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DOUBLING CONDITIONS FOR HARMONIC MEASURE IN JOHN
DOMAINS

HIROAKI AIKAWA AND KENTARO HIRATA

AsstracT. We introduce new classes of domains, i.e., semi-uniform domains and inner
semi-uniform domains. Both of them are intermediate between the class of John domains
and the class of uniform domains. Under the capacity density condition, we show that the
harmonic measure of a John domairsatisfies certain doubling conditions if and only if

D is a semi-uniform domain or an inner semi-uniform domain.

1. INTRODUCTION

Let D be a bounded domain iR" with n > 2, 6p(X) = dist(x,dD) andxy € D. Let
us recall some nonsmooth domains. By the symfolve denote an absolute positive
constant whose value is unimportant and may change from line to line. If necessary, we
useAo, Ay, ..., to specify them. We shall say that two positive functidpsand f, are
comparable, writterf, ~ f,, if and only if there exists a constaAt> 1 such thaA=1f; <
f, < Afy. The constanA will be called the constant of comparison. We wig&, R) and
S(x, R) for the open ball and the sphere of centex and radiusR, respectively.

We say thaD is aJohn domairwith John constant; > 0 and John centexy € D if
eachx € D can be joined to by a rectifiable curver ¢ D such that

1) oo(y) 2 Cot(y(x.y)) forallyey,

wherey(x,y) and£(y(x,y)) stand for the subarc of connectingx andy and its length,
respectively. In general, @ c; < 1. We say thaD is auniform domainf there exists a
constantA > 1 such that each pair of pointsy € D can be joined by a rectifiable curve
y € D such that(y) < Aix-y| and

) min{é(y(x,2), ((x(z y))} < Adp(2)  forallzey.

We call this curvey acigar curveconnectingk andy. See [L1, 12, 15]. If the complement
of a uniform domairD satisfies the corkscrew condition, thBrbecomes aNTA domain
([13]). Observe that connectivity of a uniform domain can be extended #gn& D to
X,y € D. We introduce the following class of domains.

Definition 1. We say thaD is asemi-uniform domaiif every pair of pointsx € D and
y € 0D can be joined by a rectifiable curyesuch thaty \ {y} c D, £(y) < Alx—y| and @)
holds.
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A Denjoy domain is a typical semi-uniform domain which is not necessarily uniform.
The relationships among above domains are summarized as

(3) NTA < Uniform & Semi-uniform & John.

Let w(x, E, U) be the harmonic measure of the &in an open setU evaluated at
x. Jerison-Kenig 13] proved that harmonic measure of an NTA domairsatisfies the
strong doubling conditionthere is a constamty > 2 such that

(4 w(x B 2R) N aD, D) < Aw(x, B(¢,R)NdD,D) for xe D\ B, AR),

where¢ € 0D andR > 0 small, sayR < Rsp. If (4) holds only for some fixed point = Xo,

we say that the harmonic measurel&atisfies thaloubling condition Obviously the
strong doubling condition implies the doubling condition. Moreover, they showed that a
bounded planar simply connected domBirs an NTA domain if and only if the harmonic
measures both fdd andD’ satisfy the doubling condition I3, Theorem 2.7]). Kim and
Langmeyer 14] gave the one-sided analogue; a bounded planar Jordan domain is a John
domain if and only if the harmonic measure only farsatisfies the doubling condition.
Their argument is based on complex analysis as well.

Balogh-Volberg 6, 7] showed a doubling condition similar td)(in a planar uniformly
John domain, or inner uniform domain (see Definitiimelow and the remarks before it).
They also pointed out that there is a planar inner uniform domain for whicfails to
hold. Indeed, leD be the complement of the line segment4,[1] andL, = {te™ : 0 <
t < 1) with 0 < 6 < 7r/2. LetB, = B(te™, ct) andB, = B(te™”, 2ct), where3 sinf < ¢ <
sing. SinceB; N[-1,1] = 0 andB, N [-1, 1] # 0, we havew(Xo, By N D, D) ~ t*/=9)
andw(xg, B, N 9D, D) ~ t ast — 0. Hencew(Xy, B, N 9D, D)/w(Xo, B; N 0D, D) — oo.

See Figurd.

B>

B.

Ficure 1. Harmonic measure fails to satisfy the doubling condition.

In this paper, we characterize John domains whose harmonic measure safistres (
strong doubling condition. There is a John domain with polar boundary whose harmonic
measure vanishes. For such domains any doubling conditions for harmonic measure is
hopeless. To avoid such pathological domains, we assuneagaeity density condition
(abbreviated to CDC). See Secti8rior its definition. Ifn = 2, then the CDC coincides
with the uniform perfectness of the boundary. Our main result is as follows.

Theorem 1. Let D be a John domain with John constaptand suppose the CDC holds.
Then the following are equivalent:

(i) Dis asemi-uniform domain.
(i) The harmonic measure of D satisfies the strong doubling condition4)énolds
whenevek € 9D and R> 0 is small.
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(i) For eacha > 1/c;, there exist constants A 1 andr > 0 depending only on D
anda such that

(5) CL)(X, oD N B(f, R), D) > %(%—.ﬂ) for |x — &l < CL’&D(X),

whenevek € 9D and R> 0is small.

Remarkl. The constant Ac; is a threshold; ifx is less tharc;, then{x € D : |[x - ¢| <
adp(X)} may be an empty set.

Next, we state a version of Theordmwith respect to théner diameter metripp (X, y)
defined by

pp(X y) = inf{diam(y) : y is a curve connecting andy in D},

where diamy) denotes the diameter of If we replace diamy) by ¢(y) in the above
definition, then we obtain thener length distancap (X, y). Obviously|x—y| < pp(X,y) <
Ap(X, y). It turns out, however, that, andAp are comparable for a John domainaisala
[16, Theorem 3.4]). We say th&t is aninner uniform domairor uniformly John domain
if there exists a constart > 1 such that every pair of pointsy € D can be connected
by a curvey c D with ¢(y) < Aop(x,y) and @). See Balogh-Volbergg, 7] and Bonk-
Heinonen-Koskelad]; actually, the latter usgp(X, y) instead ofop (X, y) in the definition.
However,op andAp are equivalent as noted above. For a John domaime can consider
the completionD* with respect tqp ([4, Proposition 2.1]). The@*D = D* \ D is the
ideal boundary oD with respect tqp. Observe that connectivity of an inner uniform
domain can be extended froxay € D to X,y € D*. See §, Lemma 2.1].

Definition 2. We say thaD is aninner semi-uniform domaitfievery pair of pointsx € D
andy € 0*D can be joined by a rectifiable curyesuch thaty \ {y} c D, £(y) < Aop(X,Y)
and @) holds.

Let¢* € 0*D. Then there are a poigte 0D and a sequendg;} c D converging ta#
with respect to the Euclidean metric as well as converging with respect tpp. We
say that* lies over¢ and define the projectianfrom D* to D by #(¢*) = & for &* € 3D
andrnlp = id|p. Let B,(¢,R) be the connected componentBf, R) n D from which
&' is accessible. We observe tHi(¢, R) plays a role of a ball with center &t in the
completionD* ([4, Lemma 2.2]). LetA,(¢*,R) = {x* € 0'D : pp(X",¢*) < R}. Thisis a
surface ball with respect top. Consider a version of4§ with respect tqp: there is a
constantd, > 2 such that

(6) w(X, A&7, 2R), D) < Aw(x, A,(¢7,R), D) for xe D\ B,(¢", AoR),
whereé* € 9*D andR > 0 small. We have the following.

Theorem 2. Let D be a John domain with John constaptand suppose the CDC holds.
Then the following are equivalent:

(i) Dis an inner semi-uniform domain.
(i) (6) holds whenevef* € 9*D and R> 0 is small.
(i) For eacha > 1/c;, there exist constants A 1 andr > 0 depending only on D
anda such that

1

w(X A, (€7, R), D) > —( R

R+ pD(X’ é‘:*)

A ) for pp(X, &%) < adp(X),
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wheneveg* € 9'D and R> 0 is small.

By definition, a semi-uniform domain is an inner semi-uniform domain. The domain in
Figurelis an inner semi-uniform domain and satisfi@s Thus @) is refined as follows:

Inner uniform

£
NTA < Uniform Inner semi-uniform& John.

%

There is no direct relationship between the class of inner uniform domains and the class of
semi-uniform domains. Theoregrand the above implications yield tha) (s a property
stronger than®). This is not straightforward from their definitions.

The plan of the present paper is as follows: In Seciagome preliminary notions such
as the quasihyperbolic metric and local reference points will be recalled. The relationship
between the Green function and the harmonic measure will be extensively studied in
Section3. Theoreml will be proved in Sectio based on the results in Secti@n
Theorem? can be proved almost in the same manner. Necessary lemmas will be stated in
the last section.

& Semi-uniform

2. PRELIMINARIES

We define the quasihyperbolic metkig(x, y) by

ko(x,y) = Inf de( >’

where the infimum is taken over all rectifiable curwegonnectingx toy in D. We
observe that the shortest length of the Harnack chain connecimgly is comparable
to kp(x,y) + 1. Therefore, the Harnack inequality yields that there is a congtantl
depending only om such that

h(x)

(7) expA(ko(xy) + 1)) < hy) = < expA(kp(x,y) + 1))

for every positive harmonic function on D. We say thaD satisfies a quasihyperbolic
boundary condition if

op(Xo)
dp(X)
It is easy to see that a John domain satisfies the quasihyperbolic boundary condition (see
[10, Lemma 3.11]). We have more precise estima3eRfoposition 2.1]).

+A forall xeD.

(8) ko(X, %) < Alog

Lemma A. Let D be a John domain with John constapt dhen there exist a positive
integer N and constantsgR> 0 and A > 1 depending only on D with the following
property: for every € 9D andO < R < Rp there are N pointsf§;...,y} € DN S(£,R)
such that A'R < 6p(YF) < R fori = ,N and

min {koy(x, YR} < Alogé )

where [ = D n B(¢, 8R). Moreover, every x D N B(¢, R/2) can be connected to some
yR by a curvey c Dg with £(y(x, 2)) < Asp(2) forall z € .

+A forxe DN B, R/2),
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If the conclusion of the above lemma holds, then we sayd4hes asystem of local
reference pointsfy. .., Yk of orderN.

3. GREEN FUNCTION AND HARMONIC MEASURE
We begin by recalling the capacity density condition (abbreviated to CDC).

Definition 3. By Cap we denote the logarithmic capacitynif= 2, and the Newtonian
capacity ifn > 3. We say that the CDC holds if there exist constats 0 andRp > 0
such that
AR ifn=2
Cap@B(é, R\ D) > . ’
PEER\D) {AR“Z ifn>3,

whenevek € 9D and O< R < Rp.

It is well known that the CDC is equivalent to the uniformfiyregularity (B]). Hence
there is a positive constagtsuch that if¢ € 9D and O< r < Rare small, then

(9) sup w(-,D NS R),DNBER) < Ar/RY,
DNB(&,r)

so that there is a constafit > 1 such that

. 1
(10) oneayay VLD N BER).D) 2 5.

Lemma 1. Let §(x, y) be the Green function for D with the CDC. Suppésé) = R> 0
is small. Then

(11) G(x,y) ~ RR™" for x € S(y, R/2).
Moreover, there is a positive constghsuch that
(12) G(x,Y) < ARZ‘”((SD—l_S())ﬁ for x e D \ B(y, R/2).

Proof. If n > 3, then the first assertion is obvious. The planar case will be given in Lemma
3. For the proof of {2) we may assume that(x) < R/4. Letx* € dD be a point such
that|x" — x| = dp(X) < R/4. Then|x* —y| > dp(y) = R. HenceB(x*, R/2) N B(y, R/2) = 0,

so that the maximum principle andll) yield

G(x,y) < AR "w(x, S(y, R/2), D\B(y, R/2)) < AR "w(x, DNS(x*, R/2), DNB(X", R/2)).
Hence we havel@) from (9). O

Lemma 2. Let (X, y) be the Green function for D with the CDC. Suppésé) = R> 0
is small and G&x,y) > A,R>™. Then there is a curve connecting x and y in D such that
{(y) < AR andsp(2) > R/Afor all z € y, where A depends only on D and.A

Proof. Observe from the maximum principle th@t= {ze€ D : G(zy) > AR? ™"} is a
connected open set. if> 3, thenG(z y) < |z— y|*™", so that dianf2 < AR The planar
case will be given in Lemma. Lety be a curve connectingandy in Q. Lemmal says

that
AR < G(zy) < ARZ‘“(éD—ng))ﬁ forze Q\ B(y, 6p(Y)/2).

Hencedp(2) > R/Afor all ze y. Since diany < diamQ < AR taking a polygonal curve,
we may modifyy so that/(y) < AR The proof is complete. m|
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Lemma 3. Let n= 2 and let @x, y) be the Green function for D with the CDC. Suppose
op(y) = R> 0is small. Then the following statements hold:

() G(x,y) = 1for x € S(y,R/2).
(i) LetQ ={ze D:G(zy) > Ay}. ThendiamQ < AR.

Proof. (i) Let Mo = supyyr2) G(-,y). By the maximum principlé5(-,y) < Mg on D \
B(y, R/2). Lety" € 9D be a point such thay* — y| = dp(y) = R. By (9) we find a positive
constants; < 1/4 such thatG(-,y) < Mp/2 onD n B(Y*, 2¢:R). Lety’ be the point inyy
with |y — y*| = &2R. ThenG(,,y) < Mo/2 onB(Y', £1R). Cover the spher8(y, (1 — £1)R)
with finitely many balls with the same radiiR. We may assume th&8(y’, £1R) appears
in the covering, consecutive balls have an intersection with volume comparabl&j, (
and the number of balls is bounded by a constant depending orlyaod the dimension
n. Applying the mean value property &f(-, y), we can conclud&(-,y) < (1 — ¢)Mg on
S(y, (1 - &1)R), and hence o \ B(y, (1 — &;)R) with 0 < ¢ < 1 independent oR andy
(see R, Proof of Lemma 2]). LeGg be the Green function fd8 = B(y, (1 — £1)R). Then
Ge(x.y) = G(x.y) - Rg(3)(®) = G(x.y) - (1- )Mo forx e B,

Whereﬁgé'?y) is the regularized reduced function®f., y) relative toD \ B in D. Take the
supremum ove$(y, R/2) to obtain

A> Mo—(l—C)MoZ cMo.

Thus (i) follows, sinces(x,y) > Ggyr)(X,Y) = log 2 for x € S(y, R/2).
(i) For the proof it is stficient to show the following claim: there is a positive constant
Asuch that if5p(y) < 2|x —y| small, then

op(Y) \t
<

(13) G(x,Y) < A(lx_yl).
Let|x —y| = L be suficiently small. The first named autho2([Lemma 1]) showed the
uniform perfectness a¥D. Hence we find a constabt> 2 and an increasing sequence
oo(y) =R =R <R, < - < Rc1 <L <Rsuch thatS(y,R;) N dD # 0 and that
2 < Rj/Rj;1 <bforj=1...,k HereRy = 6p(y)/2. Letu = G(,y) in D and let
u=0inR"\ D. Thenuis a nonnegative subharmonic functioriif\ {y}. We employ an
argument similar to (i). Cover the sphe8¢y, R;) with finitely many balls with the same
radii &1R;. We findy” € S(y, R;) n dD. We may assume th&(y”’, 1R;) appears in the
covering, consecutive balls have an intersection with volume comparaldeR9"( and
the number of balls is bounded by a constant depending onks @md the dimension
n. Moreover, observe that these balls lie outsi(g, Rj-1). Applying the mean value
property ofu, we obtain

Mj= sup u= supu<(l-cM;;<(1-0c)Mo
EMBYR)  SKR)

for j=1,2,...,k SincelL < R, < b*Ry, it follows that

log(1- c) Ly R\
logh o ﬁ)_ MO(Z)

with 1 = —log(1 - ¢)/logb. Thus (3) follows. m|

My < expklog(1- c) + logMg) < exp( log Mg +
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Lemma 4. Let D be a John domain with the CDC. Lete 9D have a system of local
reference pointsfy...,y} € DN S(& R) of order N for0 < R< Rp. Then

N
(14) R™2 Z G(x, YY) < Aw(x,0D N B(¢,2A1R), D)  for x e D \ B(£, 2R),

i=1
where A depends only on D and i& the constant ir§10).

Proof. The maximum principle andLQ) give
N
R2> Gy ~1 forxe USHT, op0f)/2).
i=1 '

SincelJ; SR, 6p(¥F)/2) c D N B(&, 2R), it follows from (10) that
w(x, 8D N B 2AR), D) ~ 1 for x € U S, dp(¥))/2).

The maximum principle completes the proof. m]
The following is an estimate opposite to Lemeha

Lemma 5. Let D be a John domain. Lé&te 9D have a system of local reference points
Y5, ..., YR e DN S(¢,R) of order N for0 < R < Rp. Then

N
(15) w(x, 0D N B(£,R/8), D) < AR Z G(x,y?) forxe D\ B, R/4),
i=1

where A depends only on D.

Proof. For 0 < r < 6p(Xg)/2 letU(r) = {x € D : 6p(X) < r}. Then each poink € U(r)
can be connected tq by a curve such thatlj holds. HenceB(x, Asr) \ U(r) includes a
ball with radiusr, providedAs is large. This implies that

w(X,U(r) N S(x, Agr), U(r) N B(x, Agr)) < 1—g, forxe U(r)

with 0 < g < 1 depending only o3 and the dimension. LeR > r and repeat this
argument with the maximum principle. Then

(16) w(x,U(r) N S(x,R),U(r) n B(x, R) < Aexp( - A’?R) for x € U(r)

for someA’ > 0. See [, Lemma 1] for details.
Let 0 < R < Rp. For eachx € D n B(¢,R/2) there is a local reference po(x)

{yR,....yR} such that
R
op(X)
by LemmaA. Lety’'(X) € S(Y(X), op(Y(X))/2). Observe thaltp,yx (X, Y'(X)) < Alog(R/dp(X))+
A. Lettingu(x) = R™2 3N, G(x, yR), we obtain from 7) and (1) that

op(X)
R
with somea > 0 depending only om.

+ A

ko(x y(x)) < Alog

u() = AZ22Y" for xe DN B R/2)
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Now let us employ a modified version of the box argument @fapd [1, Lemma 2]).
LetDj = {x € D : exp2/*!) < u(x) < exp(-2!)} andU; = {x € D : u(x) < exp2’)}.
Then we see that

i
(17) Ujn B R/2) C {x e D:dp(X) < ARexp( - %)}
Define sequencdg;, r; andp; by Ry = 3R/8,ro = R/8 and

3 R 3. < R
Paep RTERT g gt e
for j > 1. We observe

R R 3
(18) g:ro<r1<---<Z<---<R1<R0:§R
Let A, 1, R) = B(&, R) \ B(&,r) be the annulus with center &tand radiir andR. Since
Rj—l — Rj =rj—rj-1=pj, it follows that if x € A(f, I, Rj), thenB(X,pJ‘) C A(f, l-1, Rj—l)-
See Figure.

Ficure 2. A box argument for annuli.

The maximum principle,6) and (L7) give
(,()(X,Uj N 8A(§, li-1, Rj—l)a Uj N A(f, li-1, Rj—l))
(19) L, 2
< w(x Uj N S(x.p;).Uj N B(x.p)) < Aexp( - AjZexp(~))
for xe Uj N A, 1}, R)). Letwo = w(-,dD N B(¢, R/8), D) and put

wo( X
sup o(X)
xeDjnAErR) U(X)

if Dj N A(f,rj,Rj) + 0,
di =
0 if Dij(f,rj,Rj):(/).

By (18) it is sufficient to show thatl; is bounded by a constant independenRaind j.
Apply the maximum principle t&J; N A&, rj-1, Rj-1) to obtain

wo(X) < w(X, un 0A(¢, ri-1, Rj_l), un A(¢, li-1, Rj_l)) + dj_]_U(X).
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Divide the both sides by(x) and take the supremum oves N A(¢, T, R;). Then (9)
yields

d; < Aexp(2j+1 — Aj2exp(? //l)) +dj_1.
Sincey; exp(2/*t - Aj2exp(2/4)) < o, we obtain sup,d; < . Thus (5) follows
from the maximum principle. O

4. Proor oF THEOREM 1

Proof of Theoreni. (i) = (ii). Suppose firsD is a semi-uniform domain. Léte D
and letR > 0 be stficiently small. Then by Lemm& and scaling we find a system of
local reference pointg,...,yn € D N S(&, 16R) such that

N
w(x, 8D N B(£,2R), D) < AR’“ZZ G(x,y) forxe D\ B(,4R).
i=1

Let{y;,...,yn} € DNS(£, R/2A:) be a system of local reference points. Lemimaplies
that

N
R G(xY;) < Aw(x,dD N B R),D) for xe D\ B¢ R/A).
i=1

By the semi-uniformity, eacly; is connected t@ by a cigar curvey;. Lety € y N
S(¢£, R/4A;). Observei(y;, y;) < Afor somej. Sinceko(Yi, Y;) < ko(Yi,¥;) + ko(¥;. ;) <

Aandy,y:,y € D nB(£ 16R), it follows that
G(x.¥i) # G(x,y;) forxe D\ B(,3R),
so that
w(x, 8D N B(&, 2R), D) < Aw(x,dD N B(¢,R),D) for x € D\ B, 32R).

Hence 4) follows with Aq = 32.

(i) = (iii). Suppos& € 0D andR > 0 is small andx — £| < adp(X). It is easy
to see from 10) that ) holds for|x — ¢| < R/A;. Now letr = |x - & > R/A;. Suppose
first Aor > Rsp with Rgp for (4). Takey € D n S(¢&, R/A;) with 6p(y) > R/A. Then
ko(x,y) < Alog(1/R) + A, so that ) and @0) give

w(%3D 1 BE.R), D) 2 sRw(y,9D 1 B R.D) > o R

with somer > 0 depending only oD anda. SinceR + |x — £ > Rsp/Ao, We obtain b).
Suppose nextor < Rsp. We find a local reference poigite D N S(&, AgArr) such that

(20) ko(x, i) < A(D, a).
Note thatR < A;r. Applying (4) with y; in please of repeatedly, we obtain
w(y;, 0D 1 B(E A, D) < A(x) (v, 0D n B&R). D),
whereA andr depend only orA; and the doubling constant. Therefo®@ &nd 0) give

w(x.8D N B(, Aqr), D) < A(é)T w(x, 8D N B(£, R), D).
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Sincew(X, dD N B(¢, Aqr), D) > 1/2 by (10), we obtain ) as

() = (rea)
r’  ‘R+|x—¢

(i) = (i). Letx e D and¢ € dD. We may assume that— ¢ = Ris small. Then by
LemmaA and scaling we find a system of local reference pojfits..,y{ € DN S(£, R)

andyZ®, ..., YRt € DN S(£, 2R). We claim that every?™ can be connected to sorygby
a curvey with £(y) < ARandép(2) > R/Afor all ze y. By (iii) and Lemméb,

N
1 < w(y®R, 0D N B(¢,R/8), D) < AR? Z G Y.
j=1

>|

Hence there igf such thaG(y, y§) > AR". Lemma2 gives a curvey connectingy’®
to yf* in D such that’(y) < ARandép(2) > R/Afor all ze y. Thus the claim follows.

Now the proof is easy. By Lemma we find a pointy®® which can be connected to
x by a cigar curve with length bounded BWR The claim gives a poiryt'f which can be

connected ty*® by a cigar curve with length bounded BR See Figure.

Ficure 3. A cigar curve connecting to &.

Repeat the claim again. We find a pojﬁfz which can be connected y$ by a cigar
curve with length bounded bfR/2. Thus we can construct a cigar curve connecting

pOiI its as follows:
j,2 2
X_> iR_)ylj?_)yE/_)..._)g.

The length of the curve is bounded BYR ThusD is a semi-uniform domain. m|

5. RRoOF oF THEOREM 2

Replacing Lemmas,, 4 and5 by the following three lemmas, we can prove Theorem
2 almost in the same way as for TheordmThe details are left to the reader. Recall
is the natural projection frond* to D. Let¢&* € 9°D, ¢ = n(¢*) and S,(¢.R) = {x €
D : pp(X, &) = R}. Observe thaG,(¢",R) c S(¢,R), that B,(¢*,R) is the connected
component 0B(¢, R) N D from which¢* is accessible, and that the boundanBe*, R)
is included inS,(¢*, R) U dD. The following lemma corresponds to Lemma
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Lemma 6. Let D be a John domain with John constant @hen there exist a positive
integer M and constantsR> 0 and A > 1 depending only on D with the following
property: for every¢* € 9°D and0 < R < Ry, there are M points§;...,y} € S, (£, R)
such that A'R < 6p(yF) <R fori=1,...,M and

. R
i:T!PM{kBP(f*’SR)(X’ ¥} < Alog op(X)

Moreover, every x B,(£*,R/2) can be connected to som@lyy a curvey c B,(£,8R)
with £(y(X,2)) < Adp(2) forall z € y.

+A forxe B,(¢",R/2).

If the conclusion of the above lemma holds, then we sayghat 0*D has asystem
of inner local reference pointsfy...,y¥ of order M. We emphasize that inner local
reference pointgf, ...,y lie onS,(£*, R) and thatM < N in general. The following two
lemmas replace Lemmadsand5.

Lemma 7. Let D be a John domain with the CDC. Lgte 9*D have a system of inner
local reference pointsfy. .., y% € S,(£*,R) of order M. Then

M
R G0 Y) < Aw(x A (€', 2AR), D) for x € D\ B,(¢", 2R),
i=1

where A depends only on D.

Lemma 8. Let D be a John domain. L&t € 9*D have a system of inner local reference
points ¥, ..., YR € S,(&". R) of order M. Then

M
w(x, A (€', R/B),D) < AR2 X" G(xyf) for xe D\ B,(¢",R/4),
i=1
where A depends only on D.
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