicity formula in Section 3.



3 Monotonicity formula

The main task of this section is to prove Theorem 3.10 which gives the
uniform lower bound of the scaled energy. It is the crucial ingredient for the
application of the rectifiability theorem, Proposition 2.1. In the following
we drop the index ¢ for simplicity.

Lemma 3.1. ([14, Lemma 2.2]) Define u., v. and &-(ue) as in (2.2) and
(1.5). For any § > 0 and for Bs(zg) C By, (mo) cUu,

(1+5) (B ( 0)) — (1—5) By (o))

(3.1)
+ Dayr —/ / < (ue) dadp.
Bp($0

Proof. We may assume zy = 0 by a suitable translation. Write B, = B,(0).
By (2.4) and (2.5), for any ¢ € C}(U;R?),

/ <div¢ dpe — ?fﬁ duaﬁ> + / ¢ HE dv2P = 0. (3.2)

Suppose h € C°(R) satisfies h(s) = 0 for s € [1,00). By substituting
o(x) = xh(lip‘) into (3.2), we obtain

1
2/hd,u5—/h trace dV5+/|az\h’ dpie
p
a®ah - af
- h —hx®HZ | dv]” =0.
plz|

By the definitions of y. and v< # Wwe obtain

2/hdu€ — /htrace dve
2
:/hdu£+/h<€|v;5| + W(:E)> d:v—/hs\Vua\Q dr  (3.4)

— [han~ [ewona.

Substituting (3.4) into (3.3) and multiplying both sides by — 2, we obtain

d (1 1 N N
dp( /hd,u,g p/hyc Hfdysﬁ)
1
- (v ) - e
p ||

(3.3)

(3.5)




Integrating over (s,r), we obtain

1 1 1
- ndiet s [rernae? =< [ = [ hat g e
1 d xal'ﬁ a o r 1

(3.6)

Let {h;}72, C C°(R) be a sequence of approximate functions for the char-

acteristic function of (—o00,1) and use h = hy, in (3.6). Since [ ;jph |x|)dp

converges to ﬁ for |z| € [s,r) and otherwise 0, we obtain

1 1 1 1
%@+/mwm%m_/mww
r T

T

ZL'al"B aHﬁ a
:éw<uw+\ [ /5”“Mp (3.7)

By ®° 1. = 127 and (2.8), we obtain for any § > 0

1 1
1 1 2 2
- / zHP dytP| < = / 2P0 dy, / HYHP dy®
PJB P \JB, B,

P

1
1 21 3.8
< - (/ e|z]?| Vue|? da:) ai (3:8)
P \JB,
<9 (B,) + 1P
= p,U«e p 5
and
aHEﬁ a0
/ T e gyl g/ T2 du§ﬂ+r/ HOHP v, (3.9)
B, \Bs || B, \Bs |z] Br\Bs
Using (3.8) and (3.9) in (3.7), we proved (3.1). O

Later we use the following L> estimates of u. away from 1.

Lemma 3.2. For each open set V CC U, there exist constants c; depending
only on W, dist(OU, V), k, Eyg and a1 such that

sup Jus| <1+ cies (3.10)
v

fore < 1.



Proof. Let x € V be arbitrary and set r = £dist(0U, z). Write B, = B,(z).
First we show

3
[(ue = 1) 4llz2(B, ) < ce2, (3.11)

where (ue — 1)+ = max{(u. — 1),0}. Let ¢ € C°(B,) be a smooth function
with ¢ =1 on B:. Multiplying (1.2) by (us — 1)4$? and by integration by
parts we obtain

/ 8’Vu5‘2¢2 + 2e(ue — 1)1 ¢Vu. - Vo
{ue>1}
W' (u.)

" (o= o= [ w17 de

{ue>1}
(3.12)

By applying Cauchy’s inequality to (3.12), for any § > 0

/ | Vue|?¢* +
{ue>1}

V 0
S fgony 317+ 2600~ PIOF + G268+l = 1)
{U5>1} -

WA (1, 1), da

(3.13)
By the assumption on W,
W (ug) > k(ue — 1)+ (3.14)
and
[ el — 0 PV6R s < ) oup Vo) [ W(u) do
{ue>1} Brn{ue>1}
< c(k,r)Eoe.
(3.15)
By (3.13-15) and (A.2),
€ 2 2 K0 2 2 a1 2
- dz + (= -2 1) 2 de < feEy+ 12
: /{u5>1}¢ Vuel? o+ (- 8)/{u6>1}¢ (ae = 1), de < {eiy + 91} e
Since 4 is arbitrary, we choose 6 = 5. Thus we have
/ (e — 1), ]2 dz < e(as, &, Eo, 7). (3.16)
Br

3

10



With a suitable choice of constant, (3.16) shows (3.11). Next we consider

U(z) = u(ex) and f(z) = f(ex) which satisfy (2.1). Set h(s) = s4 and
let {hr}?2, C C3(R) be a sequence of approximate functions for h with
hi(s) = 0 for s € (—o0,0] and hj, > 0, bl > 0. Consider the functions
hi o (ue(z) — 1). Using (2.1),
Ahy o (e — 1) = il o (u — 1)|V:|* + h}, o (. — 1)Ate > hj, o (T, — 1) AT,
> o (Ui — 1) (W' (W) — ef2) > —hj, o (U — 1)efe.
(3.17)

By the standard elliptic estimate (cf.[6, Theorem 8.17.]) applied to (3.17),
we obtain for any By C U/e

sup . o (i — 1) < (|l o (@ — Dl 2, + 1B}, © (@ — Defell2a,)-

By
2
By taking the limit k¥ — oo we obtain

sup(te — 1)+ < e([[(te — 1)+ z2(m,) + Hgfs”L?(Bl))'

1

2

~ 1
We have [[(@: — 1)+ z2(5,) < ce? from (3.11) and ||ef-|l12(5,) < aZe? by
(A.2). Thus

. 1
sup(ue — 1)+ < ce2.
.

With a suitable choice of ¢; we have

1
sup(ue — 1)+ < c¢je2.
\%4

Repeating the same arguement, we obtain supy |(u + 1)_| < c1e2, which
proves (3.10). O

Remark 3.3. In the following we often use the fact that the scaled function
iz has uniform C% estimate for any 0 < v < 1. This follows from (2.1)
and the standard W?? estimate

[ellw=28,) < cll@ell2s,) + W @)l|2s,) + lefell2s,)

as well as the Sobolev inequality (recalling n = 2)

tellcor () < () aellw22(m,)-

11



Remark 3.4. In the remaining part of the paper we fix constants as follows.
First fix
1
0<52<§, 0<y <1
Choose (31 > 0 to be small so that

1
0<§—52—517 0 <7yB2—20

hold. Fix By so that
0<Bo<b

and define

Lzmax{ﬁ1+ﬂ2+;,1—752+2ﬁ171—ﬁ0}-

We note that 0 < v < 1 by above choice. Finally fix B3 so that
L < B3 < 1.

We next quote the following from [19], which holds for W with the
properties stated in Sec. 2.1.

Lemma 3.5. ([19, Lemma 3.5]) There exist constants €1 > 0 and ¢z > 0

depending only on By, (1, cs3 and W with the following properties. Suppose
(A) V. € C3(B.-5,), g € CH(B.—5,) and e < &1 satisfy

—Av. + W' (0:) = eg
on B_—s, and

~ Vo |? ~
(B) SUpp U] < 14, Supp_ (‘ 5 - W(UE)) < cs.
Then

|V55|2 _ W ~ < 1—51 ﬂo
sup (@) ) < o P \lgllwras_y ) +e%).
3%5*31 :

The above estimate is derived via the Alexsandroff-Bakelman-Pucci es-
timate and it is essential that W is a double well potential.

2
Let us consider the estimate of the discrepancy measure & (u.) = (%—

W) Since we have no control of the derivative of f., we cannnot apply
Lemma 3.5 to u. directly. Thus we consider the regularization of wu.. Let
Y € C§°(R?) be a positive radial symmetric function with suppy C Bi(0)
and [g, ¥ (x)dz = 1. For € > 0, set ¢,144, () = mw(ﬁ) where (35 is
chosen in Remark 3.4. Next proposition follows from applying Lemma 3.5

to Us * Y148, .

12



Proposition 3.6. Define
Ve = Ug * ¢61+ﬂ2. (318)

For V.CC U there exist a constant 0 < g9 < €1 and ¢4 depending only on
W, dist(V,0U), Ey and a; satisfying that

supé.(ve) < cae™ (3.19)
%

if € < eg. Here & (ve) = (5% - %)

Proof. By scaling v:(x) = v-(ex) and u.(z) = us(ex), (3.18) is
Ve = Ug * Y5,

Since . satisfies (2.1), v, satisfies

—AT+ W(3.) = eg (3.20)

with

g:fi*¢852+ *,(/)5/82'

In the following we apply Lemma 3.5 thus we need to estimate W 2-norm
of gon B.—5 C % First we consider the estimate of [|g|[z2(p _s)- By
W (@) )

W) W)
e g

inserting the term +——= we obtain
~ W' (v, W' (u.)
lollzzca, oy < 12 # s lzaqa_ony + 1) - Dy
W' (u W'(w,

+H i E) - i 8) *weﬁQHLQ(BE_ﬁl) = (I1)+(II1)+(II11) (321)

By (4.2),
~ I
(1) < W fell2s, ) 1erellLr (s 4, < afe™2. (3.22)

By C°7 estimate for . we have

sup |0 — | < ce?P2.
e—B1

Thus with this sup bound

N[

1
(Ih) < - {/ (sup |W"))?|v. — ﬂ5|2daz} <Al (3.23)
BE,Bl

13



Similarly with
(W' () = W' (i) * Y| < e,
>
{/ W' () — W' (e) * w852|2d:c} < ceMP2Pim1 0 (3.24)
Bg—ﬁl
W' (@)

Next, we estimate ||Vg| 25 _s,)- By inserting the terms £V=——==,

1

11 < =
( 1)_E

199025 _y,) < IV e # s li2s,_s) + IV

W' (v:)  W'(u)
e Mzs )

+\\V(W/£a5) - Wlfg) s Voo )r2(p_y,) o= (I2) + (I12) + (I112). (3.25)

By (4.2),
(I) < ce 3. (3.26)

For (I13) we have

VW' (0:) — W'(u.))| < sup |[W”||Vv: — Viie| + c(sup ]W"’|)57ﬁ2|Vﬂg|.
(3.27)
Since

1
Viie(z — y) - Vie(z)| < /O V(e — ty)lyl dt,

we estimate the L?-norm of the first term of (3.27) as

[ ownevipas [ [ Vi) - V@) ) dyds
35751 Bafﬁl BEEQ

1
S / / bz () 1yl / V20 (x — ty)|? dtdyda
Be_ﬁl BgﬁZ 0

< g2 / V2. |? dx.
B2€761

(3.28)
By the W22 estimate of %, in Remark 3.3 we have
/ Vi |2 4 | V20, |2 de < ce= 21, (3.29)
2¢—P1
Substituting (3.29) into (3.28), we obtain
/ V0. — Vi |? do < ce?P27201, (3.30)
B__p,

14



As the L2-norm of the second term of (3.27) can be estimated by (3.29), we
obtain
(IL) < ¢(eP™ Pt 2=fimly < et (3.31)

For (I115),
V(W' (e () = V(W (U () * o)

< [ VOV @) - YOV (@~ ) P () dy
BsﬁQ

~ ~ 3.32
<2 [ (upWPVE) - Vil - )Py
B_g,
2 [ (esup (W) P ) .
B_g,
In the same way as we obtained (3.31) we have from (3.32)
(1) < e { [ [ 19i@) = Vi~ )P s ) dyds
Be:*ﬁl BaBQ
(3.33)

1
2
+ / s%ﬂvag(x)ﬁdx}
e~ h1
< C(sﬁz—m—l + 5%32—31—1) < 05%@2—31—1'
Estimates (3.21), (3.22), (3.23), (3.24), (3.25), (3.26), (3.31), (3.33) show
lgllwr2i ) < c(eP2 3 4 PPl (3.34)

Before we apply Lemma 3.5 we need to have a uniform estimate for ||v.| 1.
By the choice of 31, #2 and v we have

1
—ﬂ2+§>0and'yﬂg—ﬁ1>0.

so in particular we have |leg|[yr12( _, ) < c. Since v. satisfies (3.20), by

W32_estimate of the elliptic PDE and Sobolev’s inequality, we obtain a
uniform C' estimate for v, and thus we have e-independent ¢ such that

~ 12
sup <Vv5\ —W(”ﬁg) < cs.
B__s, 2

Now we are ready to use Lemma 3.5 to conclude with (3.34) that

Vo: |2 ~ 1-B1-B2 YB2—25 Bo
sup —W(ve) ) <cle +e +&M).
By .o 2

15



By scaling,

2
sup <€‘VUE| . W(”E)) < 6(6—%—B1—52 + g¥B2=201-1 _}_55’0—1)'
\%4

2 €

We defined ¢ so that the right-hand side is bounded by ce™* thus we proved

(3.19) with an appropriate choice of constant c;.

O]

Proposition 3.7. There exist constants c5 > 0 and €5 > 0 depending only

on W, dist(V,0U), Ey and a1 such that for e <eg and B, CV

/ (6c(ue)}y do < / (6(v) ) d + ese 7 {r + pe(B))
B, B,

Proof. Since |Vug| < |Vue — Ve |+ |Vue|, by considering the square of both

sides and Cauchy’s inequality,

[Vue|? < |Voe|? + |Vue — Voo |? + 2| Ve — Vo ||V
< | Vo? + (1 + )| Vue — Vo |2 4 2|V 2.

Similarly
Ve |? < [Vuel® + (14 e )| Vue — Vo > + 2|V %
By substituting (3.36) to (3.35) we obtain
|Vu5]2 < \Vvs\z + 65_52|Vu5 — VUE\Q + ceﬁQ\Vu5|2.
Using (3.37) we obtain
{€(ue) b < {&cva)} + 351*52\Vu8 Vo ?

_ 2
+ ’W('Us) - W(ua)’ +C€ﬁg <5‘V2ua‘ + W(g“a)) .

Integrating (3.38) on B, for ¢ <r,

/{ﬁg(ua)}era:g/ {§€(v€)}+da:+ca[32/ £|Vue — Vo |? da
B, By

T

— 2
+/ ‘W('Ua) - W(Us)’ dﬂ?—}—cg’gQ/ (5|v2ue| + W(;Ls))dx

We estimate each term of (3.39). As we proved in (3.28),

ce P2 / e|Vue — Vo |2 de < e3P / |V2u.|? dx.
. B

reltB2
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We estimate L?-norm of V?u, in B, a+6,. Write 7 =1 + eltP2 By scaling
W (ue) 72 fe
T2 e

B; to By by @ = z/7 and applying W??2 estimate to Au. =
we obtain after scaling back

/BF V2.2 dx < :4/3 |u5|2dx+€14/3;.(W’(u5))2da:+ ;/B f2da.
(3.41)
For the second term of (3.41), we split the integral to B, and B\ B,. Since
W' (ue)|? < cW (ue) and | By \ By| < ce'*P2r, we obtain

/ W (ue)|* de < e Wiue) dw+c/ dr < e(pe(Br)+re™). (3.42)
BF By € B’f‘\Br

By Lemma 3.2 for the first term and by (3.42) and (A.2), (3.41) is estimated

as
2,12 C c 8 a1

By (3.40) and (3.43),

B2+3

€

ce™ P2 / |V — Vo> de < c{ 5+ re?P2 4 gPat2 4 6ﬁ2/LE(Br)}
B, r

<c {7‘562 + E/BQ,UE(BT)}
(3.44)

since r > e. For the estimate of the third term of (3.39),

sup [W"| 2

|ve — ue|
, , 2 (3.45)
<cem T |ve — ue2+ e T W ()

(W (ve) = W(ue)| < fve — UEHW/(U6)| +

Since |W'(ug)|? < W (ue),

/ |W(Us) ; W(Us)‘ dr < C€1B22/ ‘"Ue o ua‘Q dr + CE% VV(gug)d:IZ
T T B’!‘

B B
< 05_1_22/ \vg—ug\de—i—ceTQ,ug(Br).
(3.46)
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For the right-hand side of (3.46)

/ ]ua—%?d:cg/ ]ue—qu]Qdaf—i—/ [ue — ve|* da
By Bi\B,___ 148, B _1+6,

<c (Té_lJrBz + €2+2’82/ |Vu5|2 dx) <c (T€1+52 + 81+2/32'u£(BT)> )

T

(3.47)
By substituting (3.47) to (3.46) we obtain
/ Whee) ~ Wiwell g, <re? e 2 po(B) + s % pe(By)
. € (3.48)
B2 B2
<re? +ce? p(By).
The claim of the proposition follows from (3.39), (3.44), (3.48). O

Next we estimate the lower bound of the energy density ratio for ‘small’
scale, namely, for ¢ < r < t1¢* with small ¢; independent of ¢.

Theorem 3.8. There exist constants cg > 0, t1 > 0 and €3 > 0 such that if
e <r<tiet, Bp(xzg) CV, |us(zo)| < @ and 0 < € < e3, then

s <+ 1e(B, (w0)).

Proof. We may assume 9 = 0. For u.(z) = uc(ex),

1 1 e|lVu 2 W(u
—pe(B:) = / [V + (xe)
€ € Jg. 2 €

~ 12
dx:/ IVl | i) da.
B 2

Since |u:(0)] < a and @ € C%7 there exists a constant c¢; > 0 satisfying
W (uz) > ¢7 on B, and thus

1 ~
EME(BE) > B W (i) dz > c7L*(Be,) = cs. (3.49)
7

Let t; > 0 be a constant to be determined shortly. We claim that u.(B,)/r >
cg/2 for e < r < tye*. To derive a contradiction assume that there exists a
constant 1 with e < r; < t1¢* satisfying

18



By continuity of 1u.(B,) with respect to r, there exists ro with & < rg <
satisfying %yE(BTO) = cg and § < %,uE(BT) < cg forrg < r <r;. By
Lemma 3.1, Proposition 3.6 and 3.7, for ¢ < s < r < 1%,

(14+8) el Br) = (1= 6) e (Bo)
(3.50)

B2
2 " " 2 1
> —(5 + Dagr — / cqe”tdr — / Ge {1+ ;HE(BT)}dr.

r

Using (3.50) with s = rg and r = 7 as well as r; < t1e* we obtain

L

2 t
%8(35 —1) > = (G + Darhie' — sty - ese 2 (1 4 cg) log( 1; ). (3.51)

Set § = £ so the left-hand side of (3.51) is equal to —<. Choose #; small
so the right-hand side of (3.51) is greater than —<% for sufficiently small ¢.
This leads to a contradiction. We set ¢ = cg/2. L]

Next we estimate the discrepancy & (v.) for ‘large’ r, namely, for t1e* < r.
The proof is a suitable modification of [19, Prop.3.5].

Proposition 3.9. Set 5, = min{2 — 205, 20, B3 — ¢t} > 0. There exist
constants cg > 0 and €4 > 0 such that, if B, C V, t1e* < r < 1 and
O0<e<ey

/ {&(ve) } 4 dx < cg (7"553_L + 2722 4 564#5(37«)) . (3.52)
By
Proof. We estimate the integral on three domains,

A={r € B\ B, .5}, B={x¢€B, s |dist({|uc| <al},z)<e®},

C={x € B,_|dist({Juc| <a},z)>e"}.

Case 1. (estimate on A)
By Proposition 3.6 and £2(A) < cre®,

/ (6.(0)} s da < cse"L2(A) < cre®. (3.53)
A

Case 2. (estimate on B)
We first estimate £2(B). We apply Vitali’s covering lemma to the family
of balls {B.s; () }ae{juc|<a}ns (Which covers B), so that {ngg(mi)}f\;l is a
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pairwise disjoint subset of the family and so that B C U£1B5Eﬁ3 (x;). Then

we have
L3(B) < ¢(56™)2N = N2, (3.54)

Since ¢ < B3 (Remark 3.4), % < tie* for all sufficiently small . Thus by
Theorem 3.8
coe™ < pe(B.sy (7))

holds for each 7 = 1, ..., N. Since they are pairwise disjoint, summing over ¢

we have
Nege™ < pe(By) (3.55)

and (3.54) and (3.55) show that
L2(B) < cePpu.(B,). (3.56)

Finally, with Proposition 3.6 and (3.56)
/B {€.(vo)}y dz < cse™ L2(B) < e u(B,). (3.57)

Case 3. (estimate on C)
We define a Lipschitz function p as follows;

p(x) = min{1, 2€*ﬂ3dis‘c({]aﬁ\ > — 553/2} U{|ue| < a},z)}.

pis 0 on the set {|z| >r — % /2} U{|us| < a}, 1 on C and |Vp| < 2e7 .
Using this p, we estimate 1¢[Vv.|2. By (3.18) and (3.20), v- (without scaling)
satisfies —eAv, + % = g where g = fox 146, + w — % * 1 146, .
Differentiating this equation with respect to the k-th variable, multiplying
it by Dyv.p? and integrating on B,., we have

W/I
W) pve — Deg)Divep?dz. (3.58)
g

/ (e ADyv:)Dyv-p? dz = / (

By integrating by parts, the left-hand side of (3.58) is

/(5ADkU€)DkU€p2 dx = —5/ V20, |2p? da — 26/Dikngkvngip dx.
(3.59)
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Since W” > k on {|us| > a} and & > sup [W"’[e7%2 for sufficiently small €,
by Cauchy’s inequality, the right-hand side of (3.58) is

1
/(W E(UE) Dyv. — Dypg)Dyv-p? da

" " T
> / W 6(“5) \va\2p2 _ |W (UE) - w (u8)| ’vva‘2p2 _ ]VgHva|p2 dr

Vo, |? Ve[
2//‘5‘;5‘pQ_SUP‘W/’/|€752|g€|dex—/‘VgHV’Ue’pzdx

K| Vg |? € K
> /||p2 dx — /(|Vg|2p2 + |V |?p?) da.
2¢e K 4e

(3.60)
By (3.58), (3.59) and (3.60), we obtain
2
/lﬂ?’zva’ dew—i—;/Wzve!szdx
© (3.61)

§25/|V1)€|2|Vp|2 d:z:—k/i/|Vg|2p2 dx.

We estimate the L?-norm of Vg in a similar manner as in the proof of

Proposition 3.6 and 3.7. Now the scale is different from Proposition 3.6 and
3.7. By inserting the term +Y% (%) Jike (3.25),

€

/ Vol de < / V(e # toysa)|? da
B 4 B

- 523 - Egs
W'(ve) W (ue
B oy ¢ c (3.62)
2
W' (u, W' (u,
s e Ty P a
B 53 15 15

= (13) + (II3) + (III3>.

By (A.2) like (3.26),
(I3) < ce= 2271, (3.63)

For (113) we have

V(W' (ve) — W (ue))| < sup [W”||Vve — Vue| + c(sup \W’”|)€W2|Vug].
(3.64)
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By the similar calculation to (3.28),

B
- e

/ Vv, — Vue|? dz < 5252"'2/ V2u,|? dz. (3.65)
B s

Write 7 = r — % + 182 We estimate [5 |V?u.|? dz by the same way as
x

the proof of Proposition 3.7. By scaling By to By by ¥ = % and apply the

~2 ’ ~2
W22 estimate to Au, = %(“5) _fe

5 —=, we obtain after scaling back,
1 1 1
v? 2d</ 2d /W/ 2d / 2 da.
[l e < [ e G [ Ve 5 [

(3.66)
Since |W'(u:)|? < ¢W (ue) and By C By,
S wpar s g [ a < Sy @
Thus by (3.66), (3.67) and (A.2), we obtain
/B; (V2.2 dz < c(ar) (et + e 3pu(B,)). (3.68)
By (3.65) and (3.68),
/B ) Ve — Ve [2do < (227! + 25271, (B,)). (3.69)

As the L? norm of the second term of (3.64) can be estimated by p.(B,),
we obtain

n) = [ 9 B < ot ),
B,

eP3
L)

(3.70)
For (II13),

T 11 (2))) — VOV (1(2)) 5 o) 2
< / IV (e (1)) — VOV (1 — 9)))[Pbzr454 () ly
B€1+52

71
§2/ (5up W2 Ve (2) — Ve (z — ) Pboress ()dy 7D
B51+[32

Lo / (csup [W")2e257 Ve (2) 11, (3) dy.
B 146,
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In the same way as we obtained (3.69) we have

(IT13) < (€227 4 25273, (B,) + €273 (B,))

< c(e?P2m 4 25273, (B,)). (3.72)
Estimates (3.62), (3.63), (3.70) and (3.72) show
/ \Vg|? de < c(e720271 4 20273, (B,)). (3.73)
rePs
2
With |Vp| < 2e7% (3.61) and (3.73), we obtain
"0|VU5|2 de < cel20s Vo l2d C 28, 26:-2,, (B
Y dr<ce |V |"dz + —(e +e e (By)).
c € B K

r—eP3 /2

Since [p Md:v < fBr Md:c < pe(By), multiplying above by

—eP3 )2
2¢2k71, we have

|V |? _ _
[t sar< [ T do <t uim) + i) + 22),
(3.74)
Combining (3.53), (3.57) and (3.74), and recalling the definition of (4, we
obtain the desired estimate. O

Next, we obtain the lower bound of the energy density ratio for t1e* <
r < to.

Theorem 3.10. There exist constants cig > 0, to > 0 and €5 > 0 such that
if Br(zo) CV, |us(zo)| < o and € < g5, then for tie* <r < tg,

1
10 < (B (o).

Proof. By Theorem 3.8, cg < %,ug(Br) with » = t1e*. The proof of the claim
is similar to that of Theorem 3.8. Let t5 > 0 be a constant to be determined
shortly. We claim that u.(B,)/r > ¢¢/2 for t1e* < r < to. To derive a
contradiction assume that there exists a constant r3 with tie* < rg < t9

satisfying
1 Ce

EIU’E(BW)) = 5
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By continuity of % e (B,) with respect to r, there exists ro with t16* < ry < 73
satisfying %HE(BTQ) =cgand F < %,uE(Br) < ¢g forrg < r < r3. By Lemma
3.1, Proposition 3.7 and 3.9, for t1e* < s <r < to,

(14+8) e (By) = (1= 8) e (B2)

2 T
> —(5 + Dayr - / P eo(pe 4 £22% 4 Py (B))  (3.75)

B
+ese? (p+ pe(By))} dp.

Using (3.75) with s = o and r = r3 as well as r3 < t we obtain

Cg 2 B3 — r3 2-23,—2 to
5(3(5—1) 2—(5+1)a1t2—09{6 3 ‘log(g)+5 2 LE
T3

+ cgel log(:—?’)} _ee? log(“)(1+ o).
2 2

(3.76)

Set § = ¢ so the left-hand side of (3.76) is equal to —<. Choose ¢ small
so the right-hand side of (3.76) is greater than —< for sufficiently small €.
This leads to a contradiction. We set ¢19 = ¢g/2. ]

Similarly, we can also show the upper bound of the energy density ratio.

Proposition 3.11. There exist constants c¢11 > 0 and €g > 0 such that if
B, (x0) CV, |us(x0)| < v and € < ¢, then for e <r < tg,

1
;,ua(Br(xo)) < c11.

Proof. By (A.1), we obtain %ME(BQ) < %0 where ty is the same constant
as Theorem 3.10. By using Proposition 3.7 and 3.9 for discrepancy term
in (3.1), and by the similar proof to Theorem 3.8 and 3.10, we obtain the

upper bound. O

Similarly, as the consequence of Proposition 3.7 and 3.9, by Proposition
3.11, we can establish the following monotonicity estimates.

Theorem 3.12. For Bs(xo) C Br(z9) CV, e <s<r<ts,

(1 4+ 0) - ae(By(0)) — (1~ 6) pe(By(o)

r 2
> —(2+1)a1r+/ 12/ <W(“5) _ eV ) dwdp — K (2).
0 s PP By \ € 2 /.

(3.77)

Here, K(¢) satisfies lim._o K () = 0.
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4 Rectifiability of limit interface

In this section we show that the support of the limit measure p is a 1-
rectifiable set and that it has generalized L? curvature expressed as the
Radon-Nikodym derivative as we described after Theorem 1.1. Define the
(signed) vector-valued measure v*? on U

Oug, Oug,
QIB — 3 . =1 Eq
() = zliglo (& Ox® Oz

)¢ dx

for ¢ € C(U).

Theorem 4.1. There exist constants 0 < D1 < Dy < oo and to > 0 which
depend only on Ey, ay, dist(V,0U) and W such that

Dir < u(By(x)) < Dar
for all 0 < r <ty and x € supp p with By(x) C V.

Proof. The existence of Dy follows immediately from Proposition 3.11. We
show the existence of D;. Let x¢g € suppu. We claim that on passing
to a subsequence, there exist {z;}3°; C V such that u.,(z;) € [—,a] and
x; — xg as i — oo. We show the claim by contradiction. Suppose there exists
s > 0 satisfying Bs(xo) C V and Bs(zo) N {|ue,| < a} = 0 for all sufficiently
large i. Suppose u., > a without loss of generality. Let ¢ € C}(Bs(xg)) be
a function satisfying ¢ = 1 on B%(l‘o). Multiplying ¢?(ue, — 1) to (1.2) and
using Cauchy’s inequality and (A.2), we obtain

/
/ M(ua -1)+ C€i|vusz‘|2 dx
B (w0)

€i
1/2
< a1/2 </ gi? (ue, — 1)* d:n) + ce;sup ]V(Z)\Q/ ( )(usi —1)2da.
Bs(xo
(4.1)

Since (u — 1)W'(u) > W (u) for 2 > u > « for some ¢ > 0, (4.1) shows
lim; oo ,uei(B% (z9)) = 0, which is a contradiction to xy € suppu. Thus for
r < t9 Theorem 3.10 shows

1 1 1
(B (x)) 2 lim ~pie, (B () 2 lim e, (Bz (7)) > c10/2.
T 1—0o0 T 1—oo T
We set Dy = ¢19/2. O
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From the proof of Theorem 4.1, next proposition follows.

Proposition 4.2. u., — +1 oru,, — —1 uniformly on each compact subset
of U\supp p and supp ||[0{ug = 1}|| C supp pu, where ug = liml_m U, and
|0{uo = 1} is a measure on U defined by ||0{uo = 1}|[(U) = [, |Duol.
(For the details of the measure [;; |Dugl, see [7].)

The proof of next proposition is similar to [19, Proposition 4.3] but we
include it for the convinence of the reader.
Proposition 4.3.
lim [ |&,(ue,)|dx =0. (4.2)

1—00 Vv

Proof. Let |£| be a Radon measure defined as the limit of |¢., (u,)|. We need
to prove that [{| = 0. First we show

1
liminf —|¢|(B,(x)) =0 (4.3)
r—0 71
for all € supp || by contradiction. Thus we assume that there exist
xo € supp €], R > 0 and b > 0 with |£|(B,(z¢)) > br for 0 < r < R. Fix ¢
(e.g. 6 =1/2) and fix m = min{R, t2} and

re =11 exp[—é{(2 + 1)air +4D2}]. (4.4)

By Theorem 4.1 and the definition of |£|, we may choose large enough 4 such
that t1e; < ro and

. 2 1
1/ € ‘VU&Z‘ 4 W(Ual) dz < 2D, / yfel(usl”d.%' >
B (x0) 2 & "B

| S

for all 79 < 7 < rq1. By Propositon 3.7 and 3.9 we have for ro <7 <1

1
T /T(mo){fai (ue;) }+ dx < o(1)

T

as ¢ — oo. Thus for all large ¢ and ro < 7 < 71 we have

/ ( (ue,) ai]Vuei |2> d
2 +
1
>1 / (e (ug)] d — - / {6 ()} 4 d
Br(z0) T JBr(wo)
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By Theorem 3.11 with s = r9 and r = r; and using (4.5) we obtain

o

By (4.4), the right-hand side of (4.6) is estimated from below by 4Dj. This
is a contradiction. The claim with Theorem 4.1 shows
I(By(2)) £1(Br(x))

lim inf 202 iy g SE2RE)
S0 w(Bo(x)) =m0t Dyr 0

2 b
(1+8)2Dy > —(5 + Darrs + ; log :i (4.6)
2

for all z € supp|¢|. A standard result in measure theory then shows that
€1 =0. O

Next we show that the limit measure p has a well-defined curvature.

Theorem 4.4. The support of i is a 1-rectifiable set. Moreover, n defined
as the vector-valued limit measure of { fe,Vue, }5° in Sect.1 is absolutely con-
tinuous with respect to p. f = Z—Z € L%(p) is the generalized curvature of
and satisfies

1
/\f\2du < liirgcigfa/\fai]?dx. (4.7)

Proof. We consider the rectifiability of supp u first. By Proposition 4.3 and
by recalling the definitions (2.2), we have |u. — trace V?’g| = [&-(us)| — 0 in
L} (U). This shows

tracev = p (4.8)

in the limit. The lower density bound (Theorem 4.1), (4.8) and the rec-
tifiability theorem (Propostion 2.1) show that supp p is a l-rectifiable set
and

D(z) = PIOjE, (uupp n (¥): (4.9)

where & = g—z € L*®(u,F). The fact that n is absolutely continuous with
respect to p follows from

2
1
(/¢d|n|> < liminf8/|f5i|2dx lim /¢25iVuai]2dx < a1/¢2dﬂ
(4.10)

for ¢ € C.(U), where we used (A.2) and (4.2). Moreover, by taking supre-
mum of the left-hand side over ¢ with [ ¢*du < 1, (4.10) shows (4.7). To
show that f is the curvature of p, (2.4-5) gives

/divgﬁd,u,gi —/giﬁdygﬁ = —/g{)-Vugifgi dx (4.11)
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for ¢ € C1(U,R?). The limit of (4.11) gives

/divgbdu—/gf;dz/aﬁ = —/(JS-fdAL. (4.12)

By (4.9), the left-hand side is [ divey, (suppp) @ dpt, where the integrand is the
divergence restricted to the tangent line which exists a.e. on supp u. The

relation (4.12) shows that f is the generalized (mean) curvature in the sense
of varifold [1]. O

5 Integrality of the limit interface

The remaining part of the paper concerns (iii) of Theorem 1.1, namely, we
need to prove that the densities of the measure p are integer multiple of
20 for a.e. on suppp. The proof is very similar to [8, Section 5] though
one needs to modify the argument as in [15, Section 5]. Thus we write the
outline and often omit the details.

Lemma 5.1. Suppose By C V. Given s > 0 there exist constants b > 0 and
g9 > 0 depending only on a1, Ey, W and s such that

2
Bin{juc|>1-b} 2 €

W (ue)
e

argument as in [20, Prop. 4.5]. To estimate the gradient term, one shows
that replacing u. by v. causes a small error, which can be estimated as
in Section 3. One then uses (3.19) to show that the gradient term is also
small. O

if e < eg.

Proof. The estimate for || Bu{Jue|>1-b} dx can be obtained by the same

We define T : R?> — R by T(z1,72) = 21 and T+ : R? — R by
TH(x) = 2. Also we define n = (ny,ng) = ‘g—zl where |Vu| # 0 and
n = (0,0) where |Vu| = 0.

Lemma 5.2. Suppose

(1) N > 1 is an integer, Y is a subset of R?>, 0 < R < 00, 1 < M < o0,
0<a<o0,0<e<],0<n<]1,0< Ey<ooand —oo <t) <ty <
00.
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(2) Y has no more than N + 1 elements, T(x) =0 and t; +a < T*(z) <
to+a for allx € Y and |x — &| > 3a for any distinct x, T € Y.

(3) (M + 1)diamY < R, and denote R = MdiamY .

(4) On {y € R?|dist(y,Y) < R}, uc and f- satisfy (1.2), fBR($) |f|?dx <
ne and faR 7}—2 fBT(x){fg(ua)}_i_ dxdr <n for each x €Y.

(5) For each x €Y,

R ar
/0 72/ o t}|€a(ua)(y2—ﬂs2)—€(y—w)-VusDzualdHl(y) <n
(T Y2=t;

(5.2)

for 3 =1,2. Here ec(ue) = %|Vu€|2 + L(Eus).

(6) For each x €Y and a <r < R,
/ w2+ (1 (e Vel dy < (5.3)
B (x
and
/ e|Vu.|> dy < Eor. (5.4)
B-(z)

Then the following hold:
(A) There exists t3 € (t1,t2) such that |T+(x) — t3| > a and

R g
/ % / lec(ue)(y2 — 2) — e(y — ) - VueDoue| dH (y)
o T By (x)N{y2=t3}

1
<3(N +1)NM(n+ EZn?)
(5.5)

holds for each x € Y.

(B) Define Yy =Y N{x|t; < T+(z) < t3}, Yo=Y N{z|ts < T*(z) < ta2},
So = {z|t1 < T*+(x) < t2 and dist(Y, z) < R},
Sy =A{z|ty < TH(z) < t3 and dist(Y1,z) < R},
Sy = {x |tz < TH(x) < t3 and dist(Yz, z) < R},
Then Y1 and Yo are non-empty and for all 0 < d < 1

%{NE(SI) + p1e(S2)}

1 1 1

< (14 )71+ 0) ae(So) + (5 + 1nR + 3n).

(5.6)
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Proof. Set S = {t; < T*(x) < t3}. We establish the monotonicity formula
restricted on S. Let p(y) : R?> — R be a smooth approximation to the
charactaristic function of S. For € Y we may assume x = 0 by a suitable
translation. Let ¢ be a smooth approximation to the characteristic function
of (—o0,1). We substitute ¢ = y((@)p(y) into (3.2) and multiply the result
by —T%. After letting ¢ — X(_o0,1) and p — xs and by similarly proceeding
as in Lemma 3.1, we obtain for 0 < d < 1

(1— 5)2%(35 ns) <1+ 5)%%(3}3 nS)+ (% +1)nR

R
5 &)} dear (5.7)
R

1
+ / E / lynee(u2) — e Dauly - Du)| dH (y)dr.
s B,NoS

By (4) and (5) applied to (5.7) we obtain
1 1 2
(1 -0 pe(Ban8) < (14 0) (B0 S) + G4 DR 430, (9

By the definition of f%, S1US, C B NS C Sp. Thus by (5.8) we

(R+diamY’)

obtain

1 1

7{“5(51) + ME(SQ)} < 7'uf':(B(I?’HrdiamY) n S)

R R (5.9)

1 R+ diamY 1 2 ’

< =(——){1 — —-+1 .

< (LI + D) pelSo) + G + Dnk -+ 31}
Since R = MdiamY we obtain (B). The proof of (A) is similar to [8, Lemma
5.4]. O

Next lemma can be proved by using Lemma 5.2 inductively.

Lemma 5.3. Corresponding to each R, Ey, s and N such that 0 < R < oo,
0< E<oo,0<s<1andN is a positive integer, there exists n > 0 with
the following property.
Assume the following.

(1) Y C R? has no more than N + 1 elements, T(y) = 0 for all y € Y,
a>0,|y—z|>3a foral y, z€Y and diamY < nR.

(2) On {z € R?|dist(z,Y) < R}, u: and f. satisfies (1.2), [ |f-|*dz <ne
and

R qr
2 {&(us)}+dy <nR for each x €Y.
a Br(x)
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(3) For eachy €Y anda <r <R,

/ €e(u)] + (1 — ()?)el Vue Pdy <,
Br(y)

/ £|Vue|? dy < Eor.
Br(x)
Then we have

S pe(Baly)) < 5+ (o dist (Vi) < BY. (510)
yey

The next Lemma 5.4 is identical to [15, Lemma 5.5] .

Lemma 5.4. Given 0 < s <1 and 0 < b < 1, there exist 0 < n < 1 and
1 < L < oo, depending on W, with the following property. Let 0 < ¢ < 1.
Suppose us and f- satisfies (1.2) on Baer,(0), with [|f|*dz < en, |u(0)] <
1—0b and

/ (I€-(ue)] + (1 — (1)) Vue 2) dy < n(deL).
By 1,(0)

Then we have

b
lue (0, z2)| > 1 — 5 for Le < |xa| < 3Le, (5.11)
L (B(0) - 20| < (5.12)
2L€,U/€ Le ol =S .
and .
© W (u(0,
‘/ W0.22) 1y — ol <5, (5.13)

Proof. We rescale the domain by ¢ for convenience. Let ¢ : R? — (—1,1)
be the unique solution of the ODE

dt) = {2W(q(t)}z fort € R

5.14
q(0) = u(0). o4

We note that

/°° WP, /{ },, O di = /{ Yods =o. (5.15)
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We also identify ¢ on R? by q(x1,22) = q(x2). Let b and s be given. For
large L, we have

<2 '/_LLmq(t))dt—o <

1 |Vql|? 5
— —_ dr — 2 — 1
‘QL/BL 2 + Wi(q)dz o 3 (5.16)

and .
lg(t)| > 1— 2 for L <t <3L. (5.17)

We show the claim of the theorem by contradiction. Assume that there
exists a sequence {n;}5°; C R and {u;} with 7; — 0 as i — oo satisfying for
0< L <o,

@(0) <10, / e 2 do < e, (5.18)
Br,

/ @)+ (1 — (n)?)| Vi de < dniL (5.19)

By,

but one of the following fails,

1 V|2 N b oy o
= + W(u;)dr — 20| > s, W (u;(0,2%)dz* —o| > s
oL |5, 2 .
(5.20)
or there exist xo with L < |z2| < 3L satisfying
~ b
]ui(O,xg)\ S 1-— 5 (5.21)

By W?2? bound there exists a subsequence of {;} (denoted by the same
notation) converging weakly to s, € W22, By (5.18) 1y satisfies

— Ao + W (i) = 0. (5.22)

By (5.19) we also have [, %dw =0 and |Dalico|? = 2W (o). As we

may assume Dslin, > 0, we obtain Doty = {2W(ﬂoo)}% Thus, Us = q.
Since s, satisfies (5.15-17), and the convergence is strong in W1» for any
1 < p < o0, we obtain a contradiction to (5.20-21). O

The proof of Theorem 5.5 proceeds just like [15, Prop. 5.2].

Theorem 5.5. The density of the limit measure i is an integer multiple of
o for H' a.e. on suppp.
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Proof. By the rectifiability of supp p and the lower density bound p has an
approximate tangent line for H' a.e. on suppp. Fix such a point and choose
coordinates so that the point is the origin and the approximate tangent line
is P = {z = (x1,22) |z2 = 0}. We consider the scaling u.,(x) = ug,(r;x)
and f; (x) = fe,(rix) with r; — 0. Let &; = % Ue, satisfies

W' (ue,)
E;

=7ifi

~EATL, +

Define a sequence of measures p by 51|Vu1\ + ("l) dx. By the rectifiability
of suppp we may choose a suitable subsequence (by choosing smaller ¢; if

necessary)
lim 2 (B1(0)) = 6 / dH = 26. (5.23)
i—00 PNB;
Here, 0 is density of u, that is,
1
0 = lim —pu(B,(0)). .24
lim QT,M( (0)) (5:24)
Write ., = u., and ,u~ = le,. Since 1! = 0, we obtain
v § i(D1ug, 2
lim (1-n )M dr = lim gilDuue,)” dr = / dv't = 0.
(5.25)

Suppose N is the smallest positive integer greater than 2 55 Fix an arbitrary
small s > 0. By Lemma 5.1 we may choose b > 0 so that

, 2
/ <€z’VU6¢| 4 W(U€L)> de < s (5.26)
B3(0)ﬁ{|usi|21_b} 2 &

for sufficiently large i. With those s, b and R = 1, we choose 1 and L via
Lemma 5.3 and 5.4. For large ¢ we define

G; = B2(0) N {Jug, | <1-5b}N
{x
By Besicovich’s covering theorem and monotonicity formula,

pe,(B2(0) N {Jug,| <10} \ Gi) + LYT(B2(0) N {lue, | <1 - b} \ Gy))

C

< / € (ue))| + (1 — nd)ei| Ve, 2
B3(0)

/ € (ue,)| 4+ (1 = (n2)?)es| Ve, |> de < nr for all 4e;L < r < 1} :
By (x)

(5.27)

(5.28)

33



which goes to 0 as i — oo by (4.2) and (5.25). For any x = (z1,0) € B1(0)NP
define Y = {z1} x UI_ {sx} C T~ (z) N G; with s1 < sg < -+ < s, Where
m is the largest 1nteger so the each element of Y is separated by at least
3Le;. We prove that Y does not contain more than N — 1 elements. First
note that all the assumptions for applying Lemma 5.3 and 5.4 are satisfied
. Since

. |2 )
sup 1/ (€Z|vul‘ + W(ul))dy <0+s (5.29)
2eB1 (NP 2 JBi(2) 2 €i

for large i, Y having more than N — 1 elements would imply that
20N < s(N+1)+(1+s)(0+s) (5.30)

by Lemma 5.4. This would be a contradiction to % < N for sufficiently

small s depending only on N. Finally
20 = lim p1e, (B1(0)) = Tim jue,(B1(0) N {Jue,| < 1- b} N Gy)
+ lim gy (Br(0) N {Jus, | < 1 =03\ Gi) + lim 41, (B1(0) N {Jue,| = 1 - b}).
(5.31)

Note that m < N — 1. As T (z) N G; C {&1} x UM (sx — Le;, s + Lei),
by Lemma 5.4, we obtain

lim fic, (B1(0) N {fue,| <1 -0} NGy)

< lim / &, (ue,)| dy + 2/ / ugl) dHldy
=00 | JB1(0)NG; 0)NP Lz)n &

) sg+Le; W(u )

k=1
<s+4(o+s)(
(5.32)

where we note that H'(B;) = 2. By (5.26) and (5.28), we obtain

tim jie,(B1(0) 0 { ] < 1= b1\ G) + lim g, (B1(0) N {Juc,| = 1 - b)) < .
(5.33)
Since s > 0 is arbitrary, 20 < 40(/N —1). By the assumption of N we obtain

0 = 20(N —1). This shows that the density at this point is integer multiple
of 20. ]
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