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1 Introduction.

When a diffusion matrix of continuous semimartingales under consideration is
an identity, we studied the SOCP with fixed initial and terminal distributions
(see [30, 31]) and that with fixed marginal distributions at each time to
consider Nelson’s Problem (see [28]). In this paper we generalize them to the
case where continuous semimartingales under consideration have a variable
diffusion matrix. These can be considered as the problems on the random
least action principle.

In Sect. 2 we consider the SOCP with fixed initial and terminal distri-
butions. In Sect. 2.1, we describe the problem. In Sect. 2.2, we give the
Duality Theorem for it in the frameworks of classical and viscosity solutions
of the Hamilton-Jacobi-Bellman (HJB for short) PDEs. A typical minimizer
of our SOCP is the so-called h-path processes about which we also discuss.
In the framework of viscosity solutions of the HJB PDEs, our assumption is
weaker than that in the framework of classical solutions and our result is a
generalization of [30] even when a diffusion matrix under consideration is an
identity. We remark that a classical solutions of the HJB PDE is a viscosity
solution of it, but not vice versa. In Sect. 2.3, we show that the zero-noise
limit of the Duality Theorem for our SOCP yields that for the MKP, which
is a generalization of [31] even when a diffusion matrix under consideration
is an identity. In this paper we only consider the typical MKP which can be
formally considered as the SOCP with fixed initial and terminal distributions
and with a zero diffusion matrix.

Sect. 3 is devoted to the proof of Theorem 2.1 in Sect. 2.2.
In Sect. 4 we study the so-called Nelson’s Problem as the SOCP with

fixed marginal distributions at each time. In Sect. 4.1, we first state a
positive answer to Nelson’s Problem by the continuum limit of the Duality
Theorem for the SOCP with fixed initial and terminal distributions. This
also yields the SOCP with fixed marginal distributions at each time. In
Sect. 4.2, we study the Duality Theorem for the SOCP with fixed marginal
distributions at each time. This gives a new and simple approach to Nelson’s
Problem. In Sects. 4.3-4.4, we consider a class of deterministic variational
problems with fixed marginal distributions, by extending a class of measures
under consideration, which is related to the SOCP. In particular, we prove
the existence and the uniqueness of a minimizer of and the Duality Theorem
for them.
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In the rest of this section, to discuss the MKP, we briefly describe Monge’s
Problem, Kantorovich’s approach, the Duality Theorem, a formal derivation
of a solution to Monge’s Problem and the study in a one-dimensional case
(see [11, 12, 15, 20, 26, 27, 29, 31, 36, 38-40] and the references therein).

1.1 The Monge-Kantorovich Problem.

The following problem is known as the origin of Monge’s Problem (see [32]):

What is the best way to move a sand pile from one place to another ?

We discretize the problem to describe the mathematical formulation. For n ≥
1 and 2n different points {x1, · · · , xn, y1, · · · , yn} Ω R3, consider a bijection
' : {x1, · · · , xn} 7→ {y1, · · · , yn}. Suppose that we have to pay the cost
|'(xi) − xi| to move a (discretized) sand from xi to '(xi). Then the total
cost is

Pn
i=1 |'(xi) − xi|. To minimize this cost, we consider the following

minimization problem:

inf
Ω nX

i=1

|'(xi)− xi|
ØØØØ{'(x1), · · · , '(xn)} = {y1, · · · , yn}

æ

= n inf
ΩZ

R3
|'(x)− x|

µ
1

n

nX
i=1

δxi(dx)
∂ØØØØ

'#

µ
1

n

nX
i=1

δxi(dx)
∂
=

1

n

nX
i=1

δyi(dy)
æ
, (1.1)

where δx(dy) denotes the delta measure on {x} and '#P := P'−1 for P ∈
M1(R3) := the set of all Borel probability measures on R3, with a weak
topology. More generally,
(Monge’s Problem) Let c(·, ·) ∈ C(Rd × Rd : [0,1)). For P0 and P1 ∈
M1(Rd), study the following minimization problem:

TM(P0, P1) := inf
ΩZ

Rd
c(x, '(x))P0(dx)

ØØØØ'#P0 = P1

æ
. (1.2)

In Monge’s Problem,
R
Rd c(x, '(x))P0(dx) is nonlinear in ', which makes

the problem difficult. We describe a part of Kantorovich’s idea to overcome
this difficulty, from which the problem is called the Monge-Kantorovich Prob-
lem nowadays. (In Sect. 1.2 we explain how it works.) We easily obtain
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Proposition 1.1 For P0 and P1 ∈M1(Rd),

TM(P0, P1) = inf
ΩZ

Rd×Rd
c(x, y)(Id× ')#P0(dxdy)

ØØØØ'#P0 = P1

æ
≥ inf

ΩZ
Rd×Rd

c(x, y)µ(dxdy)
ØØØØµ ∈ A(P0, P1)

æ
= : TK(P0, P1), (1.3)

where A(P0, P1) := {µ ∈ M1(R2d)|µ(dx × Rd) = P0(dx), µ(Rd × dx) =
P1(dx)}.

Notice that
R
Rd×Rd c(x, y)µ(dxdy) is linear in µ. Since A(P0, P1) is a

compact subset of M1(R2d) with a weak topoplogy for P0, P1 ∈ M1(Rd)
and since c(·, ·) ∈ C(Rd ×Rd : [0,1)), it is easy to see that TK(P0, P1) has
a minimizer, provided TK(P0, P1) is finite. This leads to
(Kantorovich’s Approach) For any P0 and P1 ∈M1(Rd) for which TK(P0, P1)
is finite, prove the existence and the uniqueness of the minimizer µ of TK(P0, P1)
for which

µ(dxdy) = (Id× ')#P0(dxdy)(= P0(dx)δ'(x)(dy)) (1.4)

for some Borel measurable ' : Rd 7→ Rd. If this is possible, then ' is the
unique minimizer of TM(P0, P1).

1.2 Duality Theorem and the MKP.

In this section we discuss the so-called Duality Theorem for TK(P0, P1) which
plays a crucial role in the study of the MKP. (Notice that P 7→ TK(P0, P )
is convex and lower semicontinuous.) As an application, we give a formal
derivation of a solution to the MKP.

Theorem 1.1 (Duality Theorem) (see e.g. [20, 27] and also Sect. 2.3).
For P0 and P1 ∈M1(Rd),

TK(P0, P1)

= sup
ΩZ

Rd
'(1, y)P1(dy)−

Z
Rd

'(0, x)P0(dx)
ØØØØ

'(t, ·) ∈ Cb(R
d)(t = 0, 1), '(1, y)− '(0, x) ∑ c(x, y)

æ
. (1.5)
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Remark 1.1 It is easy to see that the l.h.s ≥ the r.h.s. in (1.5) since, for
µ ∈ A(P0, P1) and '(t, ·) ∈ Cb(Rd)(t = 0, 1),

Z
Rd

'(1, y)P1(dy)−
Z
Rd

'(0, x)P0(dx)

=
Z
Rd×Rd

('(1, y)− '(0, x))µ(dxdy). (1.6)

Putting T'(y) := inf{c(x, y) + '(x)|x ∈ Rd}, (1.5) can be written as
follows:

TK(P0, P1) = sup
ΩZ

Rd
T'(y)P1(dy)−

Z
Rd

'(x)P0(dx)
ØØØØ' ∈ Cb(R

d)
æ
. (1.7)

Indeed, if '(1, y)− '(0, x) ∑ c(x, y), then

'(1, y) ∑ T'(0, y) ∑ '(0, x) + c(x, y). (1.8)

Suppose that c(x, y) = `(y − x) and

u(t, y; ')

:=

8<: inf
Ω
t`

µ
y − x

t

∂
+ '(x)

ØØØØx ∈ Rd
æ

((t, y) ∈ (0, 1]×Rd),

'(y) ((t, y) ∈ {0} ×Rd).
(1.9)

Then T'(y) = u(1, y; '). Suppose, in addition, that ` is strictly convex and
`(u)/|u| → 1 as |u| → 1. Then for any bounded, uniformly Lipschitz
continuous function ', u(t, y; ') is a unique bounded, uniformly Lipschitz
continuous viscosity solution of

@tu(t, x; ') + `§(Dxu(t, x; ')) = 0 ((t, x) ∈ (0, 1]×Rd) (1.10)

(see e.g. [10]), where Dx := (@/@xi)d
i=1, `§(z) := sup{< u, z > −`(u)|u ∈ Rd}

and < ·, · > denotes the inner product in Rd. Notice that
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u(t, y; ') = inf
ΩZ t

0
`(ẋ(s))ds + '(x(0))

ØØØØx(t) = y
æ

= sup
Ω
u(1, x; ')− (1− t)`

µ
x− y

1− t

∂ØØØØx ∈ Rd
æ

= sup
Ω
u(1, x(1); ')−

Z 1

t
`(ẋ(s))ds

ØØØØx(t) = y
æ

(1.11)

((t, y) ∈ [0, 1)×Rd) by Jensen’s inequality, where ẋ(t) denotes the derivative
of t 7→ x(t) (see e.g. [10]).

For the readers’ convenience, we give the definition of the viscosity solu-
tion to the PDE (1.10).

Definition 1.1 (Viscosity solution) (see e.g. [10]).
(Viscosity subsolution) ' ∈ USC([0, 1]×Rd) (USC := upper semicontinuous)
is a viscosity subsolution of (1.10) if whenever h ∈ C1,1((0, 1]×Rd) and '−h
takes its maximum at (s, y) ∈ (0, 1]×Rd,

@sh(s, y) + `§(Dyh(s, y)) ∑ 0. (1.12)

(Viscosity supersolution) ' ∈ LSC([0, 1]×Rd) (LSC := lower semicontinu-
ous) is a viscosity supersolution of (1.10) if whenever h ∈ C1,1((0, 1] ×Rd)
and '− h takes its minimum at (s, y) ∈ (0, 1]×Rd,

@sh(s, y) + `§(Dyh(s, y)) ≥ 0. (1.13)

(Viscosity solution) ' ∈ C([0, 1] ×Rd) is a viscosity solution of (1.10) if it
is both a viscosity subsolution and a viscosity supersolution of (1.10).

We formally explain how to derive a solution to the MKP from the Duality
Theorem in the setting of (1.9) where c(x, y) = `(y − x). It is known that
there exists a maximizer ('(1, y), '(0, x)) in the Duality Theorem 1.1 (see
[38]). For any minimizer µ of TK(P0, P1),

'(1, y) = '(0, x) + `(y − x) = min{`(y − z) + '(0, z)|z ∈ Rd} (1.14)

µ(dxdy)− a.s., from (1.6)-(1.8). If ` and '(0, x) are differentiable, then
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−D`(y − x) + D'(0, x) = 0 µ(dxdy)− a.s.. (1.15)

Since (D`)−1 = D`§ (see e.g.[40]), µ(dxdy) = P0(dx)δx+D`§(D'(0,x))(dy). More
precisely, the following is known

Theorem 1.2 (see [15]) Suppose that c(x, y) = `(y − x), `(u) = `(|u|), `
is strictly convex and `(u)/|u| → 1 as |u| → 1. Then for any P0 and
P1 ∈ M1(Rd) for which P0(dx) << dx and TK(P0, P1) is finite, there exists
a locally Lipschitz continuous fuction ' such that TK(P0, P1) has the unique
minimizer P0(dx)δx+D`§(D'(x))(dy).

1.3 The MKP in a one-dimensional case.

In this section we consider the MKP in a one-dimensional case (see e.g. [36]).
We refer the readers to [23] for an application to Markov optimal control
problems. For any P0 and P1 ∈M1(R),

Fi(x) := Pi((−1, x]) (i = 0, 1, x ∈ R), (1.16)

F−1
1 (r) := inf{y ∈ R|F1(y) ≥ r} (0 < r < 1). (1.17)

We give the proof to the following known fact for the readers’ convenience.

Theorem 1.3 Suppose that d = 1 and that ` = |u|p (resp. ` = −|u|p)
(p ≥ 1). Then for any P0 and P1 ∈ M1(R) for which TK(P0, P1) is finite,
TK(P0, P1) has a (unique if p > 1) minimizer (F−1

0 ×F−1
1 )#(du) (resp. (F−1

0 ×
(F−1

1 ◦ (1 − Id)))#(du)), where we consider du only on [0, 1]. In particular,
if F0 ∈ C(R), then TM(P0, P1) = TK(P0, P1) and TM(P0, P1) has a (unique
if p > 1) minimizer F−1

1 ◦ F0 (resp. F−1
1 ◦ (1− F0)).

(Proof) For µ ∈ A(P0, P1) and x, y ∈ R,

|{u ∈ [0, 1]|F−1
0 (u) ∑ x, F−1

1 (u) ∑ y}|
= min(F0(x), F1(y))

≥ µ((−1, x]× (−1, y])

= µ((−1, x])− µ((−1, x]× (y,1))
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≥ max(0, µ((−1, x])− µ((y,1)))

= max(0, F0(x) + F1(y)− 1)

= |{u ∈ [0, 1]|F−1
0 (u) ∑ x, F−1

1 (1− u) ∑ y}|, (1.18)

where |A| denotes the Lebesgue measure of A for any measurable A Ω R. If
F0 ∈ C(R), then (F0)#P0 is uniformly distributed on [0, 1]. Therefore the
following completes the proof: for p > 1

Z
R2
|x− y|pµ(dxdy)

=
Z

x∑y
p(p− 1)|x− y|p−2µ((−1, x]× (y,1))dxdy

+
Z

y∑x
p(p− 1)|x− y|p−2µ((x,1)× (−1, y])dxdy, (1.19)

Z
R2
|x− y|µ(dxdy)

=
Z
R
{µ((−1, x]× (x,1)) + µ((x,1)× (−1, x])}dx, (1.20)

µ((−1, x]× (y,1)) = P0((−1, x])− µ((−1, x]× (−1, y]), (1.21)

µ((x,1)× (−1, y]) = P1((−1, y])− µ((−1, x]× (−1, y]).✷ (1.22)

Remark 1.2 (i) When c(x, y) = `(y − x) = −|y − x|p (p ≥ 1),

TK(P0, P1) = − sup
ΩZ

Rd×Rd
|y − x|pµ(dxdy)

ØØØØµ ∈ A(P0, P1)
æ
. (1.23)

(ii) If F1(R) ∩ (0, 1) 6Ω F0(R), then (F−1
1 ◦ F0)#P0 6= P1. Indeed, for r ∈

F1(R) ∩ (0, 1)\F0(R),

P0({x ∈ R|F−1
1 ◦ F0(x) ∑ F−1

1 (r)}) = P0({x ∈ R|F0(x) ∑ r})
< r = F1(F

−1
1 (r)) (1.24)

since F−1
1 (r̃) > F−1

1 (r) for r ∈ F1(R) ∩ (0, 1) and r̃ ∈ (r, 1].
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2 Stochastic Optimal Control Problem.

Let ` : Rd 7→ [0,1) be convex. Then for any absolutely continuous function
' : [0, 1] 7→ Rd,

`('(1)− '(0)) ∑
Z 1

0
`('̇(t))dt (2.1)

by Jensen’s inequality, where the equality holds if '̇(t) = '(1)− '(0). This
implies that if c(x, y) = `(y − x), then the following holds (see also (1.7)-
(1.11)):

TK(P0, P1) = inf
Ω
E

∑Z 1

0
`('̇(t))dt

∏ØØØØ'(t) is absolutely continuous a.s.,

P'(t)−1 = Pt(t = 0, 1)
æ
. (2.2)

(When it is not confusing, we use the same notation P for different probability
measures.) This implies that the MKP can or should be studied in the
framework of the stochastic optimal control theory. In Sect. 2.1 we introduce
the corresponding stochastic optimal control problem for which we state the
Duality Theorem and its application in Sect. 2.2. This is a generalization
of [30] where a diffusion matrix is an identity. The proof of Theorem 2.1 is
given in Sect. 3. In Sect. 2.3 we show that the zero-noise limit of the Duality
Theorem for the SOCP yields that for the MKP.

2.1 SOCP with fixed initial and terminal distributions.

Let σ(t, x) = (σij(t, x))d
i,j=1 ((t, x) ∈ [0, 1]×Rd) be a uniformly nondegener-

ate d×d-matrix function for which each σij is uniformly Lipschitz continuous
in x uniformly in t. Let A denote the set of all Rd-valued, continuous semi-
martingales {X(t)}0∑t∑1 on a (possibly different) complete filtered probabil-
ity space such that there exists a Borel measurable βX : [0, 1]×C([0, 1]) 7→ Rd

for which
(i) ω 7→ βX(t, ω) is B(C([0, t]))+-measurable for all t ∈ [0, 1],
(ii) X(t) = X(0) +

R t
0 βX(s, X)ds +

R t
0 σ(s, X(s))dWX(s) (0 ∑ t ∑ 1).

Here B(C([0, t])), B(C([0, t]))+ and WX denote the Borel σ-field of C([0, t]),
∩s>tB(C([0, s])) and a (FX

t )-Brownian motion respectively, and FX
t := σ[X(s) :
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0 ∑ s ∑ t] (see e.g. [21]). Let L : [0, 1] ×Rd ×Rd 7→ [0,1) be convex in u
and be continuous. The following can be considered as the stochastic optimal
control version of the MKP: for any P0 and P1 ∈M1(Rd),

V (P0, P1) := inf
Ω
E

∑Z 1

0
L(t, X(t); βX(t, X))dt

∏ØØØØ
X ∈ A, PX(t)−1 = Pt(t = 0, 1)

æ
. (2.3)

We explain why the set A is appropriate as the set over which the in-
fimum is taken in our SOCP (2.3). Let (≠,F , {Ft}t≥0, P ) be a complete
filtered probability space, X0 be a (F0)-adapted random variable for which
PX−1

0 = P0, and {W (t)}t≥0 denote a d-dimensional (Ft)-Brownian motion
for which W (0) = 0 (see e.g. [16 or 21]). For a Rd-valued, (Ft)-progressively
measurable stochastic process {u(t)}0∑t∑1, consider the solution to the fol-
lowing:

Xu(t) = X0 +
Z t

0
u(s)ds +

Z t

0
σ(s, Xu(s))dW (s) (t ∈ [0, 1]). (2.4)

If E[
R 1
0 |u(t)|dt] is finite, then {Xu(t)}0∑t∑1 ∈ A and

βXu(t, Xu) = E[u(t)|FXu

t ]. (2.5)

(see Lemma 3.1 in Sect. 3). Besides, by Jensen’s inequality,

E
∑Z 1

0
L(t, Xu(t); u(t))dt

∏
≥ E

∑Z 1

0
L(t, Xu(t); βXu(t, Xu))dt

∏
. (2.6)

Remark 2.1 The meaning of the study of V (P0, P1) is this. Suppose that
we know the probability distributions of a stochastic system at times t = 0
and 1. To study what happened during the time interval (0, 1), we have to
consider the problems such as (2.3).

In [30] where σ(t, x) is an identity matrix, we proved the following, so-
called, Duality Theorem for V (P0, P1), as a stochastic optimal control coun-
terpart of that for the MKP:
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V (P0, P1) = sup
ΩZ

Rd
'(1, x)P1(dx)−

Z
Rd

'(0, x)P0(dx)
æ
, (2.7)

where the supremum is taken over all classical solutions ', to the following
HJB Eqn, for which '(1, ·) ∈ C1

b (Rd):

@'(t, x)

@t
+

1

2

dX
i=1

@2'(t, x)

@x2
i

+ H(t, x; Dx'(t, x)) = 0 (2.8)

((t, x) ∈ [0, 1)×Rd). Here for (t, x, z) ∈ [0, 1]×Rd ×Rd,

H(t, x; z) := sup{< z, u > −L(t, x; u)|u ∈ Rd}. (2.9)

In Sect. 2.2 we show that (2.7) with (2.8) replaced by

@'(t, x)

@t
+

1

2

dX
i,j=1

aij(t, x)
@2'(t, x)

@xi@xj
+ H(t, x; Dx'(t, x)) = 0 (2.10)

holds, where aij(t, x) :=
Pd

k=1 σik(t, x)σjk(t, x). In the setting of [30] the
HJB Eqn (2.8) has a unique classical solution. So does (2.10) in our setting
only when L = L1(t, x) + L2(t, u) (see Theorem 2.2 in Sect. 2.2). Otherwise
the HJB Eqn (2.10) only has a bounded continuous viscosity solution, from
which the proof of the Duality Theorem in [30] does not work. In this paper
we construct and make use of a sequence of bounded continuous functions
which approximate a minimal bounded continuous viscosity solution to the
HJB Eqn (2.10) and which are viscosity solutions to the following HJB Eqns:
for n ≥ 1,

@'n(t, x)

@t
+

1

2

dX
i,j=1

aij(t, x)
@2'n(t, x)

@xi@xj
+ Hn(t, x; Dx'n(t, x)) = 0 (2.11)

((t, x) ∈ [0, 1)×Rd). Here for (t, x, z) ∈ [0, 1]×Rd ×Rd,

Hn(t, x; z) := sup{< z, u > −L(t, x; u)|u ∈ Rd, |u| ∑ n} (2.12)

(see Remark 2.2 in Sect. 2.2).
For the readers’ convenience, we give the definition of the viscosity solu-

tion to the HJB Eqn (2.10).
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Definition 2.1 (Viscosity solution) (see e.g. [13]).
(Viscosity subsolution) ' ∈ USC([0, 1] × Rd) is a viscosity subsolution of
(2.10) if whenever h ∈ C1,2([0, 1) × Rd) and ' − h takes its maximum at
(s, y) ∈ [0, 1)×Rd,

@h(s, y)

@s
+

1

2

dX
i,j=1

aij(t, x)
@2h(s, y)

@xi@xj
+ H(s, y; Dxh(s, y)) ≥ 0. (2.13)

(Viscosity supersolution) ' ∈ LSC([0, 1] × Rd) is a viscosity supersolution
of (2.10) if whenever h ∈ C1,2([0, 1)×Rd) and ' − h takes its minimum at
(s, y) ∈ [0, 1)×Rd,

@h(s, y)

@s
+

1

2

dX
i,j=1

aij(t, x)
@2h(s, y)

@xi@xj
+ H(s, y; Dxh(s, y)) ∑ 0. (2.14)

(Viscosity solution) ' ∈ C([0, 1] ×Rd) is a viscosity solution of (2.10) if it
is both a viscosity subsolution and a viscosity supersolution of (2.10).

2.2 Duality Theorem for the SOCP.

In this section we describe the Duality Theorem for the SOCP and its appli-
cation.

We first describe the assumptions. The following is the assumption on
the regularity of the diffusion matrix.
(A.0). (i) σ(t, x) = (σij(t, x))d

i,j=1 ((t, x) ∈ [0, 1]×Rd) is a uniformly nonde-
generate d× d-matrix function, (ii) σij ∈ C1

b ([0, 1]×Rd) (i, j = 1, · · · , d).
We describe the assumptions on L.

(A.1). (i) L ∈ C([0, 1]×Rd ×Rd : [0,1)), (ii) u 7→ L(t, x; u) is convex.
(A.2). There exists ∞ > 1 such that

lim inf
|u|→1

inf{L(t, x; u) : (t, x) ∈ [0, 1]×Rd}
|u|∞ > 0. (2.15)

(A.3).
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∆L(ε1, ε2) := sup
L(t, x; u)− L(s, y; u)

1 + L(s, y; u)
→ 0 as ε1, ε2 → 0, (2.16)

where the supremum is taken over all (t, x) and (s, y) ∈ [0, 1]×Rd for which
|t− s| ∑ ε1, |x− y| < ε2 and over all u ∈ Rd.
(A.4). (i) @L(t, x; u)/@t and DxL(t, x; u) are bounded on [0, 1]×Rd×BR for
all R > 0, where BR := {x ∈ Rd||x| ∑ R}, (ii) ∆L(0,1) is finite.

Remark 2.2 (i) (A.1,i) and (A.4,ii) imply that L is bounded on [0, 1] ×
Rd ×BR for all R > 0. (ii) For any n ≥ 1, f ∈ UCb(Rd) (UC := uniformly
continuous) and (t, x) ∈ [0, 1]×Rd,

'n(t, x; f) := sup
Ω
E

∑
f(X(1))−

Z 1

t
L(s, X(s); βX(s, X))ds

∏ØØØØ
X(t) = x, X ∈ At, |βX(s, X)| ∑ n

æ
, (2.17)

where we define At in the same way as in (2.3). Then (A.0,ii), (A.1,i) and
(A.4) imply that 'n(t, x; f) is a unique bounded continuous viscosity solution
of the HJB Eqn (2.11) with 'n(1, x; f) = f(x) (see [13, p. 188, Corollary 7.1,
p. 223, Corollary 3.1 and p.249, Theorem 9.1). We do not know if a bounded
continuous viscosity solution of the HJB Eqn (2.10) with '(1, x) = f(x) is
unique even if f ∈ C1

b (Rd) (see Lemma 3.6 in Sect.3).

We give a result on the existence of a minimizer of V (P0, P1) which can
be proved by a standard argument and of which the proof is omitted (see
[17, Proposition 2.1] or [30]).

Proposition 2.1 Suppose that (A.0)-(A.3) hold. Then for any P0 and P1 ∈
M1(Rd) for which V (P0, P1) is finite, V (P0, P1) has a minimizer.

The following is a generalization of [30] and the proof is given in Sect. 3.

Theorem 2.1 (Duality Theorem) Suppose that (A.0)-(A.4) hold. Then,
for any P0 and P1 ∈M1(Rd),

13



V (P0, P1) = sup
ΩZ

Rd
'(1, x)P1(dx)−

Z
Rd

'(0, x)P0(dx)
æ
(∈ [0,1]), (2.18)

where the supremum is taken over all bounded continuous viscosity solutions
', to the following HJB Eqn, for which '(1, ·) ∈ C1

b (Rd):

@'(t, x)

@t
+

1

2

dX
i,j=1

aij(t, x)
@2'(t, x)

@xi@xj
+ H(t, x; Dx'(t, x)) = 0 (2.19)

((t, x) ∈ [0, 1)×Rd).

We introduce the following to replace ' in (2.18) by classical solutions to
the HJB Eqn (2.19).
(A.5). (i) “σ is an identity”, or “σij ∈ C1,2

b ([0, 1] × Rd) (i, j = 1, · · · , d)
and there exist functions L1 and L2 so that L = L1(t, x) + L2(t, u)”. (ii)
L(t, x; u) ∈ C1([0, 1] × Rd × Rd : [0,1)) and is strictly convex in u, (iii)
L ∈ C1,2,0

b ([0, 1]×Rd ×BR) for any R > 0.

Remark 2.3 (i) Take Ai ∈ C1
b ([0, 1] × Rd) for which inf{Ai(t, x)|(t, x) ∈

[0, 1]×Rd} > 0 (i = 1, 2). If L = A1(t, x)+A2(t, x)|u|∞ (∞ > 1), then (A.1)-
(A.4) hold. (ii) (A.2) and (A.5,ii) imply that for any (t, x) ∈ [0, 1] × Rd,
H(t, x; ·) ∈ C1(Rd) and for any u and z ∈ Rd,

z = DuL(t, x; u) if and only if u = DzH(t, x; z). (2.20)

In addition, if L(t, x; ·) ∈ C2(Rd), then

D2
uL(t, x; u) = D2

zH(t, x; z)−1 if u = DzH(t, x; z) (2.21)

(see [40, 2.1.3]), where D2
u := (@2/@ui@uj)d

i,j=1.

If (A.0) and (A.5) hold, then the HJB Eqn (2.19) with terminal function
f ∈ C3

b (Rd) has a unique classical solution '(t, x; f) in C1,2
b ([0, 1]×Rd). In

particular, '(t, x; f) = 'n(t, x; f) for all (t, x) ∈ [0, 1]×Rd, provided

n ≥ sup{|DzH(t, x; Dx'(t, x; f))||(t, x) ∈ [0, 1]×Rd}. (2.22)
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This can be proved almost in the same way as in [13, p. 208, Lemma 11.3]
(see also [13, pp. 169-170, Theorems 4.2 and 4.4]). Hence, in the same way
as in [30, Theorem 2.1 and Corollary 2.1], we obtain the following of which
the proof is omitted.

Theorem 2.2 Suppose that (A.0)-(A.5) hold. Then the Duality Theorem
(2.18) holds even if the supremum is taken over all bounded classical solutions
' of (2.19).

Corollary 2.1 Suppose that (A.0)-(A5) hold. Then for any P0 and P1 ∈
M1(Rd) for which V (P0, P1) is finite and any minimizer {X(t)}0∑t∑1 of
V (P0, P1), the following holds:

βX(t, X) = bX(t, X(t)) := E[βX(t, X)|(t, X(t))] dtdPX(·)−1− a.e.. (2.23)

Next we consider the case where (A.2) holds for ∞ = 2. We omit the proof
of the following which can be obtained from Corollary 4.1 in Sect. 4 in the
same way as in [30, Proposition 2.2].

Proposition 2.2 Suppose that (A.0)-(A.5) hold and that ∞ = 2 in (A.2).
Then for any P0 and P1 ∈ M1(Rd) for which V (P0, P1) is finite, the mini-
mizer of V (P0, P1) is unique and is Markovian.

We introduce an additional assumption:
(A.6). For any (t, x) ∈ [0, 1] × Rd, L(t, x; ·) ∈ C2(Rd). D2

uL(t, x; u) is
bounded and is uniformly nondegenerate on [0, 1]×Rd ×Rd.

From Theorem 2.2, in the same way as in [30, Theorem 2.2], we can
show that a minimizer of V (P0, P1) satisfies a forward backward stochastic
differential equation (FBSDE for short). We omit the proof.

Theorem 2.3 Suppose that (A.0)-(A.1) and (A.3)-(A.6) hold. Then for any
P0 and P1 ∈M1(Rd) for which V (P0, P1) is finite and the unique minimizer
{X(t)}0∑t∑1 of V (P0, P1), there exist f(·) ∈ L1(Rd, P1(dx)) and a (FX

t )-
continuous semimartingale {Y (t)}0∑t∑1 such that {(X(t), Y (t), Z(t))}0∑t∑1

(Z(t) := DuL(t, X(t); bX(t, X(t)))) satisfies the following FBSDE: for t ∈
[0, 1],
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X(t) = X(0) +
Z t

0
DzH(s, X(s); Z(s))ds +

Z t

0
σ(s, X(s))dWX(s),

Y (t) = f(X(1))−
Z 1

t
L(s, X(s); DzH(s, X(s); Z(s)))ds

−
Z 1

t
< Z(s), σ(s, X(s))dWX(s) > . (2.24)

We consider h-path processes as an application of Theorem 2.3. We shall
refer here to
(A.7). σ =identity. There exist functions ξ ∈ C1,2

b ([0, 1] × Rd : Rd) and
c ∈ C1,2

b ([0, 1]×Rd : [0,1)) such that

L(t, x; u) =
1

2
|u− ξ(t, x)|2 + c(t, x) ((t, x; u) ∈ [0, 1]×Rd ×Rd). (2.25)

Let {X(t)}0∑t∑1 be a unique weak solution, to the following SDE, which can
be constructed by the change of measure (see [21] and also (2.4) for notation):

X(t) = X0 +
Z t

0
ξ(s,X(s))ds + W (t) (t ∈ [0, 1]). (2.26)

Then as a corollary to Theorem 2.3, we have

Corollary 2.2 ([30, Corollary 2.3]) Suppose that (A.7) holds. Then for any
P0 and P1 ∈M1(Rd) for which V (P0, P1) is finite and the unique minimizer
{X(t)}0∑t∑1 of V (P0, P1), there exist ft ∈ L1(Rd, Pt(dx)) (t = 0, 1) such that
the following holds: for any A ∈ B(C([0, 1])),

P (X(·) ∈ A) = E
∑
exp

Ω
f1(X(1))− f0(X(0))

−
Z 1

0
c(t,X(t))dt

æ
: X(·) ∈ A

∏
. (2.27)

Remark 2.4 {X(t)}0∑t∑1 in Corollary 2.2 is called the h-path process for
{X(t)}0∑t∑1 with initial and terminal distributions P0 and P1. Corollary 2.2
is known (see e.g. [7, 14, 22, 33, 37, 41]).
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2.3 Zero-noise limit of the SOCP.

In this section we show that the zero-noise limit of the Duality Theorem for
the SOCP yields that for the MKP.

When a(t, x) = ε×identity (ε > 0), we write V (P0, P1) = Vε(P0, P1) and
denote by Vε(P0, P1) the right hand side of (2.18). Then the following (Ã)
implies (A.1)-(A.4) and that Vε(P0, P1) = Vε(P0, P1) from Theorem 2.1.
(Ã) L(·) : Rd 7→ [0,1) is convex. lim inf |u|→1 L(u)/|u|∞ > 0 for some ∞ > 1.

By T (P0, P1) and §, we denote the right hand side of (1.5) and the convo-
lution of two measures respectively. Put also gε(x) := (2πε)−d exp(−|x|2/(2ε)).
Then we have the following which generalizes [31] where we assumed that
L ∈ C1(Rd : [0,1)) and is strictly convex.

Theorem 2.4 Suppose that (Ã) holds. Then for any P0 and P1 ∈M1(Rd),

T (P0, P1) ∑ TK(P0, P1) ∑ lim inf
ε→0

Vε(P0, gε § P1), (2.28)

Vε(P0, gε § P1) ∑ T (P0, P1) (ε > 0). (2.29)

In particular, TK(P0, P1) = T (P0, P1).

(Proof) The first inequality in (2.28) can be proved from Remark 1.1 in Sect.
1. When a(t, x) = ε×identity, for any X ∈ A, by Jensen’s inequality,

Z 1

0
L(βX(t, X))dt

≥ L
µZ 1

0
βX(t, X)dt

∂
= L(X(1)−X(0)−√εWX(1)), (2.30)

which implies the second inequality in (2.28) by Skhorohod’s theorem and
Fatou’s lemma since gε § P1 → P1 as ε → 0 weakly.

Next we prove (2.29). When a(t, x) = ε×identity and (Ã) holds, (A.0)-
(A.4) hold. In particular, we can use Lemma 3.6 in Sect. 3. For f ∈ C1

b (Rd),
take '(·, ·; f) defined by (3.17). For x, y ∈ Rd, put Q = δx in (3.18) and

Xε
x,y(t) := x + t(y − x) +

√
εW (t) (2.31)

(see (2.4) for notation). Then, from Lemma 3.6, '(0, ·; f) ∈ Cb(Rd) and
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E[f(y+
√

εW (1))]−'(0, x; f) = E[f(Xε
x,y(1))]−'(0, x; f) ∑ L(y−x). (2.32)

Since E[f(·+√
εW (1))] ∈ Cb(Rd),

Z
Rd

f(y)gε § P1(dy)−
Z
Rd

'(0, x; f)P0(dx)

=
Z
Rd

E[f(y +
√

εW (1))]P1(dy)−
Z
Rd

'(0, x; f)P0(dx)

∑ T (P0, P1).✷ (2.33)

3 Proof of Theorem 2.1.

In this section we prove Theorem 2.1. First we give technical temmas.
We prove (2.4)-(2.5) for the sake of completeness.

Lemma 3.1 Suppose that (A.0) hold. Let (≠,F , {Ft}t≥0, P ) be a complete
filtered probability space, X0 be a (F0)-adapted random variable, and {W (t)}t≥0

denote a d-dimensional (Ft)-Brownian motion for which W (0) = 0. For a
Rd-valued, (Ft)-progressively measurable stochastic process {u(t)}0∑t∑1, con-
sider a solution to the following:

Xu(t) = X0 +
Z t

0
u(s)ds +

Z t

0
σ(s, Xu(s))dW (s) (t ∈ [0, 1]). (3.1)

If E[
R 1
0 |u(t)|dt] is finite, then {Xu(t)}0∑t∑1 ∈ A with

βXu(t, Xu) = E[u(t)|FXu

t ], dtdP − a.e.. (3.2)

(Proof) Since E[
R 1
0 |u(t)|dt] is finite, there exists a Borel measurable βXu :

[0, 1] × C([0, 1]) 7→ Rd for which ω 7→ βXu(t, ω) is B(C([0, t]))+-measurable
for all t ∈ [0, 1] and for which βXu(t, Xu) = E[u(t)|FXu

t ] (see [21, pp. 114
and 270]). To complete the proof, we prove that Y (t) := Xu(t) − X0 −R t
0 βXu(s, Xu)ds is a (FXu

t )-martingale with quadratic variational processes
(
R t
0 aij(s, Xu(s))ds)d

i,j=1. Indeed, if this is true, then the martingale represen-
tation theorem (see e.g. [16]) implies that
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Xu(t) = X0+
Z t

0
βXu(s, Xu)ds+

Z t

0
σ(s, Xu(s))dWXu(s) (0 ∑ t ∑ 1). (3.3)

It is easy to see that Y (t) is FXu

t -adapted. Since FXu

s Ω Fs, for t ≥ s ≥ 0,

E[Y (t)− Y (s)|FXu

s ]

= E
∑Z t

s
(u(∞)− βXu(∞, Xu))d∞ +

Z t

s
σ(∞, Xu(∞))dW (∞)

ØØØØFXu

s

∏
=

Z t

s
E[u(∞)− E[u(∞)|FXu

∞ ]|FXu

s ]d∞

+E
∑
E

∑Z t

s
σ(∞, Xu(∞))dW (∞)

ØØØØFs

∏ØØØØFXu

s

∏
= 0. (3.4)

For any f ∈ C2
b (R) and i, j = 1, · · · , d, by the Itô formula (see e.g. [16]),

E[f(Yi(t)− Yi(s))f(Yj(t)− Yj(s))|FXu

s ]

= E
∑Z t

s
{f(Yi(∞)− Yi(s))f

0(Yj(∞)− Yj(s))(uj(∞)− βXu,j(∞, Xu))

+f 0(Yi(∞)− Yi(s))f(Yj(∞)− Yj(s))(ui(∞)− βXu,i(∞, Xu))

+aij(∞, Xu(∞))f 0(Yi(∞)− Yi(s))f
0(Yj(∞)− Yj(s))

+δijaij(∞, Xu(∞))f(Yi(∞)− Yi(s))f
00(Yj(∞)− Yj(s))}d∞

ØØØØFXu

s

∏
= E

∑Z t

s
{aij(∞, Xu(∞))f 0(Yi(∞)− Yi(s))f

0(Yj(∞)− Yj(s))

+δijaij(∞, Xu(∞))f(Yi(∞)− Yi(s))f
00(Yj(∞)− Yj(s))}d∞

ØØØØFXu

s

∏
,(3.5)

where u(s) = (ui(s))d
i=1, βXu(s, Xu) = (βXu,i(s, Xu))d

i=1, δij = 1 if i = j and
= 0 if i 6= j. Indeed, since Y (t) is FXu

t -adapted, for ∞ ≥ s,

E[f(Yi(∞)− Yi(s))f
0(Yj(∞)− Yj(s))(uj(∞)− βXu,j(∞, Xu))|FXu

s ]

= E[E[f(Yi(∞)− Yi(s))f
0(Yj(∞)− Yj(s))

×(uj(∞)− E[uj(∞)|FXu

∞ ])|FXu

∞ ]|FXu

s ]

= E[f(Yi(∞)− Yi(s))f
0(Yj(∞)− Yj(s))

×E[(uj(∞)− E[uj(∞)|FXu

∞ ])|FXu

∞ ]|FXu

s ] = 0. (3.6)

19



On the set {sups∑∞∑t |Yj(∞)−Yj(s)| ∑ n} (n ≥ 1), taking f such that f(x) = x
if |x| ∑ n,

E[(Yi(t)− Yi(s))(Yj(t)− Yj(s))|FXu

s ] = E
∑Z t

s
aij(∞, Xu(∞))d∞

ØØØØFXu

s

∏
. (3.7)

Since sups∑∞∑t |Yj(∞)− Yj(s)| is finite a.s., the proof is complete.✷
The following two lemmas on the property of V (·, ·) will play a crucial

role in the sequel and can be proved in the same way as in [30, Lemmas 3.1
and 3.2] from Lemmas 3.1 (see Remark 2.2, (i)). We omit the proof.

Lemma 3.2 Suppose that (A.0)-(A.3) hold. Then (Q, P ) 7→ V (Q, P ) is
lower semicontinuous.

Lemma 3.3 Suppose that (A.0)-(A.3) and (A.4,ii) hold. Then for any P0 ∈
M1(Rd), P 7→ V (P0, P ) is convex.

We recall the following result.

Lemma 3.4 (see (2.17) and [13, pp. 185-188]). Suppose that (A.0,ii) and
(A.4) hold. Then for any n ≥ 1, f ∈ UCb(Rd), t ∈ [0, 1] and Q ∈M1(Rd),

Z
Rd

'n(t, x; f)Q(dx) = sup
Ω
E

∑
f(X(1))−

Z 1

t
L(s, X(s); βX(s, X))ds

∏ØØØØ
X ∈ At, |βX(s, X)| ∑ n, PX−1(t) = Q

æ
.(3.8)

(A.0,ii) implies that for any t ∈ [0, 1], X ∈ At and n ≥ 1, the following
has a unique solution: for u ∈ [t, 1],

Xn(u) = X(t) +
Z u

t
1{|βX(s,X)|∑n}βX(s, X)ds +

Z u

t
σ(s, Xn(s))dWX(s). (3.9)

Xn ∈ At and βXn(s, Xn) = E[1{|βX(s,X)|∑n}βX(s, X)|FXn
s ] from Lemma 3.1.

We also have
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Lemma 3.5 Suppose that (A.0,ii) holds. Then for any t ∈ [0, 1] and X ∈
At, there exists a subsequence {Xn(k)}k≥1 Ω At (see (3.9)) such that

lim
k→1

sup
t∑s∑1

|Xn(k)(s)−X(s)| = 0, a.s.. (3.10)

(Proof) For the sake of simplicity, we assume that t = 0. Putting

τm := inf
Ω
t > 0

ØØØØ Z t

0
|βX(s, X)|ds > m

æ
(→1 as m →1), (3.11)

lim
n→1E

∑
sup

0∑t∑min(1,τm)
|Xn(t)−X(t)|2

∏
= 0 for m ≥ 1. (3.12)

This is true, since

X(t)−Xn(t) =
Z t

0
1{|βX(s,X)|>n}βX(s, X)ds

+
Z t

0
(σ(s, X(s))− σ(s, Xn(s)))dWX(s), (3.13)

from which, by the Gronwall inequality and a standard argument, for m ≥ 1,

E
∑

sup
0∑t∑min(1,τm)

|Xn(t)−X(t)|2
∏

∑ 2E
∑ØØØØ Z min(1,τm)

0
1{|βX(s,X)|>n}|βX(s, X)|ds

ØØØØ2∏ exp(8C2) → 0 (3.14)

as n → 1 by the bounded convergence theorem. Here C denotes the Lips-
chitz constant of σ(t, x) and we used the following:Z min(1,τm)

0
1{|βX(s,X)|>n}|βX(s, X)|ds ∑ m. (3.15)

Since an L2-convergent sequence of randam variables has an a.s. convergent
subsequence, one can take from (3.12), by a diagonal method, a subsequence
{n(k)}k≥1 so that

21



lim
k→1

sup
0∑t∑min(1,τm)

|Xn(k)(t)−X(t)| → 0 for each m ≥ 1, a.s.. (3.16)

Since P (∪m≥1{τm ≥ 1}) = 1, the proof is complete✷.
For f ∈ UCb(Rd) and (t, x) ∈ [0, 1]×Rd, since n 7→ 'n(t, x; f) is nonde-

creasing (see (2.17)), we can define

'(t, x; f) := lim
n→1'n(t, x; f). (3.17)

We also have

Lemma 3.6 Suppose that (A.0)-(A.4) hold. Then for any f ∈ UCb(Rd),
Q ∈M1(Rd) and t ∈ [0, 1],

Z
Rd

'(t, x; f)Q(dx) = sup
Ω
E

∑
f(X(1))−

Z 1

t
L(s, X(s); βX(s, X))ds

∏ØØØØ
X ∈ At, PX−1(t) = Q

æ
. (3.18)

'(t, x; f) is a bounded continuous viscosity solution of (2.19). In addition,
for any bounded continuous viscosity solution u of (2.19) with u(1, x) = f(x),
u ≥ ', that is, ' is minimal.

(Proof) We write '(t, x; f) = '(t, x) and 'n(t, x; f) = 'n(t, x) for the sake
of simplicity. We first prove (3.18). It is easy to see that the left hand side is
less than or equal to the right hand side in (3.18) from Lemma 3.4. Indeed,Z

Rd
'(t, x)Q(dx) = lim

n→1

Z
Rd

'n(t, x)Q(dx) (3.19)

by the bounded convergence theorem since, for any n ≥ 1,

sup
x∈Rd

|f(x)| ≥ 'n(t, x) ≥ − sup
x∈Rd

|f(x)| − sup
(t,x)∈[0,1]×Rd

L(t, x; 0) > −1 (3.20)

(see Remark 2.2, (i)). We prove the opposite inequality. For X ∈ At for
which PX−1(t) = Q, take {Xn(k)}k≥1 in Lemma 3.5. Then for k ≥ 1, from
Lemma 3.4,
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Z
Rd

'n(k)(t, x)Q(dx)

≥ E
∑
f(Xn(k)(1))−

Z 1

t
L(s, Xn(k)(s); βXn(k)

(s, Xn(k)))ds
∏

≥ E
∑
f(Xn(k)(1))−

Z 1

t
L(s, Xn(k)(s); 1{|βX(s,X)|∑n(k)}βX(s, X))ds

∏
→ E

∑
f(X(1))−

Z 1

t
L(s, X(s); βX(s, X))ds

∏
as k →1, (3.21)

by Jensen’s inequality and the dominated convergence theorem. Indeed, from
(A.4,ii),

L(s, Xn(s); 1{|βX(s,X)|∑n}βX(s, X))

∑ (1 + ∆L(0,1))(1 + L(s, X(s); 1{|βX(s,X)|∑n}βX(s, X)))

∑ (1 + ∆L(0,1))(1 + L(s, X(s); βX(s, X)) + L(s, X(s); 0)). (3.22)

(3.19) and (3.21) complete the proof of (3.18).
(3.20) implies that ' is bounded.
We prove the upper semicontinuity of '. For (t, x) ∈ Rd and any n ≥ 1,

take Xn,t,x ∈ At for which Xn,t,x(t) = x and

'(t, x)− 1

n

< E
∑
f(Xn,t,x(1))−

Z 1

t
L(s, Xn,t,x(s); βXn,t,x(s, Xn,t,x))ds

∏
. (3.23)

Put Xn,t,x(u) := x for u < t. Then {Xn,t,x}(t,x)∈[0,1]×Rd is tight by (A.2) (see
[17]) since, from (3.17), (3.20) and (3.23),

E
∑Z 1

t
L(s, Xn,t,x(s); βXn,t,x(s, Xn,t,x))ds]

∑ 2 sup
x∈Rd

|f(x)|+ sup
(t,x)∈[0,1]×Rd

L(t, x; 0) + 1 < 1. (3.24)

Hence, in the same way as in Lemma 3.2, from (A.3),
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lim sup
(t,x)→(s,y)

'(t, x) ∑ '(s, y). (3.25)

We prove the lower semicontinuity of '. For (t, x), (s, y) ∈ Rd and Xs,y ∈ As

for which Xs,y(s) = y, define Yt,x ∈ At by the following: for α ∈ [t, 1],

Yt,x(α) = x +
Z α

t
1[s,1](∞)βXs,y(∞, Xs,y)d∞

+
Z α

t
1[s,1](∞)σ(∞, Ys,y(∞))dWXs,y(∞)

+
Z α

t
1[0,s](∞)σ(∞, Ys,y(∞))dW̃(∞), (3.26)

where {W̃ (∞)}0∑∞∑s is a Brownian motion which is independent of {WXs,y(∞)−
WXs,y(s)}s∑∞∑1 This is possible from (A.0,ii). In the same way as in (3.21),
taking a subsequence if necessary,

lim inf
(t,x)→(s,y)

'(t, x)

≥ lim inf
(t,x)→(s,y)

E
∑
f(Yt,x(1))−

Z 1

t
L(α, Yt,x(α); βYt,x(α, Yt,x))dα

∏
≥ E

∑
f(Xs,y(1))−

Z 1

s
L(α, Xs,y(α); βXs,y(α, Xs,y))dα

∏
. (3.27)

In particular,

lim inf
(t,x)→(s,y)

'(t, x) ≥ '(s, y). (3.28)

We prove that ' is a viscosity subsolution of (2.19). Suppose that h ∈
C1,2([0, 1)×Rd) and '− h takes its maximum, say, 0 at (s, y) ∈ [0, 1)×Rd.
Then '(t, x)−h(t, x)− (|t− s|2 + |x− y|2)/(2m) takes its strict maximum at
(s, y) ∈ [0, 1)×Rd for any m ≥ 1. It is easy to see that 'n(t, x)−h(t, x)−(|t−
s|2 + |x− y|2)/(2m) takes its maximum at some point (sn, yn) ∈ [0, 1)×Rd

since

'n(t, x)− h(t, x) = 'n(t, x)− '(t, x) + '(t, x)− h(t, x)

∑ 'n(t, x)− '(t, x) ∑ 2 sup
x∈Rd

|f(x)|+ sup
(t,x)∈[0,1]×Rd

L(t, x; 0) < 1 (3.29)
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from (3.17) and (3.20). Since 'n is a bounded continuous viscosity solution
of the HJB Eqn (2.11),

@h(sn, yn)

@s
+

sn − s

m
+

1

2

dX
i,j=1

aij(sn, yn)
@2h(sn, yn)

@xi@xj

+
1

2m

dX
i=1

aii(sn, yn) + Hn(sn, yn; Dxh(sn, yn) +
yn − y

m
) ≥ 0. (3.30)

Since Hn ↑ H (resp. 'n ↑ ') as n → 1 and Hn and H (resp. 'n and
') are continuous, Hn ↑ H (resp. 'n ↑ ') uniformly on every compact
subset of [0, 1]×Rd ×Rd (resp. [0, 1]×Rd) as n → 1 by Dini’s Theorem.
(sn, yn) → (s, y) as n →1. Indeed,

'n(sn, yn)− h(sn, yn)− |sn − s|2 + |yn − y|2
2m

≥ 'n(s, y)− h(s, y), (3.31)

which together with (3.17) and (3.29) implies the boundedness of {(sn, yn)}n≥1.
For any convergent subsequence of {(sn, yn)}n≥1 and its limit (s, y), taking
the limit in (3.31),

'(s, y)− h(s, y)− |s− s|2 + |y − y|2
2m

≥ '(s, y)− h(s, y), (3.32)

which implies (s, y) = (s, y). Let n →1 and then m →1 in (3.30). Then

@h(s, y)

@s
+

1

2

dX
i,j=1

aij(s, y)
@2h(s, y)

@xi@xj
+ H(s, y; Dxh(s, y)) ≥ 0. (3.33)

We can prove that ' is a viscosity supersolution of (2.19) in the same way as
in (3.29)-(3.33), by considering a function '(t, x)− h(t, x) + (|t− s|2 + |x−
y|2)/(2m) instead of '(t, x)− h(t, x)− (|t− s|2 + |x− y|2)/(2m).

We prove that ' is a minimal bounded continuous viscosity solution of
(2.19) with '(1, x) = f(x). Let u be a bounded continuous viscosity solution
of (2.19) with u(1, x) = f(x). Then u is a bounded continuous viscosity
supersolution of (2.11) with u(1, x) = f(x) for all n ≥ 1 since Hn ∑ H. Since
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'n is a bounded continuous viscosity subsolution of (2.11) with 'n(1, x) =
f(x), by the comparison principle (see [13, p. 249, Theorem 9.1]), 'n ∑ u.
Letting n →1, the proof is over from (3.17).✷

To prove Theorem 2.1, we have to improve the idea in [30, Theorem 2.1].
For the sake of completeness, we write the whole proof.
(Proof of Theorem 2.1). V (P0, ·) 6≡ 1. Indeed, for P1 = P (X0(1))−1 (see
(2.4) for notation), from (A.4,ii) and Remark 2.2, (i),

V (P0, P1) ∑ sup{L(t, x; 0)|(t, x) ∈ [0, 1]×Rd} < 1. (3.34)

Consider P 7→ V (P0, P ) as a function on the space of finite Borel measures
on Rd, by putting V (P0, P ) = +1 for P 6∈ M1(Rd). From Lemmas 3.2 and
3.3 and [9, Theorem 2.2.15 and Lemma 3.2.3],

V (P0, P1) = sup
ΩZ

Rd
f(x)P1(dx)− V §

P0
(f)

ØØØØf ∈ Cb(R
d)

æ
, (3.35)

where for f ∈ Cb(Rd),

V §
P0

(f) := sup
ΩZ

Rd
f(x)P (dx)− V (P0, P )

ØØØØP ∈M1(R
d)

æ
. (3.36)

Denote by V(P0, P1) the right hand side of (2.18). Then, from Lemma
3.6 and (3.35), V (P0, P1) ≥ V(P0, P1).

We prove the opposite inequality. Take ρ ∈ C1
0 ([−1, 1]d : [0,1)) for

which
R
Rd ρ(x)dx = 1. For ε > 0 and f ∈ Cb(Rd), put

ρε(x) := ε−dρ(x/ε), fε(x) :=
Z
Rd

f(y)ρε(y − x)dy. (3.37)

Then fε ∈ C1
b (Rd) and, from Lemma 3.6,

V(P0, P1) ≥
Z
Rd

fε(x)P1(dx)− V §
P0

(fε). (3.38)

Take Xε ∈ A (ε > 0) for which PXε(0)−1 = P0 and

V §
P0

(fε)− ε < E[fε(Xε(1))]− E
∑Z 1

0
L(t, Xε(t); βXε(t, Xε))dt

∏
. (3.39)
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Then {Xε}ε∈(0,1) is tight from (A.2) and (3.39) (see [17]) since

V §
P0

(fε) ≥ − sup
x∈Rd

|f(x)| − sup
(t,x)∈[0,1]×Rd

L(t, x; 0) > −1 (3.40)

from Remark 2.2, (i). From (3.39), in the same way as in Lemma 3.2, there
exists a weak limit point X of Xε as ε → 0 such that

lim sup
ε→0

V §
P0

(fε) ∑ E[f(X(1))]− E
∑Z 1

0
L(t, X(t); βX(t, X))dt

∏
∑ V §

P0
(f) (3.41)

since E[fε(Xε(1))] =
R
Rd ρ(z)dzE[f(Xε(1) + εz)]. (3.35), (3.38) and (3.41)

imply that V(P0, P1) ≥ V (P0, P1).✷

4 Nelson’s Problem.

In this section we consider Nelson’s Problem under the generalized finite
energy condition. We describe Nelson’s Problem. Let b : [0, 1] × Rd 7→ Rd

be measurable and {Pt}0∑t∑1 ΩM1(Rd) satisfy the following Fokker-Planck
equation: for any f ∈ C1,2

b ([0, 1]×Rd) and t ∈ [0, 1],

Z
Rd

f(t, x)Pt(dx)−
Z
Rd

f(0, x)P0(dx)

=
Z t

0
ds

Z
Rd

µ
@f(s, x)

@s
+

1

2

dX
i,j=1

aij(s, x)
@2f(s, x)

@xi@xj

+ < b(s, x), Dxf(s, x) >
∂
Ps(dx). (4.1)

Inspired by Born’s probabilistic interpretation of a solution to Schrödinger’s
equation, in the case where a(t, x) = (aij(t, x))d

i,j=1 is an identity matrix, Nel-
son proposed the problem of the construction of a diffusion process {X(t)}0∑t∑1

for which the following holds (see [34, 35]): for t ∈ [0, 1],

X(t) = X(0) +
Z t

0
b(s, X(s))ds +

Z t

0
σ(s, X(s))dWX(s), (4.2)

PX(t)−1 = Pt. (4.3)
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The first result was given by Carlen [2] (see also [42]) where σ is an identity
matrix. It was generalized, by Mikami [22], to the case where σ is a matrix
function. The further generalization and almost complete resolution was
made by Cattiaux and Léonard [3-6] (see also [1, 24-25] for the related topics).
In these papers, they assumed thatZ 1

0
dt

Z
Rd
|b(t, x)|2Pt(dx) < 1 (4.4)

for some b for which (4.1) holds. This is called the finite energy condition
for {Pt}0∑t∑1.

Remark 4.1 It is known that b is not unique for {Pt}0∑t∑1 in (4.1) (see [22]
or [3-6]). If (4.1) holds, then we will write b ∈ A({Pt}0∑t∑1).

In [28] where σ is an identity matrix, we considered Nelson’s Problem
under a weaker assumption than (4.4): there exists ∞ > 1 such thatZ 1

0
dt

Z
Rd
|b(t, x)|∞Pt(dx) < 1 (4.5)

for some b ∈ A({Pt}0∑t∑1). We call (4.5) the generalized finite energy
condition (GFEC for short) for {Pt}0∑t∑1.

In Sect. 4.1 we study Nelson’s Problem under the GFEC when σ is not an
identity matrix as an application of Theorem 2.2. In Sect. 4.2 we study the
Duality Theorem for Nelson’s Problem which gives a direct approach to Nel-
son’s Problem. In Sects. 4.3-4.4 we study the existence and the uniqueness of
a minimizer of and the Duality Theorem for deterministic variational prob-
lems for {Pt}0∑t∑1 in (4.1) (see (4.6) and (4.9)). Assumptions (A.0)-(A.5)
can be found in Sect. 2.2.

4.1 Nelson’s Problem under the GFEC.

For P0 and P1 ∈M1(Rd),

v(P0, P1) := inf
ΩZ 1

0
dt

Z
Rd

L(t, x; b(t, x))Qt(dx)
ØØØØ{Qt}0∑t∑1 ΩM1(R

d),

Qt = Pt(t = 0, 1), b ∈ A({Qt}0∑t∑1)
æ
. (4.6)
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From Theorem 2.2, in the same way as in [28, Theorem 2.1], we obtain the
following of which the proof is omitted.

Corollary 4.1 Suppose that (A.0)-(A.5) hold. Then for any P0 and P1 ∈
M1(Rd),

V (P0, P1) = v(P0, P1)(∈ [0,1]). (4.7)

For P := {Pt}0∑t∑1 ΩM1(Rd),

V(P) := inf
Ω
E

∑Z 1

0
L(t, X(t); βX(t, X))dt

∏ØØØØX ∈ A,

PX(t)−1 = Pt(0 ∑ t ∑ 1)
æ
, (4.8)

v(P) := inf
ΩZ 1

0
dt

Z
Rd

L(t, x; b(t, x))Pt(dx)
ØØØØb ∈ A(P)

æ
. (4.9)

Using a similar result to (4.7) on small time intervals Ω [0, 1] and then taking
the continuum limit, in the same way as in [28, Theorem 2.2], we have the
following which is omitted the proof.

Theorem 4.1 Suppose that (A.0)-(A.5) hold. Then
(i) for any P := {Pt}0∑t∑1 ΩM1(Rd),

V(P) = v(P)(∈ [0,1]). (4.10)

(ii) For any P := {Pt}0∑t∑1 Ω M1(Rd) for which v(P) is finite, there exist
a unique minimizer bo of v(P) and a minimizer X of V(P). In particular,
for any minimizer X of V(P),

βX(t, X) = bo(t, X(t)) (4.11)

and (4.2)-(4.3) with b = bo hold.

Remark 4.2 (i) If v(P) is finite, then the GFEC (4.5) holds from (A.2).
(ii) When (4.4) holds, the semimartingale in (4.2) is Markovian. But we do
not know if it is also true even when ∞ < 2. This is our future problem.
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4.2 Duality Theorem for Nelson’s Problem.

Theorem 2.2 and Corollary 4.1 implies the Duality Theorem for v(P0, P1).

Corollary 4.2 Suppose that (A.0)-(A.5) hold. Then for any P0 and P1 ∈
M1(Rd),

v(P0, P1) = sup
ΩZ

Rd
'(1, x)P1(dx)−

Z
Rd

'(0, x)P0(dx)
æ
(∈ [0,1]), (4.12)

where the supremum is taken over all bounded classical solutions ', to the
following HJB Eqn, for which '(1, ·) ∈ C1

b (Rd):

@'(t, x)

@t
+

1

2

dX
i,j=1

aij(t, x)
@2'(t, x)

@xi@xj
+ H(t, x; Dx'(t, x)) = 0 (4.13)

((t, x) ∈ [0, 1)×Rd).

In this section, for P := {Pt}0∑t∑1 ΩM1(Rd), we first prove the Duality
Theorem for V(P) which gives a new direct proof to Theorem 4.1. As a
corollary, we obtain the Duality Theorem for v(P) in the same way as in
Corollary 4.2.

We extend V(P) to a variational problem on M1([0, 1] ×Rd). For ∏ ∈
M1([0, 1] × Rd), if t 7→ ∏(t, dx) := ∏(dtdx)/dt exists and has a weakly
continuous version, we denote it by ∏t(dx).

Fix P0 ∈M1(Rd). For ∏ ∈M1([0, 1]×Rd),

VP0(∏) :=

(
V({∏t}0∑t∑1) if {∏t}0∑t∑1 exists and ∏0 = P0,
1 otherwise.

(4.14)

Then it is easy to see that VP0(·) is convex, lower semi-continuous and not
identically equal to 1 on M1([0, 1] × Rd) under (A.0)-(A.3) and (A.4,ii).
Indeed, the convexity can be proved in the same way as in Lemma 3.2. To
prove the lower semicontinuity, suppose that ∏n(dtdx) → ∏(dtdx) as n →1
weakly and that lim infn→1VP0(∏

n) is finite. Then there exist {n(k)}k≥1,

{Xn(k)}k≥1 and X ∈ A for which PXn(k)(0)−1 = P0, PXn(k)(t)−1 = ∏n(k)
t for

all t ∈ [0, 1] (k ≥ 1), Xn(k) → X as k →1 weakly and
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lim inf
n→1 VP0(∏

n) = lim
k→1

E
∑Z 1

0
L(t, Xn(k)(t); βXn(k)

(t, Xn(k)))dt
∏

≥ E
∑Z 1

0
L(t, X(t); βX(t, X))dt

∏
(4.15)

in the same way as in Proposition 2.1. Since dtPXn(t)−1(dx) = ∏n(dtdx), it
is easy to see that {∏t}0∑t∑1 exists, ∏0 = P0, PX(t)−1 = ∏t (0 ∑ t ∑ 1) and

lim inf
n→1 VP0(∏

n) ≥ VP0(∏). (4.16)

For f ∈ C1
b ([0, 1]×Rd), let φ(t, x; f) denote a function '(t, x; 0) in (3.17)

with H(t, x, ; z) replaced by H(t, x, ; z) + f(t, x). Then under (A.0)-(A.4),
from Lemma 3.6, it is the minimal bounded continuous viscosity solution of
the following HJB Eqn:

@φ(t, x; f)

@t
+

1

2

dX
i,j=1

aij(t, x)
@2φ(t, x; f)

@xi@xj

+H(t, x; Dxφ(t, x; f)) + f(t, x) = 0 ((t, x) ∈ [0, 1)×Rd) (4.17)

φ(1, x; f) = 0 (x ∈ Rd). (4.18)

In the same way as in Theorem 2.1, we obtain the Duality Theorem for V(P).

Theorem 4.2 Suppose that (A.0)-(A.4) hold. Then for any P := {Pt}0∑t∑1 Ω
M1(Rd),

V(P) = sup
ΩZ

[0,1]×Rd
f(t, x)dtPt(dx)−

Z
Rd

φ(0, x; f)P0(dx)
ØØØØ

f ∈ C1
b ([0, 1]×Rd)

æ
(∈ [0,1]). (4.19)

If (A.0) and (A.5) hold, then for f ∈ C1
b ([0, 1]×Rd), the HJB Eqn (4.17)-

(4.18) has a unique classical solution φ(t, x; f) in C1,2
b ([0, 1]×Rd). This can

be proved almost in the same way as in [13, p. 208, Lemma 11.3] (see also [13,
pp. 169-170, Theorems 4.2 and 4.4]). Hence Theorem 4.2 implies Theorem
4.1 without Corollary 4.1 in the same way as in Theorem 2.2. In the same
way as in Corollaries 4.1 and 4.2, we obtain the Duality Theorem for v(P).
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Corollary 4.3 Suppose that (A.0)-(A.5) hold. Then for any P := {Pt}0∑t∑1 Ω
M1(Rd),

v(P) = V(P)

= sup
ΩZ

[0,1]×Rd
f(t, x)dtPt(dx)−

Z
Rd

φ(0, x; f)P0(dx)
ØØØØ

f ∈ C1
b ([0, 1]×Rd)

æ
(∈ [0,1]), (4.20)

where for f ∈ C1
b ([0, 1] × Rd), φ(t, x; f) is the unique bounded classical

solution to (4.17)-(4.18).

4.3 Minimizers of v(P0, P1) and v(P).

In this section, inspired by Kantorovich’s approach, we introduce a new idea
to study minimizers of v(P0, P1) and v(P) defined in Sect. 4.1.

We use (A.1) and the following, instead of (A.0) and (A.2).
(A.0)’. a(t, x) = (aij(t, x))d

i,j=1 in (4.1) is bounded, uniformly Lipschitz con-
tinuous in x uniformly in t and nonnegative definite.
(A.2)’.

lim inf
|u|→1

inf{L(t, x; u) : (t, x) ∈ [0, 1]×Rd}
|u| > 0. (4.21)

In particular, we can consider the case where a(t, x) is a zero matrix and
the PDE (4.1) becomes the Liouville equation.

For µ(dxdv) ∈M1(Rd×Rd), µ1(dx) := µ(dx×Rd), µ2(dv) := µ(Rd×dv).
We write ∫(dtdxdv) ∈ Ã if the following holds: ∫(dtdxdv) ∈ M1([0, 1] ×
Rd ×Rd), ∫(t, dxdv) := ∫(dtdxdv)/dt exists and t 7→ ∫1(t, dx) has a weakly
continuous version ∫1,t(dx) for which for any t ∈ [0, 1] and f ∈ C1,2

b ([0, 1] ×
Rd),

Z
Rd

f(t, x)∫1,t(dx)−
Z
Rd

f(0, x)∫1,0(dx)

=
Z
[0,t]×Rd×Rd

Ls,x,vf(s, x)∫(dsdxdv). (4.22)

Here

32



Ls,x,vf(s, x) :=
@f(s, x)

@s
+

1

2

dX
i,j=1

aij(s, x)
@2f(s, x)

@xi@xj
+ < v, Dxf(s, x) > .

(4.23)

Remark 4.3 If {Pt}0∑t∑1 ΩM1(Rd) and b ∈ A({Pt}0∑t∑1), then dtPt(dx)δb(t,x)(dv) ∈
Ã (see Remark 4.1 for notation).

v(P0, P1) and v(P) are the minimization problems of nonlinear functionals
of b in (4.1) and the existence of minimizers can be proved from that of
V (P0, P1) and V(P) respectively, under (A.0)-(A.5) (see Proposition 2.1,
Corollary 4.1 and Theorem 4.1). The following implies that v(P0, P1) and
v(P) are the minimization problems of linear functionals of ∫ in (4.22), from
which the existence of minimizers can be proved directly, under (A.0)’, (A.1)
and (A.2)’ only (see Theorem 4.3 given later). It also implies the convexities
of (P0, P1) 7→ v(P0, P1) and of P 7→ v(P).

Proposition 4.1 Suppose that (A.1) holds. Then: (i) for P0 and P1 ∈
M1(Rd),

v(P0, P1) = inf
ΩZ

[0,1]×Rd×Rd
L(t, x; v)∫(dtdxdv)

ØØØØ
∫ ∈ Ã, ∫1,t = Pt(t = 0, 1)

æ
, (4.24)

(ii) for P := {Pt}0∑t∑1 ΩM1(Rd),

v(P) = inf
ΩZ

[0,1]×Rd×Rd
L(t, x; v)∫(dtdxdv)

ØØØØ
∫ ∈ Ã, ∫1,t = Pt(0 ∑ t ∑ 1)

æ
. (4.25)

(Proof) We only prove (i) since (ii) can be proved similarly. It is easy to
see that the left hand side of (4.24) is greater than or equal to the right
hand side (see Remark 4.3). We prove the opposite inequality. For ∫ ∈
Ã, put b∫(t, x) :=

R
Rd v∫(t, x, dv), where ∫(t, x, dv) is a regular conditional

probability of ∫ given (t, x). Then by Jensen’s inequality,
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Z
[0,1]×Rd×Rd

L(t, x; v)∫(dtdxdv) ≥
Z 1

0
dt

Z
Rd

L(t, x; b∫(t, x))∫1,t(dx). (4.26)

b∫ ∈ A({∫1,t}0∑t∑1) from (4.22)-(4.23) since, for any t ∈ [0, 1] and f ∈
C1,2

b ([0, 1]×Rd),

Z
[0,t]×Rd×Rd

< v, Dxf(s, x) > ∫(dsdxdv).

=
Z t

0
ds

Z
Rd

< b∫(s, x), Dxf(s, x) > ∫1,s(dx).✷ (4.27)

The following partially generalizes Theorem 4.1, (ii).

Theorem 4.3 Suppose that (A.0)’, (A.1) and (A.2)’ hold. Then: (i) for any
P0 and P1 ∈M1(Rd) for which v(P0, P1) is finite, v(P0, P1) has a minimizer,
(ii) for any P := {Pt}0∑t∑1 Ω M1(Rd) for which v(P) is finite, v(P) has
a minimizer. Suppose in addition that L is strictly convex in u. Then the
minimizer of v(P) is unique.

Remark 4.4 Under (A.0)-(A.5) with ∞ = 2, from Proposition 2.2 and Corol-
lary 4.1, the minimizer of v(P0, P1) is unique. Indeed, for any {Qt}0∑t∑1 Ω
M1(Rd) and b ∈ A({Qt}0∑t∑1) for which

R
[0,1]×Rd L(t, x; b(t, x))dtQt(dx) is

finite, there exists X ∈ A such that (4.2)-(4.3) with Pt = Qt holds under
(A.0) and (A.2) with ∞ = 2 (see [5]).

For any s ≥ 0 and P ∈M1(Rd),

™P (s) :=
Ω
∫ ∈ Ã

ØØØØ∫1,0 = P,
Z
[0,1]×Rd×Rd

L(t, x; v)∫(dtdxdv) ∑ s
æ
. (4.28)

As a preparation of the proof of Theorem 4.3, we prove the following.

Lemma 4.1 Suppose that (A.0)’, (A.1,i) and (A.2)’ hold. Then for any s ≥
0 and compact K ΩM1(Rd), the set ∪P∈K™P (s) is compact in M1([0, 1]×
Rd ×Rd).
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(Proof) We only have to consider the case where ∪P∈K™P (s) 6= ;. We first
prove that ∪P∈K™P (s) is tight. For ∫ ∈ ∪P∈K™P (s), from (A.2)’, there
exists C1 > 0 such that

Z
[0,1]×Rd×Bc

R

∫(dtdxdv) ∑ C1

R

Z
[0,1]×Rd×Rd

L(t, x; v)∫(dtdxdv) ∑ C1s

R
(4.29)

for sufficiently large R > 0. Take √ ∈ C1
b (Rd : [0, 1]) for which √(x) = 0

if |x| ∑ 1 and = 1 if |x| ≥ 2, and put √r(x) := √(x/r). Then, from (4.22),
(A.0)’ and (A.2)’, there exists C2 > 0 such that for any t ∈ [0, 1],

∫1,t(B
c
2r) ∑

Z
Rd

√(x/r)∫1,t(dx)

=
Z
Rd

√(x/r)∫1,0(dx) +
Z
[0,t]×Rd×Rd

µ
1

2r2

dX
i,j=1

aij(s, x)
@2√(x/r)

@xi@xj

+
1

r
< v, Dx√(x/r) >

∂
∫(dsdxdv)

∑ ∫1,0(B
c
r) +

C2

r

µ
1 +

Z
[0,1]×Rd×Rd

L(t, x; v)∫(dtdxdv)
∂

∑ ∫1,0(B
c
r) +

C2(1 + s)

r
. (4.30)

Since ∫1,0 ∈ K, (4.29)-(4.30) implies the tightness of ∪P∈K™P (s).
Next we prove that ∪P∈K™P (s) is closed. Suppose that ∫n ∈ ∪P∈K™P (s)

and that ∫n → ∫ as n →1 weakly. Then it is easy to see that

Z
[0,1]×Rd×Rd

L(t, x; v)∫(dtdxdv) ∑ lim inf
n→1

Z
[0,1]×Rd×Rd

L(t, x; v)∫n(dtdxdv) ∑ s

(4.31)
from (A.1,i). We can also prove that ∫n

1,0 is convergent. Indeed, integrating
the both sides of (4.22) with ∫ replaced by ∫n, in t, since ∫n ∈ ∪P∈K™P (s),
we have, for any f ∈ C2

b (Rd),

Z
Rd

f(x)∫n
1,0(dx)
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=
Z
[0,1]×Rd×Rd

(f(x)− (1− t)Lt,x,vf(x))∫n(dtdxdv)

→
Z
[0,1]×Rd×Rd

(f(x)− (1− t)Lt,x,vf(x))∫(dtdxdv) (n →1).(4.32)

P0 := limn→1 ∫n
1,0. Then P0 ∈ K since K is compact. Besides, ∫ ∈ Ã and

∫1,0 = P0. Indeed, for any open A Ω [0, 1],

∫(A×Rd ×Rd) ∑ lim inf
n→1 ∫n(A×Rd ×Rd) =

Z
A

dt. (4.33)

For any g ∈ Cb([0, 1]) and f ∈ C1,2
b ([0, 1]×Rd),

Z 1

0
g(t)

µZ
Rd

f(t, x)∫1(t, dx)
∂
dt

=
Z 1

0
g(t)

µZ
Rd

f(0, x)P0(dx) +
Z
[0,t]×Rd×Rd

Ls,x,vf(s, x)ds∫(s, dxdv)
∂
dt

(4.34)

since from (4.22),

Z 1

0
g(t)

µZ
Rd

f(t, x)∫n
1,t(dx)

∂
dt

=
Z 1

0
g(t)

µZ
Rd

f(0, x)∫n
1,0(dx) +

Z
[0,t]×Rd×Rd

Ls,x,vf(s, x)∫n(dsdxdv)
∂
dt,

(4.35)

Z 1

0
g(t)

µZ
Rd

f(t, x)∫n
1,t(dx)

∂
dt =

Z
[0,1]×Rd×Rd

g(t)f(t, x)∫n(dtdxdv), (4.36)

Z 1

0
g(t)

µZ
[0,t]×Rd×Rd

Ls,x,vf(s, x)∫n(dsdxdv)
∂
dt

=
Z
[0,1]×Rd×Rd

µZ 1

t
g(s)ds

∂
Lt,x,vf(t, x)∫n(dtdxdv).✷ (4.37)

(Proof of Theorem 4.3) We first prove (i). A minimizing sequence of the right
hand side of (4.24) is a subset of ™P0(s) for some s > 0. From Lemma 4.1, it
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has a convergent subsequence and its limit ∫ ∈ Ã is a minimizer of the right
hand side of (4.24). Indeed, ∫1,1 = P1 since, for any f ∈ C1,2

b ([0, 1]×Rd) and
t ∈ [0, 1],

Z
Rd

f(t, x)∫1,t(dx)

=
Z
Rd

f(1, x)P1(dx)−
Z
[t,1]×Rd×Rd

Ls,x,vf(s, x)ds∫(s, dxdv) (4.38)

in the same way as in (4.34)-(4.37). From (4.26), (b∫ , {∫1,t}0∑t∑1) is a mini-
mizer of v(P0, P1) (see (4.6) for the definition of v(P0, P1)).

The existence of a minimizer of v(P) can be proved in the same way as
in (i). We prove the uniqueness of a minimizer of v(P). Take minimizers
bi ∈ A(P) (i = 1, 2) of v(P). Then for any ∏ ∈ [0, 1], ∏b1 +(1−∏)b2 ∈ A(P)
and from (A.1),

v(P) ∑
Z
[0,1]×Rd

L(t, x; ∏b1(t, x) + (1− ∏)b2(t, x))dtPt(dx)

∑ ∏
Z
[0,1]×Rd

L(t, x; b1(t, x))dtPt(dx)

+(1− ∏)
Z
[0,1]×Rd

L(t, x; b2(t, x))dtPt(dx)

= v(P). (4.39)

The strict convexity of L in u implies that b1(t, x) = b2(t, x), dtPt(dx)-a.e.✷

Remark 4.5 When a(t, x) is a zero matrix and L = L(u) and c(x, y) =
L(y−x), TK(P0, P1) ≥ v(P0, P1) from (2.1)-(2.2). Indeed, for any absolutely
continuous stochastic process '(t) for which P'(t)−1 = Pt(t = 0, 1), putting
µ'(dtdxdv) := dtP ('(t) ∈ dx, '̇(t) ∈ dv), µ' ∈ Ã, (µ')1,t = Pt(t = 0, 1) and

E
∑Z 1

0
L('̇(t))dt

∏
=

Z
[0,1]×Rd×Rd

L(v)µ'(dtdxdv). (4.40)

4.4 Duality Theorems for v(P0, P1) and v({Pt}0∑t∑1).

We extend v(P0, P1) and v({Pt}0∑t∑1) to variational problems on M1([0, 1]×
Rd) and generalize Corollaries 4.2 and 4.3 in Sect. 4.2.
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For ∏ ∈M1([0, 1]×Rd),

v(∏) :=

(
v(∏0, ∏1) if ∏(dtdx) = 1

2δ0(dt)∏0(dx) + 1
2δ1(dt)∏1(dx),

1 otherwise,

v(∏) :=

(
v({∏t}0∑t∑1) if {∏t}0∑t∑1 exists,
1 otherwise

(4.41)

(see (4.14) for notation). For f ∈ Cb([0, 1]×Rd),

v§(f) := sup
ΩZ

[0,1]×Rd
f(t, x)∏(dtdx)− v(∏)

ØØØØ∏ ∈M1([0, 1]×Rd)
æ
,

v§(f) := sup
ΩZ

[0,1]×Rd
f(t, x)∏(dtdx)− v(∏)

ØØØØ∏ ∈M1([0, 1]×Rd)
æ
.

(4.42)

Since v§(f) only depends on f(0, ·) and f(1, ·), we write v§(f) = v§(f(0, ·), f(1, ·))
for the sake of simplicity.

(A.1,i) and (A.4,ii) imply that L(t, x; 0) is bounded (see Remark2.2, (i)).
We introduce the following which is stronger than (A.1).
(A.1)’. (i) L ∈ C([0, 1]×Rd×Rd : [0,1)), (ii) u 7→ L(t, x; u) is convex, and
(iii) L(t, x; 0) is bounded.

We state the following to point out the convexity and the lower semicon-
tinuity of ∏ 7→ v(∏) and ∏ 7→ v(∏).

Proposition 4.2 Suppose that (A.0)’, (A.1)’ and (A.2)’ hold. Then: (i) for
any ∏ ∈M1([0, 1]×Rd),

v(∏) = sup
ΩZ

[0,1]×Rd
f(t, x)∏(dtdx)− v§(f)ØØØØf ∈ Cb([0, 1]×Rd)

æ
(∈ [0,1]). (4.43)

In particular, for any ∏(dtdx) = 1
2δ0(dt)∏0(dx)+ 1

2δ1(dt)∏1(dx) ∈M1([0, 1]×
Rd),
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v(∏) = sup
ΩZ

Rd
(f(0, x)∏0(dx) + f(1, x)∏1(dx))− v§(2f(0, ·), 2f(1, ·))ØØØØf(0, ·), f(1, ·) ∈ Cb(R

d)
æ
. (4.44)

(ii) for any ∏ ∈M1([0, 1]×Rd),

v(∏) = sup
ΩZ

[0,1]×Rd
f(t, x)∏(dtdx)− v§(f)

ØØØØf ∈ Cb([0, 1]×Rd)
æ
(∈ [0,1]).

(4.45)

(Proof) We first prove (i). ∏ 7→ v(∏) is convex from Proposition 4.1 and
is not indentically equal to 1 from (A.1)’. We prove that it is lower semi-
continuous. Suppose that ∏n(dtdx) → ∏(dtdx) as n → 1 weakly and that
s0 := lim infn→1 v(∏n) is finite. Take ∫n ∈ Ã for which ∫n

1,t = ∏n
t (t = 0, 1)

and

v(∏n) +
1

n
≥

Z
[0,1]×Rd×Rd

L(t, x; v)∫n(dtdxdv). (4.46)

Since ∏n(dtdx) = 1
2δ0(dt)∏n

0 (dx) + 1
2δ1(dt)∏n

1 (dx), {∫n
1,0}n≥1 is tight. In par-

ticular, there exist s > 0 and a compact K Ω M1(Rd) such that ∫n ∈
∪P∈KΦP (s). From Lemma 4.1, one can take a weak limit point ∫ of {∫n}n≥1

so that ∫ ∈ ∪P∈KΦP (s0), ∏(dtdx) = 1
2δ0(dt)∏0(dx) + 1

2δ1(dt)∏1(dx) and
∫1,t = ∏t (t = 0, 1) (see (4.34) and (4.38)). Putting v(∏) = 1 for ∏ 6∈
M1([0, 1]×Rd), from [9, Theorem 2.2.15 and Lemma 3.2.3], we obtain (i).

(ii) can be proved in the same way as in (i). Indeed, from (4.30),

∫1,0(B
c
2r) ∑

Z
Rd

√(x/r)∫1,0(dx)

=
Z 1

0
dt

Z
Rd

√(x/r)∫1,t(dx)−
Z
[0,1]×Rd×Rd

(1− t)

×
µ

1

2r2

dX
i,j=1

aij(t, x)
@2√(x/r)

@xi@xj
+

1

r
< v, Dx√(x/r) >

∂
∫(dtdxdv)

∑
Z
[0,1]×Bc

r×Rd
∫(dtdxdv)

+
C2

r

µ
1 +

Z
[0,1]×Rd×Rd

L(t, x; v)∫(dtdxdv)
∂
. (4.47)
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This implies, from Lemma 4.1, the tightness of a class of ∫ for which ∏(dtdx) =
∫(dtdx×Rd) is tight and for which

R
[0,1]×Rd×Rd L(t, x; v)∫(dtdxdv) is bounded.✷

For f ∈ Cb([0, 1]×Rd), measurable I Ω [0, 1] and {Pt}t∈I ΩM1(Rd),

v§I,{Pt}t∈I
(f) := sup

ΩZ
({0,1}\I)×Rd

f(t, x)∏(dtdx)− v(∏)ØØØØ∏ ∈M1([0, 1]×Rd), ∏t(dx) = Pt(t ∈ {0, 1} ∩ I)
æ
,

v§I,{Pt}t∈I
(f) := sup

ΩZ
([0,1]\I)×Rd

f(t, x)∏(dtdx)− v(∏)
ØØØØ

∏ ∈M1([0, 1]×Rd), ∏t(dx) = Pt(t ∈ I)
æ
. (4.48)

For I = ;, v§I,{Pt}t∈I
= v§ and v§I,{Pt}t∈I

= v§. Since v§I,{Pt}t∈I
(f) only depends

on f(0, ·) and f(1, ·), we write v§I,{Pt}t∈I
(f) = v§I,{Pt}t∈I

(f(0, ·), f(1, ·)) for the
sake of simplicity.

From Proposition 4.1, we have,

v§I,{Pt}t∈I
(2f)

= sup
Ω X

t∈{0,1}\I

Z
Rd

f(t, x)∫1,t(dx)−
Z
[0,1]×Rd×Rd

L(t, x; v)∫(dtdxdv)
ØØØØ

∫ ∈ Ã, ∫1,t = Pt(t ∈ {0, 1} ∩ I)
æ

= sup
Ω X

t∈{0,1}\I

Z
Rd

f(t, x)Qt(dx)−
Z
[0,1]×Rd

L(t, x; b(t, x))dtQt(dx)
ØØØØ

{Qt}0∑t∑1 ΩM1(R
d), b ∈ A({Qt}0∑t∑1), Qt = Pt(t ∈ {0, 1} ∩ I)

æ
,

(4.49)

v§I,{Pt}t∈I
(f)

= sup
ΩZ

([0,1]\I)×Rd
f(t, x)dt∫1,t(dx)−

Z
[0,1]×Rd×Rd

L(t, x; v)∫(dtdxdv)
ØØØØ

∫ ∈ Ã, ∫1,t = Pt(t ∈ I)
æ

= sup
ΩZ

([0,1]\I)×Rd
f(t, x)dtQt(dx)−

Z
[0,1]×Rd

L(t, x; b(t, x))dtQt(dx)
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ØØØØ{Qt}0∑t∑1 ΩM1(R
d), b ∈ A({Qt}0∑t∑1), Qt = Pt(t ∈ I)

æ
. (4.50)

From Proposition 4.2, we easily obtain

Proposition 4.3 Suppose that (A.0)’, (A.1)’ and (A.2)’ hold. Then: (i) for
any P0 and P1 ∈M1(Rd) and I Ω {0, 1},

v(P0, P1) = sup
Ω X

t∈{0,1}\I

Z
Rd

f(t, x)Pt(dx)− v§I,{Pt}t∈I
(2f)

ØØØØf(0, ·), f(1, ·) ∈ Cb(R
d)

æ
(∈ [0,1]), (4.51)

(ii) for any P := {Pt}0∑t∑1 ΩM1(Rd) and measurable I Ω [0, 1],

v(P) = sup
ΩZ

([0,1]\I)×Rd
f(t, x)dtPt(dx)− v§I,{Pt}t∈I

(f)ØØØØf ∈ Cb([0, 1]×Rd)
æ
(∈ [0,1]). (4.52)

We introduce a new assumption which is stronger than (A.2)’ but is
weaker than (A.2).
(A.2)”.

lim inf
|u|→1

inf{L(t, x; u) : (t, x) ∈ [0, 1]×Rd}
|u| = 1. (4.53)

If (A.0) and (A.5) hold, then the HJB Eqn (2.19) with a terminal func-
tion f ∈ C3

b (Rd) has a unique classical solution '(t, x; f) in C1,2
b ([0, 1] ×

Rd) as we pointed out before Theorem 2.2. In particular, under (A.2)”,
DzH(t, x; Dx'(t, x; f)) is bounded (see the proof of the following corollary).
Hence Proposition 4.3 implies the following which generalizes Corollaries 4.2
and 4.3 (see (4.17)-(4.18) for notation).

Corollary 4.4 Suppose that (A.0), (A.1)’, (A.2)” and (A.5) hold. Then:
(i) for any P0 and P1 ∈M1(Rd),
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v(P0, P1) = sup
ΩZ

Rd
f(x)P1(dx)−

Z
Rd

'(0, x; f)P0(dx)ØØØØf ∈ C1
b (Rd)

æ
, (4.54)

(ii) for any P := {Pt}0∑t∑1 ΩM1(Rd),

v(P) = sup
ΩZ

[0,1]×Rd
f(t, x)dtPt(dx)−

Z
Rd

φ(0, x; f)P0(dx)ØØØØf ∈ C1
b ([0, 1]×Rd)

æ
. (4.55)

(Proof). We only prove (i) since (ii) can be proved similarly. From (4.51),

v(P0, P1) = sup
ΩZ

Rd
f(x)P1(dx)− v§{0},{P0}(0, 2f)

ØØØØf ∈ Cb(R
d)

æ
. (4.56)

We prove that Cb(Rd) can be replaced by C1
b (Rd) in (4.56). Take ρ ∈

C1
0 ([−1, 1]d : [0,1)) for which

R
Rd ρ(x)dx = 1. For ε > 0 and f ∈ Cb(Rd),

put

ρε(x) := ε−dρ(x/ε), fε(x) :=
Z
Rd

f(y)ρε(y − x)dy. (4.57)

Then fε ∈ C1
b (Rd) and, from (4.56),

v(P0, P1) ≥
Z
Rd

fε(x)P1(dx)− v§{0},{P0}(0, 2fε). (4.58)

Take ∫ε ∈ Ã for which ∫ε
1,0 = P0 and

v§{0},{P0}(0, 2fε)− ε <
Z
Rd

fε(x)∫ε
1,1(dx)−

Z
[0,1]×Rd×Rd

L(t, x; v)∫ε(dtdxdv).

(4.59)
Then {∫ε}ε∈(0,1) is tight from Lemma 4.1 since

v§{0},{P0}(0, 2fε) ≥ − sup
x∈Rd

|f(x)| − sup
(t,x)∈[0,1]×Rd

L(t, x; 0) > −1 (4.60)

42



from (A.1)’. Take a weak limit point ∫ of ∫ε as ε → 0 such that

lim sup
ε→0

v§{0},{P0}(0, 2fε) ∑
Z
Rd

f(x)∫1,1(dx)−
Z
[0,1]×Rd×Rd

L(t, x; v)∫(dtdxdv)

∑ v§{0},{P0}(0, 2f) (4.61)

(see (4.38)). (4.58) and (4.61) imply that Cb(Rd) can be replaced by C1
b (Rd)

in (4.56). For f ∈ C1
b (Rd),

v§{0},{P0}(0, 2f) =
Z
Rd

'(0, x; f)P0(dx) (4.62)

since for any ∫ ∈ Ã for which ∫1,0 = P0, from (4.22),

Z
Rd

f(x)∫1,1(dx)−
Z
Rd

'(0, x; f)P0(dx)

=
Z
[0,1]×Rd×Rd

Lt,x;v'(t, x; f)∫(dtdxdv)

=
Z
[0,1]×Rd×Rd

(< v, Dx'(t, x; f) > −H(t, x; Dx'(t, x; f)))∫(dtdxdv)

∑
Z
[0,1]×Rd×Rd

L(t, x; v)∫(dtdxdv), (4.63)

where the equality holds if and only if ∫(dtdxdv) = dt∫1,t(dx)δDzH(t,x;Dx'(t,x;f))(dv).
Notiec that (4.2) has a unique strong solution if b(t, x) = DzH(t, x; Dx'(t, x; f)).
Indeed, for any r > 0,

sup{|DzH(t, x; z)| : (t, x, z) ∈ [0, 1]×Rd ×Rd, |z| < r} < 1. (4.64)

We prove (4.64). For any r > 0, there exists R(r) > 0 such that

inf{|DuL(t, x; u)| : (t, x, u) ∈ [0, 1]×Rd ×Rd, |u| > R(r)} ≥ r (4.65)

since from (A.5,ii), for any (t, x, u) ∈ [0, 1]×Rd ×Rd,

L(t, x; 0) ≥ L(t, x; u)+ < DuL(t, x; u),−u >, (4.66)

from which
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inf{|DuL(t, x; u)| : (t, x) ∈ [0, 1]×Rd}
≥ 1

|u|{inf{L(t, x; u) : (t, x) ∈ [0, 1]×Rd}
− sup{L(t, x; 0) : (t, x) ∈ [0, 1]×Rd}}

→ 1 (as |u| → 1 from (A.2)”). (4.67)

The supremum in (4.64) is less than or equal to R(r)(< 1). Indeed, if this
is not true, then there exists (t, x, z) ∈ [0, 1] × Rd × Rd for which |z| < r
and |DzH(t, x; z)| > R(r). The second inequality implies that |z| ≥ r since
z = DuL(t, x; DzH(t, x; z)) from (A.2)” and (A.5,ii). This contradicts to the
fact that |z| < r.✷

In Theorem 4.3 we proved the existence of a minimizer (b, {Qt}0∑t∑1) of
v(P0, P1) and the existence and the uniqueness of a minimizer b ∈ A({Qt}0∑t∑1)
of v(P). As a corollary to Corollary 4.4, we can prove the uniqueness of
b ∈ A({Qt}0∑t∑1) for which (b, {Qt}0∑t∑1) is a minimizer of v(P0, P1), under
a stronger assumption than Theorem 4.3.

Corollary 4.5 Suppose that (A.0), (A.1)’, (A.2)” and (A.5) hold. Then,
for any P0 and P1 ∈M1(Rd) for which v(P0, P1) is finite, b ∈ A({Qt}0∑t∑1)
for which (b, {Qt}0∑t∑1) is a minimizer of v(P0, P1) is unique.

(Proof). Take a maximizing sequence {'(·, ·; fn)}n≥1 in (4.54) and a mini-
mizer ∫ of the right hand side of (4.24). Then

Z
[0,1]×Rd×Rd

|L(t, x; v)− (< v, Dx'(t, x; fn) >

−H(t, x; Dx'(t, x; fn)))|∫(dtdxdv)

=
Z
[0,1]×Rd×Rd

L(t, x; v)∫(dtdxdv)−
Z
Rd

(fn(x)P1(dx)− '(0, x; fn)P0(dx))

→ 0 (as n →1). (4.68)

Taking a subsequnce if necessary, since an L1-convergent sequence of random
variables has an a.s. convergent subsequence, from (A.5,ii),

∫(dtdxdv) = dt∫1,t(dx)δlimn→1DzH(t,x;Dx'(t,x;fn))(dv). (4.69)

Since a subsequence of a maximizing sequence in (4.54) is also a maximizing
sequence in (4.54), the proof is over.✷
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