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Preface

The purpose of this conference is to establish the collaboration links among
the researchers in Asia and worldwide leading researchers in inverse prob-
lems. The conference will address both theoretical (Mathematics), applied
(Engineering) and development aspects on inverse problems. The proposed
conference is intended to nurture Asian-American-European collaborations in
this evolving interdisciplinary area. It is envisioned that the conference will
lead to a long-term commitment and collaboration among the participated
countries and researchers.

Additionally, newcomers to the subject matter will be encouraged to par-
ticipate through (i) the attendance of tutorial sessions, serial lectures and
panel discussion, and (ii) the availability of a practical information on the
application of inverse problems to engineering disciplines to enter the study
of inverse problem.

In this occasion, the organizers acknowledge the partial supports by the
NS PLANNING Inc. company, the 21st century COE program (Mathemat-
ics of Nonlinear Structures via Singularities, Department of Mathematics,
Hokkaido University, Japan) and several grants in Aids for Scientific Research
of Japan Society for the Promotion of Science.
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Electrical Impedance Tomography by Elastic Perturbations

Habib Ammari
Ecole Polytechnique, France
ammari@cmapx.polytechnique.fr

We propose a new direction for future Electrical Impedance Tomography (EIT) research, for mainly
biomedical applications. Our technique is based on simultaneous measure of an electric current and of
acoustic vibrations induced by ultrasound waves. This technique can provide high resolutions images, while
conserving the most important merits of EIT. This work is joint with E. Bonnetier, Y. Capdeboscq, M. Fink,
and M. Tanter.
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On a functional model of a class of symmetric operators and its application in
inverse problems

M. I. Belishev
Saint-Petersburg Department of Steklov Mathematical Institute, Russia
belishev@pdmi.ras.ru

The talk is an attempt to inscribe the BC-method in the scope of model theory that is a branch of
functional analysis dealing with representation of the abstractly given operators in the form of the operators
acting in functional spaces. We show that determination of the Riemannian manifold Ω from its boundary
spectral or dynamical data by the BC-method is equivalent to construction of a canonical functional model
of the minimal Beltrami-Laplace operator Δ0 acting in L2(Ω). The basic element of this construction is a
metric space Ω̃ built of the increasing families (nests) of subspaces formed by waves produced by boundary
sources. Such nests, parametrized by the action time of sources, play the role of points of the space whereas
the distance between two points in Ω̃ is introduced as the ”interaction time” equal to the (doubled) value of
the parameter at which the subspaces of two nests begin to intersect. By its construction, the space Ω̃ turns
out to be isometric to the original Ω whereas the corresponding Beltrami-Laplace operator Δ̃0 is unitary
equivalent to Δ0. The construction of Ω̃ can be interpreted in terms of the Spectral Theorem for the von
Neumann algebras. Such a philosophy gives a unified look at a rather wide class of inverse problems; in
particular, it gives a procedure of time-optimal reconstruction of the Riemannian manifold from dynamical
electromagnetic boundary data. The last result generalizes the ones on determination of parameters of the
Maxwell system from its response operator (Belishev, Glasman, Isakov, Pestov, Sharafutdinov 1997-2001).
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Nonlinear Inverse Scale Space Methods in Imaging and Inverse Problems

Martin Burger
Industrial Mathematics Institute, Johannes Kepler University, Linz
martin.burger@jku.at

Variational regularization techniques with nonlinear penalty functionals have received growing attention
recently since they can yield regularized solutions enhancing certain features. An example of particular
importance is the reconstruction of discontinuous solutions with total variation techniques. Unfortunately,
such variational techniques have an inherent deficiency, because they tend to overregularize. E.g. in the
case of total variation regularization, the variation of the regularized solution is usually smaller than of the
exact one, and some important features can be lost due to the regularization. For penalties being the square
of some Hilbert space norms, it is well-known that iterative regularization methods (constructed in these
Hilbert spaces) can at least in part resolve these deficiencies and yield regularization methods with improved
properties (higher qualification, easier implementation, multiscale properties, ...).

In this talk we shall discuss a novel approach to the construction of iterative schemes based on nonlinear
penalties, which works in a rather general setup. The original idea is based on constructing a sequence of
nonlinear variational problems with appropriate signal-noise decompositions. It turns out that the approach
can be reformulated and analyzed in terms of Bregman distances associated to the regularization functional.
Moreover, the resulting iterative regularization techniques involve a multiscale structure, so that large-scale
features are reconstructed before small-scale features. In a natural small-parameter limit one obtains a
continuous flow from the initial value to the regularized solution, which generalizes the concept of inverse
scale space methods introduced by Scherzer and Groetsch.

The derivation of the methods as well as the analysis of convergence, regularizing, and multiscale proper-
ties will be discussed in detail. Moreover, we discuss discretization techniques and implementation aspects.
Finally, we show applications to various imaging tasks and to the reconstruction of piecewise constant pa-
rameters in systems of partial differential equations.

The results discussed in this talk are based on joint work with D.Goldfarb, G.Gilboa, S.Osher, E.Resmerita,
J.Xu, W.Yin.
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Numerical Computation of Ill-Posed Problems by Spectral Element Method

Hiroshi Fujiwara
Graduate School of Informatics, Kyoto University, Japan
fujiwara@acs.i.kyoto-u.ac.jp

We make direct approach in numerical computation of some ill-posed problems using spectral discretiza-
tion and multiple-precision arithmetic.

Ill-posedness of inverse problems causes a difficulty in their numerical simulations. We focus on stability
in ill-posedness in the research. A discretization scheme of an ill-posed problem is numerically unstable
in most cases. Numerical instability leads that computational errors grow rapidly in numerical process
then computation fails. Stabilization such as Tikhonov regularization is one of the most effective methods
for numerical analysis of ill-posed problems, however strong stabilization for control of computational errors
sometimes regularize characteristics of solutions. We also remark that numerical computation of a regularized
problem is not always numerically stable since discretization of a mathematically stable problem does not
always lead a numerically stable scheme.

We propose direct numerical computation of numerically unstable problems to control computational
errors. Two different kinds of computational errors are treated in the research: discretization errors which
depend on approximation of differential operators or integral operators, and rounding errors which come
from approximation of real numbers and arithmetic on digital computers. We apply spectral discretization
to reduce discretization errors with a domain decomposition. And multiple-precision arithmetic is used in
computation of the spectral discretization scheme to reduce rounding errors.

A multiple-precision arithmetic software, which is designed and implemented by the authors for fast and
large scale scientific numerical computations, is also introduced.
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Identification of a domain by the Lamé system

Higashimori, Nobuyuki
Graduate school of informatics, Kyoto University
nobuyuki@acs.i.kyoto-u.ac.jp

We consider an inverse problem of identifying the shape of an elastic body by a boundary measurement of
an elastostatic field. The elastostatic field is assumed to satisfy the Lamé system with an inhomogeneous term
corresponding to the action of the gravity on the earth. The main result is a conditional stability estimate
of single-logarithmic type under suitable a priori information. The stability estimate is a consequence of the
unique continuation property for solutions to the Lamé system.

Notation. For x = (x1, x2, x3)T ∈ R
3, we denote x′ = (x1, x2, 0)T , where T means transposition. Let Ω be

a cylinder and Γ be an open part of ∂Ω given by

Ω :=
{
x ∈ R

3 | 0 < x3 < 1, |x′| < 1
}

, Γ := {x ∈ R
3 | x3 = 0, |x′| < 1},

where | · | is the Euclidean norm. We consider that Ω is made of an elastic material with Lamé coefficients
λ, μ ∈ C∞(Ω) satisfying μ > 0, 2μ + 3λ > 0 on Ω.

Let u = (u1, u2, u3)T (column vector) be a displacement vector field defined on (a subdomain of) Ω. We
define the strain tensor field σ(u) and the action of the Lamé operator P by

σ(u) = λ(x) (div u)I3 + μ(x) (∇uT + ∇u), Pu = div σ(u),

where I3 is the identity matrix of order 3, and ∇u is the Jacobian matrix for the mapping u. For a R
3×3-

valued function T = (tij), div T denotes the R
3-valued function whose i-th component is the divergence of

the i-th row of T : div T = (∂1ti1 + ∂2ti2 + ∂3ti3)i↓ (column vector).
In our inverse problem, we assume that the elastic body Ω is damaged at the surface so that it has the

form
ΩF := {x ∈ Ω | 0 < x3 < F (x′), x′ ∈ Γ}

for some F : Γ → [0, 1]. We consider that the shape of the damaged part γF := {x ∈ R
3 | x3 = F (x′), x′ ∈ Γ}

is unknown and it must be identified. Our inverse problem is to identify the function F by using the boundary
values (on Γ) of an elastostatic field defined on ΩF .

We consider two such domains ΩF1 , ΩF2 and displacement fields uj on ΩFj (j = 1, 2).

A priori information. Let 0 < a, b < 1, 0 < κ < 1, L > 0, M > 0, and ρ0 > 0 be fixed numbers.
(1) Assume that Fj ’s satisfy

Fj ∈ C1,κ(Γ), ‖ gradFj‖C0(Γ) ≤ L,

a ≤ Fj(x′) ≤ 1 (x′ ∈ Γ), Fj(x′) = 1 (b < |x′| < 1).

(2) Assume that uj ’s satisfy

uj ∈ H2(Ωj ; R3) ∩ C1,κ(Ωj ; R3), ‖uj‖C1,κ(Ωj ;R3) ≤ M,

Puj =
(
0, 0,−gρ(x)

)T in Ωj , σ(up)ν = 0 on γj ,

where ν is the outer unit normal vector on the boundary, g is the gravity acceleration, and ρ(x) is the mass
density of the material at the point x satisfying ρ ≥ ρ0 on Ω.

Theorem. Let a, b, L, M , κ, λ, μ, and ρ0 be as above. Then there exist K > 0 and 0 < δ < 1
such that the following holds: Assume that F1, F2, u1, and u2 satisfy the a priori information, and put
ε := ‖u1 − u2‖H3/2(Γ;R3) + ‖σ(u1) − σ(u2)‖H1/2(Γ;R3). If ε < 1, then we have

‖F1 − F2‖C0(Γ) ≤
K

| ln ε|δ .
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On some inverse problems associated with the isotropic Lamé system

Oleg Imanuvilov
Department of Mathematics, Colorado State University, USA
oleg@math.colostate.edu

We consider the isotropic Lamé system with free stress boundary conditions or zero Dirichlet boundary
conditions. We discuss the problem of uniqueness and stability in determining spatially varying density and
two Lamé coefficients by a single measurement of the displacement over (0, T ) × ω. The machinery is based
on the Carleman estimates.
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The inverse conductivity problem with limited data and applications.

Victor Isakov
Department of Mathematics and Statistics, Wichita State University, Wichita, USA, KS,
victor.isakov@wichita.edu

We discuss uniqueness and stability of recovery of the conductivity coefficient a in the elliptic equation

div(a∇u) = 0 in Ω

from single and many boundary measurements. Here Ω is a bounded domain in Rn, n = 2, 3 with Lipschitz
boundary.

In case of single measurement we assume that a = 1 + kχD where D is an unknown domain and k is a
known constant. We precribe special Dirichlet and Neumann data on parts Γ0 and Γ1 of the boundary of Ω
and we are given the additional Neumann data on an open part of Γ0. Under some natural geometrical ( of
convexity type) assumptions we demonstrate uniqueness of D. Proofs use some modifications of the Novikov’s
orthogonality method. We give applications to detecting so called p-n junction (∂D) in semiconductor
devices.

In case of many measurements we prescribe zero Dirichlet (or Neumann data) for u on very special Γ0

and the Dirichlet-to Neumann map on Γ1 and show uniqueness of C2(Ω)-smooth positive a. In this case
proofs are appropriate versions of methods of complex geometrical optics.
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Inverse boundary value problems and hyperbolic spaces

Hiroshi Isozaki
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
isozakih@math.tsukuba.ac.jp

We present a new approach to the inverse boundary problem based on the structure of hyperbolic space.
The starting point is the following observation. Given a boundary value problem (−Δ+ q)u = 0 in Ω ⊂ Rn,
let v = x

(2−n)/2
n u. Then v satisfies (−Δg + V )v = 0, where V = x2

nq − n(n − 2)/4 and Δg = x2
n∂2

n − (n −
2)xn∂n + x2

nΔx, which is just the Laplace-Beltrami operator on Hn.

(1) Horosphere boundary value problem and Barber-Brown algorithm. Consider a boundary value problem
for the Schrödinger operator −Δ+q(x) in a ball Ω : (x1+R)2+x2

2+(x3−r)2 < r2, whose boundary we regard
as a horosphere in the hyperbolic space H3 realized in the upper half space. Let S = {|x| = R, x3 > 0} be a
hemisphere, which is generated by a family of geodesics in H3. By imposing a suitable boundary condition
on ∂Ω in terms of a pseudo-differential operator, we compute the integral mean of q(x) over S ∩Ω from the
associated (generalized) Robin-to-Dirichlet map for −Δ + q(x). The potential q(x) is then reconstructed
by virtue of the inverse Radon transform on hyperbolic space. This justifies the well-known Barber-Brown
algorithm in electrical impedance tomography.

(2) Detection of inclusions - Applications to numerical computation. This hyperbolic space approach can
also be used to detect the location of non-smooth part of conductivity γ(x) of a body Ω in Rd, d = 2, 3.
Suppose for the sake of simplicity that we know the DN map Λ0 for the case that γ is a constant, and that
the conductivity is different from this constant on a subset Ω1 ⊂ Ω. Take x0 from outsied of the convex hull
of Ω and let Sε

out = {x ∈ ∂Ω; |x − x0| > R + ε}, Sε
in = {x ∈ ∂Ω; |x − x0| < R − ε}. Then one can construct

the boundary data fτ (x) depending on a large paramter τ > 0 having the following properties : On Sε
out

(Sε
in), fτ (x) is exponentially decreasing (increasing) in τ . Let Λ be the DN map for γ. If R < dis(x0, Ω1),

then 0 ≤ (Λ−Λ0)fτ , fτ ) < Ce−δτ , and if R > dis(x0, ∂Ω1), then ((Λ−Λ0)fτ , fτ ) > C ′eδτ . This means that
one can detect the location of inclusions from the boundary data which are essentially localized on a part of
the boundary.
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Characterization of nonlinear material behaviour: Parameter identification prob-
lems in nonlinear PDEs and their regularized solution

Barbara Kaltenbacher
Department of Sensor Technology, University of Erlangen, Germany
barbara.kaltenbacher@lse.eei.uni-erlangen.de

In this talk we adress the topic of identifying parameters of smart materials as used in a large variety
of sensor and actor applications. This leads to parameter identification problems in partial differential
equations. A both practically relevant and mathematically challenging situation arises in case of large
excitations leading to nonlinear material behaviour.

Here we firstly discuss the identification of parameter curves appearing as coefficients on (nonlinear) PDE
models. In this context instability arises, hence we consider regularization issues. Secondly, identification of
a more complex model that also takes into account memory effects via hysteresis operators is adressed.

Focusing on piezoelectricity and electromagnetism as application examples, we will present solution tech-
niques and numerical results for both cases.
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Inversion Problem of the Gravity Potential

Sungwhan Kim
Graduate School of Mathematical Sciences, The University of Tokyo, Japan
sungwhan@ms.u-tokyo.ac.jp

Masahiro Yamamoto
Graduate School of Mathematical Sciences, The University of Tokyo, Japan
myama@ms.u-tokyo.ac.jp

The inverse gravimetry problem is an ill-posed problem of determining the density variation σ and gravity
source Ω from measured surface gravity data. If we are interested in finding a specific material, oil(0.9 ×103

kg m−3), copper(8.9 ×103 kg m−3) or volcanic rock(2.5 ×103 kg m−3) for example, buried in earth, its
density σ can be supposed to be a known constant and we want to reconstruct the gravity anomaly from
gravity measured on the earth surface.

In this paper, we consider mathematical fundamental questions such as uniqueness and stability within
some polygonal anomalies, and introduce a new reconstruction algorithm which makes only use of point
gravity measurements.
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Global Uniqueness Theorems, Stability Estimates and Numerical Methods for
Some Coefficient and Ill-Posed Cauchy Problems

Michael V. Klibanov
Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
mklibanv@email.uncc.edu

The key tool of all results to be presented is the method of Carleman estimates, which was first introduced
in the field of coefficient inverse problems simultaneously and independently by A.L. Bukhgeim and M.V.
Klibanov in 1981 in [1,2]. These results, along with more recent ones, including the newly developed numerical
application of those ideas, are described in the recently published book of Klibanov and Timonov [3]. Twenty
five years later this remains the single method so far enabling for proofs of global uniqueness and stability
results for a wide class of multidimensional coefficient inverse problems with a single measurement. This
idea was extended recently by M.V. Klibanov and A.Timonov to the construction of a globally convergent
numerical method called convexification, see [3]. The notion of global convergence is quite important for
coefficient inverse problems, because the vast majority of numerical methods is convergent locally. The
latter means that solutions are unreliable, unless it is given a priori that the first guess is located in a small
neighborhood of the correct solution, which is only rarely realized in applications.

The presentation will consist of three parts:
Part 1. Global uniqueness and stability theorems for some coefficient inverse problems with single

measurement data.
Part 2. Stability estimates for ill-posed Cauchy problems for hyperbolic and parabolic equations both

in finite and infinite domains with the lateral Cauchy data.
Part 3. A globally convergent numerical method called convexification [3]. The convexification is appli-

cable to a broad class of coefficient inverse problems for both hyperbolic and parabolic Partial Differential
equations.

References

1. A.L. Bukhgeim and M.V. Klibanov, Uniqueness in the large of a class of multidimensional inverse
problems, Soviet Math. Doklady, 17, 244-247, 1981;

Also see http://www.math.uncc.edu/people/research/mklibanv.php3 for a copy.
2. M.V. Klibanov, Uniqueness of solutions in the ’large’ of some multidimensional inverse problems,

In: Non-Classical Problems of Mathematical Physics, Computing Center, Siberian Branch of The USSR
Academy of Science, pp. 104-114, 1981 (in Russian).

A copy is available in the pdf format at http://www.math.uncc.edu/people/research/mklibanv.php3
3. M.V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical

Applications, VSP, Utrecht, 2004.
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Inverse problems with imperfectly known boundary

Matti Lassas
Helsinki Univ. of Technology, Finland
oseikwadwo84@hotmail.com

In many inverse problems the inaccurate model of the boundary causes severe errors for the reconstruc-
tions. This has a crucial impact in medical imaging as in practical measurements one usually lacks the exact
knowledge of the boundary. In this talk we review recent methods for solving inverse problems with inaccu-
rately modeled boundary. In particular, we consider a method developed together with Ville Kolehmainen
(Univ. of Kuopio) and Petri Ola (Univ. of Helsinki) to eliminate the error caused by an incorrectly modeled
boundary in electrical impedance tomography (EIT). Using an algorithm based on Teichmuller mappings
and optimization methods we can find a unique minimally anisotropic conductivity in the inaccurately mod-
eled domain that agrees with the boundary measurements. Using this conductivity we can also obtain a
deformed image of the original isotropic conductivity.

1414



Gradient Estimates for Solutions to the Conductivity Problem

Mikyoung Lim
Centre de Mathématiques Appliquées Ecole Polytechnique, 91128 Palaiseau Cedex, France
lim@cmapx.polytechnique.fr

We establish upper and lower bounds on the gradient of solutions to the conductivity problem in the case
where two circular conductivity inclusions in two dimensions, or spherical inclusions in three dimensional
case, are very close but not touching. These bounds depend on the conductivities of the inclusions, their
radii, and the distance between them. Their novelty is that they give very specific information about the
blow up of the gradient as the conductivities of the inclusions degenerate.
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On the mathematical issues and numerical implementations of MREIT problem

J. J. Liu
Department of Mathematics, Southeast University, Nanjing, 210096, P.R.China
jjliu@seu.edu.cn

Magnetic Resonance Electrical Impedance Tomography (MREIT) is a new medical imaging technique
that aims to provide electrical conductivity images with sufficiently high spatial resolution and accuracy.
Traditional Electrical Impedance Tomography (EIT) applies the boundary measurement of voltage and
current to reconstruct the interior parameter of media, which is of severe ill-posedness, whereas the MREIT
technique takes the interior induced electrical current as inversion input data to recover the property of
media. The advantage of this new inversion method is its relatively weak ill-posedness due to the application
of interior measurement information. Physically, the internal induced electrical current is obtained indirectly
from the measurement of magnetic flux density in terms of Maxwell relation.

This practical model gives some restrictions on the inversion schemes and some problems are still open.
Firstly the magnetic flux density is obtained only along one direction, which is of the unavoidable noise.
Secondly, some mathematical issues of recently developed MREIT-based algorithms such as convergence
analysis and denoising technique should be considered. Finally, the numerical implementations of the inver-
sion algorithms using the actual measurement data should also be tested.

The talk will focus on the above topics and present some numerical results.
This is a joint-work with J.K.Seo and E.J.Woo at the Impedance Imaging Research Center (IIRC) of

Korea.
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Solved and open identification problems related to differential and integro -
differential equations

Alfredo Lorenzi
Department of Mathematics, Università degli Studi di Milano, Italy
lorenzi@mat.unimi.it

The talk will be concerned with a few inverse problems chosen among the following ones:

1. recovering unknown kernels depending on time only in integro-differential delay equations;

2. recovering unknown kernels depending on time only in phase transition problems with memory;

3. recovering the 2D-spatial part in unknown kernels in viscoelastic problems;

4. recovering unknown kernels depending on time only in transmission problems related to thermal ma-
terials with memory;

5. recovering unknown constants in parabolic equations.

The subjects under 3, 4, 5 are at present under investigation.
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Inverse electromagnetic scattering problems with chiral obstacle

Fuming Ma
School of mathematics,Jilin University, China
mfm@mail.jlu.edu.cn

Deyue Zhang
School of mathematics,Jilin University, China
Zhangdeyue@163.com

Tianling Gao
Institute of mathematics,Jilin University, China
tlgao@email.jlu.edu.cn

Let us consider the electromagnetic fields which are governed by the time-harmonic Maxwell equations:

∇× E − iωB = 0,

∇× H + iωD = 0,

where E, H,D and B denote the electric field, the magnetic field, the electric and magnetic displacement
vectors in R3, respectively.

Assume that D̃ = {x ∈ R3|(x1, x2) ∈ D, x3 ∈ R} is an infinitely long cylinder parallel to the x3-
direction. Here D is the cross-section of D̃ in the x1-x2-plane, bounded domain in R2 with C2,α boundary
∂D, α ∈ (0, 1).

In chiral media D̃, the electric and magnetic fields are coupled which can be characterized by the Drude-
Born-Fedorov constitutive equations::

D = ε(x)(E + β(x)∇× E),

B = μ(x)(H + β(x)∇× H),

where ε is the electric permittivity, μ is the magnetic permeability, and β is the chirality admittance for
chiral media.

In R3 \ D̃, the total exterior fields E = Ei + Es,H = Hi + Hs satisfy the Maxwell’s equation: ∇× E =
ikH, ∇ × H = −ikE. Here k = ω

√
εμ, and the incident field Ei = Ei(x, d, p) = ik(d × p) × deikx·d,

Hi = Hi(x, d, p) = ik(d×p)eikx·d, |d| = |p| = 1 denote incident plane electromagnetic fields with polarization
p and incident direction d.

In our paper, we study the inverse scattering problem: for given far fields of scattering fields Es(x, d, p)
and Hs(x, d, p), reconstruct the boundary of chiral obstacle D̃.

we present the theoretical analysis and numerical methods of this inverse scattering problem.
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Magnetic Tomography: from new algorithms to industrial applications

Roland Potthast
Department of Mathematics, University of Reading, United Kingdom
r.w.e.potthast@reading.ac.uk
http://www.num.math.uni-goettingen.de/potthast/

Magnetic tomography is of importance in several applications, from biomedical imaging to nondestructive
testing. We will review recent work on the theory of magnetic tomography, analyzing the null-space of the
Biot-Savart integral operator. Then, we will discuss the application of new sampling and probe methods to
the reconstruction of defects. Finally, we will investigate the applicability of magnetic tomography for the
investigation of fuel cells in an industrial setting. Numerical and real data reconstructions will be shown.
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A fast imaging for UWB pulse radars

Takuya Sakamoto
Dept. of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Japan
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Toru Sato
Dept. of Communications and Computer Eng., Graduate School of Informatics, Kyoto University, Japan
tsato@kuee.kyoto-u.ac.jp

A UWB pulse radar is a promising candidate as an environment measurement technique for a variety of
applications including robots. The radar imaging is known as one of the ill-posed inverse problems, for which
many algorithms have been studied. However, they require a long calculation time, which is not acceptable
for realtime operations for robotics. In order to solve this problem, we have developed a fast imaging
algorithm for UWB pulse radars, SEABED algorithm, which utilizes the reversible transform between the
real space and the data space. This transform directly gives the target image without iterative methods,
which is the reason why SEABED algorithm works so quickly. Although this transform is valid only for
targets with clear boundaries, this condition is naturally satisfied for most of indoor objects.

We assume a mono-static radar system, where an omni-directional antenna is scanned on the x-y plane.
A strong echo is received from (x, y, z), a point on a target boundary, for the antenna position (X, Y, 0)
with a delay Z = ct/2 where t is the time delay, c is the speed of radiowave. The forward transform, BST
(Boundary Scattering Transform) is expressed as⎧⎪⎨⎪⎩

X = x + z∂z/∂x,
Y = y + z∂z/∂y,

Z = z

√
1 + (∂z/∂x)2 + (∂z/∂y)2.

(1)

We have clarified that the inverse transform of BST, IBST (Inverse BST) is expressed as⎧⎪⎨⎪⎩
x = X − Z∂Z/∂X,
y = Y − Z∂Z/∂Y ,

z = Z

√
1 − (∂Z/∂X)2 − (∂Z/∂Y )2.

(2)

SEABED algorithm deals with the transform IBST from the data space (X, Y, Z) to the real space (x, y, z),
which corresponds to the imaging procedure. First, a set of points (X, Y, Z) in the data space are extracted
as equiphase-surfaces from the received signals. Next, IBST is applied to the extracted surfaces (X, Y, Z) to
obtain the reconstructed image in the real space. Fig. 1 shows an application example of SEABED algorithm,
where the left image is the true target shape, and the right image is the estimated image. The calculation
time to obtain the entire image is 0.1sec with a single Xeon 2.8GHz processor.
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Figure 1: The estimated image by SEABED algorithm (Calculation within 0.1sec).
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Numerical method for an inverse dynamical problem for composite beams

Kenji Shirota
Domain of Mathematical Sciences, Ibaraki University, Japan
shirota@mx.ibaraki.ac.jp

Antonino Morassi
Department of Georesources and Territory, University of Udine, Italy
antonino.morassi@uniud.it

Gen Nakamura
Department of Mathematics, Hokkaido University, Japan
gnaka@math.sci.hokudai.ac.jp

Mourad Sini
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In this talk, we present a method of numerical reconstruction for an inverse dynamical problem of compos-
ite beam. The direct problem is to find the displacement vector w = (u1(x, t), u2(x, t), v1(x, t), v2(x, t))T

of steel-concrete composite beams with length L satisfied the following form:⎧⎨⎩
Cw,tt − Ak,μw = 0 in (0, L) × (0, T ) ,
w|t=0 = 0 , w,t|t=0 = 0 in (0, L) ,
Dw|x=0 = U , Dw|x=L = 0 on (0, T ) ,

where C is the 4 × 4 diagonal matrix C = diag (ρ1, ρ2, ρ1, ρ2). Ak, μ is the spatial differential operator
defined by

Ak, μw =

⎛⎜⎜⎜⎜⎜⎜⎝

(a1u1,x),x + k(u2 − u1 + v2,xes)
(a2u2,x),x − k(u2 − u1 + v2,xes)

−(j1v1,xx),xx +
(

ke2
c

6
(2v1,x + v2,x)

)
,x

− μ(v1 − v2)

−(j2v2,xx),xx +
(

ke2
c

6
(2v2,x + v1,x)

)
,x

+ (k(u2 − u1 + v2,xes)es),x + μ(v1 − v2)

⎞⎟⎟⎟⎟⎟⎟⎠
and D is the operator given by Dw = (u1, u2, v1, v2, v1,x, v2,x)T . Here we denote by ρi the linear mass
density of i-th beam, by ai and ji the section’s flexural stiffness and axial stiffness of i-th beam respectively.
The coefficients k and μ are, respectively, the shearing and the axial stiffness for unit length of the connection
of two beams. The coefficients ρi, ai, ji, and the Dirichlet type boundary data U are assumed to be given.

Our inverse problem is to determine two coefficients k and μ from the knowledge of Neumann type
boundary data Q = (−N1, −N2, −T 1, −T 2, −M1, −M2)T at L = 0 and the inner measurements vi = vi|I
(i = 1, 2). Here N i means the axial force of i-th beam. T i and M i are the shear force and the bending
moment respectively. I is given open interval such that I ⊆ [0, L].

The purpose of this talk is to present an numerical method for the identification of unknown coefficients
k and μ. To identify numerically these coefficients, we make use of the variational method. We introduce a
cost functional of two variables by using the measurements, and the unknown coefficients are identified by
finding a minimum of this functional. We make use of the projected gradient method to find the minimum of
functional. We show theoretically the existence of the derivatives under appropriate assumptions. Moreover
we show the effectiveness of our method from some numerical experiments.
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Geodesic tensor tomography for a class of non-simple manifolds with boundary

Plamen Stefanov
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On a compact manifold with boundary (M, ∂M, g), we study the geodesic X-ray transform

If(γ) =
∫

γ

〈f, γ̇2〉 dt,

where, in local coordinates, 〈f, γ̇2〉 = fij γ̇
iγ̇j , and f is a symmetric 2-tensor. We study the question of

s-injectivity of IΓ defined as I restricted to a certain open set Γ � γ. S-injectivity means that IΓf = 0
implies that f = dv, for some 1-form v vanishing on ∂M , where d is the symmetric differential. The main
assumption is that for each (x, ξ) ∈ T ∗M , there is a geodesic γ ∈ Γ through x normal to ξ with endpoints
outside M (we extend M and g near M) and no conjugate points. Some topological assumptions are
imposed but no convexity of the boundary is assumed. There might be geodesics with conjugate points, or
even periodic or trapped ones. The main results are:

• S-injectivity for analytic metrics,

• Recovery of singularities,

• Stability estimate,

• Generic s-injectivity for a family of metrics g, and geodesic sets Γg.
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Some Computational Aspects for Geophysical Inverse Problems

Yongji Tan
School of Mathematical Sciences, Fudan University, China
yjtan@fudan.edu.cn

By use of the least square technique, many geophysical inverse problems can be formulated into opti-
mization problems. The optimizing iteration processes for those problems are usually time consuming since
the cost functions are with a great number of variables and a great times of computation for numerically
solving the direct problems should be carried out while we evaluate the cost functions and their derivatives.
Therefore it is necessary to accelerate both the numerical solution for direct problems and the optimization
algorithm. In this paper, some parallel, multi-scaling techniques and comparison are used to accelerate either
the numerical solution of the direct problems or the optimizing iteration by noticing special features of some
geophysical problems.
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Perturbation of Rayleigh-wave velocity caused by a fully anisotropic term
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The elastic wave equations for dynamic deformations of the homogeneous elastic medium are
3∑

j,k,l=1

Cijkl
∂2uk

∂xj∂xl
= ρ

∂2

∂t2
ui, i = 1, 2, 3. (1)

Here (x1, x2, x3) is the Cartesian coordinates, C =
(
Cijkl

)
i,j,k,l=1,2,3

is the elasticity tensor, which has the
physically natural symmetries

Cijkl = Cjikl = Cklij , i, j, k, l = 1, 2, 3,

and satisfies the strong convexity condition, u = u(x, t) = (u1, u2, u3) is the displacement of x = (x1, x2, x3)
at the time t, and ρ is the uniform mass density.

Suppose that the elasticity tensor C =
(
Cijkl

)
i,j,k,l=1,2,3

has the form

C = CIso + A, (2)

where CIso is the isotropic part of C,

CIso =
(
CIso

ijkl

)
i,j,k,l=1,2,3

, CIso
ijkl = λ δijδkl + μ(δikδjl + δilδkj)

with the Lamé moduli λ and μ, and A is the fully anisotropic part of C,

A =
(
aijkl

)
i,j,k,l=1,2,3

.

Rayleigh waves are elastic surface waves which propagate along the traction-free surface with the phase
velocity in the subsonic range and whose amplitude decays exponentially with depth below that surface.
These waves can be discribed by the surface-wave solutions to (1).

In an isotropic half-space, where C = CIso (i.e., A = O), the phase velocity vIso
R of Rayleigh waves which

propagate along the surface is the unique solution to the following bicubic equation in v in the subsonic
range 0 < v <

√
μ/ρ

(ρ v2)3 − 8μ (ρ v2)2 +
8μ2(3λ + 4μ)

λ + 2μ
ρ v2 − 16μ3(λ + μ)

λ + 2μ
= 0.

In this presentation we investigate the perturbation of the phase velocity vR of Rayleigh waves, i.e.,
the shift in vR from its isotropic value, caused by the anisotropic part A. To determine anisotropy of the
elastic medium from observations of Rayleigh-wave velocity is a classical and important inverse problem in
nondestructive testing. As a first step, we give the formula for vR which is correct to within terms linear in
the components of A.

Therorem In a perturbed anisotropic elastic medium whose elasticity tensor C is given by (2), the phase
velocity of Rayleigh waves which propagate along the surface of the half-space x3 ≤ 0 in the direction of the
2-axis can be written, to within terms linear in the anisotropic part A =

(
aijkl

)
i,j,k,l=1,2,3

, as

vR = vIso
R − 1

2ρ vIso
R

·
[
γ1(vIso

R ) a2222 + γ2(vIso
R ) a2323 + γ3(vIso

R ) a2233 + γ4(vIso
R ) a3333

]
, (3)

where γi(v), i = 1, 2, 3, 4 are the functions of v which can be written explicitly in terms of λ, μ and ρ.

Remark Only four components a2222, a2323, a2233 and a3333 of the anisotropic part A can influence the first
order perturbation of the phase velocity vR.
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Inverse Boundary Problems with Incomplete Data

Gunther Uhlmann
Univ. of Washington, USA
gunther@math.washington.edu

We consider several inverse boundary problems where we have only incomplete data. This information
is encoded in the Dirichlet-to-Neumann (DN) map measured in open subsets of the boundary. We survey
some recent results for several inverse problems, including Calderón’s inverse conductivity problem, the DN
map associated to the Schrödinger equation with a magnetic and electrical potential, and the DN map
associated isotropic elasticity system. We consider also applications to determining inclusions and cavities
from incomplete data in all of these cases.
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Detection of irregular points by regularization in numerical differentiation and
an application to the edge detection

Yanbo Wang
School of Mathematical Sciences, Fudan University, China
ybwang@fudan.edu.cn

The numerical differentiation is a typical ill-posed problem which can be treated by the Tikhonov regular-
ization. In this paper, we prove that the L2-norms of the second order derivatives of the regularized solutions
blow up in any small interval I where the exact solution is not in H2(I). This generalizes the previous results
by Wang, Jia and Cheng where the interval I is assumed to be whole interval. One application in the image
edge detection is presented.
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Inverse scattering problem for time dependent Hartree-Fock equation
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The following non-linear Schrödinger equation is called time dependent Hartree-Fock equation (TDHF):

i
∂u

∂t
= H0u +

∫
Rn

Q(x, y, t)ū(y, t)dy,

where u = u(x, t) = t(u1(x, t) · · · , uN (x, t)), (x, t) ∈ Rn × R and H0 = −Δ. Q is the N × N matrix in the
following form

Q(x, y, t) = (Vjk(x, y, t))1≤j,k≤N

Vjk(x, y, t) = vjk(x − y){uj(x, t)uk(y, t) − uk(x, t)uj(y, t)},

where vjk(x) are interactions acting on j-th and k-th particles. TDHF is derived in order to obtain an
approximate solution of linear N -body Schrödinger equation based on Pauli’s exclusion principle.

Denote by {S[φ](x),φ(x)}, φ(x) = t(φ1(x) · · · , φN (x)) the scattering data for (TDHF). If all functions
vjk(x) tends to zero sufficiently fast for |x| → ∞, then S[φ](x) is represented as follows.

S[φ](x) = φ(x) +
1
i

∫
R

eitH0F (u(t))dt, (1)

F (u(t)) =
∫
Rn

Q(x, y, t)ū(y, t)dy.

Inverse scattering problem is: given the scattering data, find vjk(x), j, k = 1, · · · , N .

This problem is mathematically restated as follows. Given functions S[φ](x) and φ(x), solve the integral
equation (1) with respect to unknown functions vjk(x), j, k = 1, · · · , N .

In this talk, it will be shown that interactions, which is highly specific, are reconstructed from the
scattering data in the case of three particles N = 3.

Theorem Let N = 3 and interactions be the following form:

vjk(x) = λj |x|−σj , λj ∈ R, 2 ≤ σj ≤ 4 and σj < n, j = 1, 2, 3.

Then there exist the scattering data such that we reconstruct vjk(x), that is, λj and σj , j = 1, 2, 3.

The proof of this theorem is based on the linearization by using the small amplitude limit of the scattering
data. Reconstruction formulae derived in this theorem do not hold obviously for linearly dependent φj ,
j = 1, 2, 3. The difficult point of the proof is to characterize φ(x) satisfying these reconstruction formulae.
By controlling supports of functions φj theorem is proved.
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Conductivity imaging using EIT and MREIT techniques: experimental results
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When we inject current into an electrically conducting object such as the human body, it induces voltage,
current density, and magnetic flux density distributions. These distributions are determined by the geom-
etry, electrode configuration, and conductivity distribution of the object. Information about the internal
conductivity distribution is of significant importance in many biomedical applications.

Conductivity image reconstruction has been the active research goal of Electrical Impedance Tomography
(EIT) since early 1980s. EIT utilizes measured current-voltage data on the boundary to provide cross-
sectional images of internal conductivity distribution. Even though it has a limited spatial resolution due
to the ill-posed nature of the corresponding inverse problem, it has significant advantages of high temporal
resolution and portability. For all potential clinical applications of EIT, very accurate boundary current-
voltage measurements must be provided to any EIT image reconstruction algorithm. In this talk, we describe
the development of a new multi-frequency EIT system. With the operating frequency range of 10Hz to
500kHz, the EIT system can produce time-difference and also frequency-difference images in real time.
Numerous performance indices including signal-to-noise ratio, reciprocity error, and distinguishability will
be presented together with reconstructed EIT images of several conductivity phantoms and human subjects.
Clinical applicability of the EIT system and its future improvements in both hardware and software will be
discussed.

Magnetic Resonance Electrical Impedance Tomography (MREIT) has been lately suggested to overcome
the ill-posedness of the image reconstruction problem in EIT. The key idea is to utilize internal magnetic flux
density data that can be measured by using an MRI scanner. After discussing the measurement techniques
and image reconstruction algorithms in MREIT, we will present experimental data and reconstructed con-
ductivity images of several tissue phantoms and animal subjects. We will show that the spatial resolution
of MREIT images is comparable to that of conventional MR images as long as we inject enough current.
Summarizing latest outcomes of the MREIT research, we will suggest future research directions to make
MREIT a new clinically applicable conductivity and current density imaging technique.

2828



Nonlinear Multigrid Gradient Methods for Parameter Identifications

Jun Zou
Department of Mathematics The Chinese University of Hong Kong
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In this talk, we shall discuss the nonlinear multigrid gradient method for efficiently identifying physical
parameters in nonlinear inverse systems. We will address the motivation and correct formulation of the
method and their detailed performance in numerical identifications. This is a join work with Jingzhi Li
(Department of Mathematics, CUHK).
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Nonlinear Inverse Problems: Functional Analytic Theory, Numerical Methods,
Applications

Heinz W. Engl
Radon Institute for Computational and Applies Mathematics, Austrian Academy of Sciences, Linz, Austria
heinz.engl@oeaw.ac.at

Since our task is to give a survey indicating future lines of research, we first present the functional analytic
theory of nonlinear inverse problems and their regularization by Tikhonov’s method and by iteration. This
includes questions of convergence, convergence rates and implementable parameter choice and stopping rules
for such procedures. We give some numerical examples from parameter identification in partial differential
equations.

The (by now) classical theory usually works in Hilbert spaces, which is quite restrictive. In many
applications, one needs a regularization term which does not live in a Hilbert space involving, e.g., the
total variation seminorm or entropy-like terms. Some convergence theory (based on Bregman distances) is
available, but there are also open questions.

A further restriction of the classical theory is that the error concept is deterministic, bounds for data noise
are given in terms of norms in function spaces. This gives rise to worst-case error estimates for regularized
solutions. Such concepts neglect statistical error concepts. We present a recently developed theory for
convergence in distribution of regularized solutions of stochastic ill-posed problems; the tool used is the
Prokhorov distance of probability measures. We also indicate relations to others stochastic approaches to
inverse problems including Bayesian methods.

Application fields which will present new challenges to our community include mathematical finance and
systems biology. We present some examples from these fields, e.g., identification of two-factor interest rate
models in financial derivatives and of metabolic and genetic networks.

The results we present have many coauthors from our group, whom we will acknowledge in talk.
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Integral Equations of the First Kind, Inverse Problems and Regularization: A
Crash Course

Charles Groetsch
Department of Mathematical Sciences, University of Cincinnati, USA
groetsch@email.uc.edu

This paper is an expository survey of the basic theory of regularization for Fredholm integral equations of
the first kind and related background material on inverse problems. We begin with an historical introduction
to the field of integral equations of the first kind, with special emphasis on model inverse problems that lead to
such equations. The basic theory of linear Fredholm equations of the first kind, paying particular attention
to E. Schmidt’s singular function analysis, Picard’s existence criterion, and the Moore-Penrose theory of
generalized inverses is outlined. The fundamentals of the theory of regularization are then treated and a
collection of exercises and a bibliography are provided.
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Uniqueness in inverse obstacle scattering

Rainer Kress
Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Germany
kress@math.uni-goettingen.de

The inverse problem we consider in this tutorial is to determine the shape of an obstacle from the
knowledge of the far field pattern for the scattering of time-harmonic acoustic waves. We will concentrate
on uniqueness issues, i.e., we will investigate under what conditions an obstacle and its boundary condition
can be identified from a knowledge of its far field patterns for incident plane waves. We will review some
classical and some recent results and draw attention to open problems.
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Numerical methods in inverse obstacle scattering

Rainer Kress
Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Germany
kress@math.uni-goettingen.de

For the approximate solution of the inverse obstacle scattering problem to reconstruct the boundary of an
impenetrable obstacle from the knowledge of the far field pattern for the scattering of time-harmonic acoustic
waves, roughly speaking, one can distinguish three groups of methods. Iterative methods interpret the
inverse obstacle scattering problem as a nonlinear ill-posed operator equation and apply iterative schemes
such as regularized Newton methods or Landweber iterations for its solution. Decomposition methods, in
principle, separate the inverse problem into an ill-posed linear problem to reconstruct the scattered wave from
its far field pattern and the subsequent determination of the boundary of the scatterer from the boundary
condition. Finally, the third group consists of the more recently developed sampling and probe methods.
In principle, these methods are based on criteria in terms of an indicator function that decides whether a point
lies inside or outside the scatterer. The tutorial will give a survey by describing one or two representatives
of each group including a discussion on the various advantages and disadvantages.

3636



Inverse analysis with use of filter theory

Nobuyoshi Tosaka
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There exist many kinds of inverse problems in applied science and engineering which are govened by
differential equatin(s). These can be formulated as inverse problems of differential equation(s), and these
are very difficut to solve analytically or numerically. However, the impotance of inverse analysis has been
recognized in various fields. Then, an effective solution procedure to solve inverse problems is required.
In practical applications of inverse analysis, the measured data obtained through field obsevations usually
contain noise. Consequenently, the mathematical model for the inverse problem must be formulated with
the stochastic consideration. In this tutorial talk a solution procedure in order to solve the above-mentioned
mathematical model is developed and explained the details.

The mathematical model of discretized inverse problems is formulated as follows:

the observation equation,

y = m(z) + n

the restoration eqation,

z̃ = B(y)

the estimation criterion,

J = En(‖ z̃ − z ‖2)

in which z is the original vector, z̃ is the estimated vector, y is the observation vector, n is the noise
vector, m is the observation mapping and B is the restoration mapping. Some solution procedures corre-
sponding to three kinds of filter by applying the filter theory to the above stochastic model are constructed
in on-line identification.

The applicability and effectveness of the method is demonstrated by using numerical performances on
the defect identification and the damage identification problems in engineering fields.

3737





General Speakers

P. D. Alain M. Kawashita S. Saitoh

A. Amirov S. Kubo M. Salo

F. Bauer P. Kuegler H. Sasaki

A. Benaddallah K − M. Lee A. Satoda

M. Cristo K − H. Leem T. Shigeta

M. Cristofol D. Lesnic S. Shiota

Y. Daido G. Li M. Sini

H. Fang S. Li T. Takeuchi

J. Foukzon X. Li T. Takiguch

C. Groetsch C − L. Lin H. Takuwa

T. Hohage M. Lukas I. Trooshin

Y. C. Hon X. Luo Q − F. Wang

S. Huang Y. Ma Y. Wei

H. Igarashi S. Nagayasu T. Y amazaki

M. Ikehata T. Nara K. Y oneda

K. Ito W. Ning G. Y uan

X. Jia T. Ohe B. Zakhariev

Y. Kamimura H. Okano

H. Kang H. K. P ikkarainen

H. Kawakami J. L. Rousseau

3939





Non homogeneous Heat Equation: Identification and Regularization for the In-
homogeneous Term

Pham Ngoc Dinh Alain
Mathematics Department, Mapmo UMR 6628, BP 67-59, 45067, Orleans cedex, FRANCE
alain.pham@univ-orleans.fr

We study the nonhogeneous heat equation under the form: ut − uxx = ϕ(t)f(x), where the unknown
is the pair of functions (u, f). Under various assumptions about the the function ϕ and the final value in
t = 1 i.e. g(x), we propose different regularizations on this ill-posed problem based on the Fourier transform
associated with a Lebesgue measure. For ϕ �≡ 0 the solution is unique [1].

Numerical results are given.
In two dimension this problem can be formulated in the following way: let Q be a heat conduction body

and let ϕ = ϕ(t) be given. We then consider the problem of finding a two-dimensional heat source having
the form ϕ(t)f(x, y) in Q. The problem is ill-posed. Assuming ∂Q is insulated and ϕ �≡ 0, we show that
the heat source is defined uniquely by the temperature history on ∂Q and the temperature distribution in
Q at the initial time t = 0 and at the final time t = 1. Using the method of truncated integration and the
Fourier transform, we construct regularized solutions and derive explicitly error estimate [2]. In both cases
the regularization is obtained by troncature on the domain and not on the integrand in the various integral
forms as in [3] and [4].
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For a hyperbolic equation p(x, t)∂2
t u(x, t) = Δu(x, t) +

∑n
j=1 qj(x, t)∂ju + qn+1(x, t)∂tu + r(x, t)u in

R
n × R with p ∈ C1 and q1, . . . , qn+1, r ∈ L∞, we consider the unique continuation and an inverse problem

across a non-convex hypersurface Γ. Let Γ be a part of the boundary of a domain and let ν(x) be the
inward unit normal vector to Γ at x. Then we prove the unique continuation near a point x0 across Γ if
∇p(x0, t) · ν(x0) < 0. Moreover we establish the conditional stability in the continuation. Next we prove the
conditional stability in the inverse problem of determining a coefficient r(x) from Cauchy data on Γ over a
time interval. The key is a Carleman estimate in level sets of paraboloid shapes.

4242
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Introduction
We will consider the following general ill-posed problem:

Ax = y

where A is a linear compact operator mapping between two Hilbert spaces X and Y. Instead of y can just
measure the noisy version yδ = y + δξ where ξ is a kind of normalized error vector.

For solving inverse problems of such kind a number of different approaches have been developed (E.g.
Tikhonov, TSVD and many more). All of these approaches somehow balance between the unreliable input
data yδ and some kind of assumptions one thinks to previously know concerning the solution x. Normally
this balance is expressed in terms of a regularization parameter. The key to successfully regularizing is
getting the regularization parameter with the least possible knowledge on x and the noise δξ.

Overview of choosing the regularization parameter
Classically in numerical mathematics one assumes ‖ξ‖ ≤ 1 which allows to obtain optimal convergence rates
w.r.t. δ with fast methods like Morozov’s discrepancy principle. The Bakushinskii veto tells that without
the knowledge of δ we can always construct problems which do not converge at any rate.

Furthermore looking at the problem from a more stochastical viewpoint we can assume that ξ is a
Gaussian random vector (or a similar quantity) which is much more realistic; the classical one is just a
subcase of that. Having δ at hand we can still regularize in expectation in an (almost) rate optimal way, e.g.
using a Lepskij-type balancing principle for choosing the regularization parameter. (Almost rate optimal
here always means that we are loosing a logarithmic factor).

On the other hand from a completely stochastical viewpoint where we also assume some kind of stochas-
tical prior on the distribution of x one can regularize (almost rate optimal) even without having the exact
δ at hand. One possibility is generalized cross validation for searching a proper regularization parameter.
However these methods are in comparison to ones like the discrepancy principle rather slow. Furthermore
quite often the priors assumed are not at all similar to the ones normally used in numerical mathematics.

Our new approach
We will assume that ξ is again a Gaussian random vector and x is fulfilling some very general distribution
assumptions oriented at the notion of Hilbert scales. However we will not need in what space along the
Hilbert scale x is actually situated.

In the case of truncated singular value decomposition (TSVD) with cut-off point n we will construct a
functional f(yδ, A, n) which in expectation has its minimum at the optimal regularization parameter. The
construction of this functional is comparably fast to Morozov’s discrepancy principle.

Out of this functional we are able to prove that we get (almost) rate optimal convergence with respect
to δ. Into f enter just quantities we know, therefore we get a completely data driven method which just
generates the knowledge about δ it needs out of yδ.

Please note that this is not a contradiction to the Bakushinskii veto because this method just works in
expectation, i.e. the bad cases though existent are so rare that they do not contribute.

Numerical experiments
In the end we will present numerical results comparing this new method with other choosing strategies for
the regularization parameters; not just for TSVD but also for Tikhonov regularization.

Surprisingly, for a considerable number of examples this new method produces better results without
knowing δ than other methods which additionally have the knowledge of the noise level.
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The question of the identification of a diffusion coefficient, c, is studied for the heat transfer problem in
a bounded domain, with the main particularity that c is discontinuous. Such regularity can be encountered
in the case of embedded materials. Let Ω ⊂ R

n be a bounded connected open set. The set Ω is assumed to
be a C2 submanifold with boundary in R

n. Let Ω0 and Ω1 be two non-empty open subsets of Ω such that

Ω0 � Ω, and Ω1 = Ω \ Ω0.

We denote by S = Ω0 ∩ Ω1 the interface, which is assumed to be C2 and we denote by n the outward unit
normal to Ω1 on S and also the outward unit normal to Ω on Γ. Let S0 (resp. S1) be the side of the interface
S corresponding to the positive (resp. negative) direction of the normal n.
Let T > 0. We shall use the following notations Ω′ = Ω0 ∪ Ω1, Q′ = Ω′ × (0, T ), and Σ = Γ × (0, T ).
We consider the following transmission problem for the heat equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ty −∇ · (c∇y) = 0 in Q′,
y(x, t) = h(t, x) in Σ,

transmission conditions (TC1) on S × [0, T ],
y(0, x) = y0(x), in Ω,

(1)

with {
y|S0×[0,T ] = y|S1×[0,T ],

c0∂ny|S0×[0,T ] = c1∂ny|S1×[0,T ].
(TC1)

We assume a monotonicity on the coefficients c in connection to the observation location: the observation
zone has to be located in the region where the coefficient is the smallest. Let y be the solution of (1)
associated to c and ỹ the solution of (1) associated to another coefficient c̃. We assume that we can measure
both the normal flux ∂n∂ty on γ ⊂ ∂Ω on the time interval (t0, T ) for some t0 ∈ (0, T ) and Δy in Ω at time
T ′ ∈ (t0, T ). The interior of γ is non empty with respect to the topology on Γ induced by the Euclidian
topology on R

n. In the case of piecewise constant diffusion coefficients, i.e. c|Ωi
and c̃|Ωi

, i = 0, 1, are
constant, our main results are
(i) the injectivity of the map

L∞(Ω) × L2(Ω) → L2((t0, T ) × γ) × L2(Ω),
(c, y0) �→ (∂n∂ty, Δy(T ′));

(ii) the stability for the diffusion coefficient, c: there exists C > 0 such that

|c − c̃|2L∞(Ω) ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|Δy(T ′, .) − Δỹ(T ′, .)|2L2(Ω′);

(iii) the stability for the initial condition, y0: there exists C > 0 such that

|y0 − ỹ0|L2(Ω) ≤ C/ ln
(
|(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|2L2((0,T )×γ)

)
.

The key ingredient to these stability results is a global Carleman estimate for the operator ∂t−∇·(c∇(.)) and
the open set Ω. To obtain a Carleman estimate we have to introduce a geometric condition on Ω. The use of
Carleman estimates to achieve uniqueness and stability results in inverse problems is now well-established.
Some authors make use of local Carleman inequalities and deduce uniqueness and hölder estimates. Others
make use of global Carleman inequalities and deduce Lipschitz stability results (and hence uniqueness results).
We shall follow this second approach.
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Inverse Problems for a two by two reaction-diffusion system using Carleman
estimate with one observation
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The problem of the identification of one or several coefficients in a reaction-diffusion system is studied
in this paper. The main difficulty is to use as few observations as possible. We obtain a Carleman estimate
with one control force and deduce a stability result for one (or two) coefficients using four (or five) localized
observations. Let Ω ⊂ R

n be a bounded domain of R
n. Let T > 0 and t0 ∈ (0, T ). We consider the following

reaction-diffusion system which arises in mathematical biology:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu = Δu + au + bv in Ω × (t0, T ),
∂tv = Δv + cu + dv in Ω × (t0, T ),
u(t, x) = h(t, x), v(t, x) = g(t, x) on ∂Ω × (t0, T ),
u(t0, x) = u0 and v(t0, x) = v0 in Ω,

(1)

where a, b, c, and d in L∞(Ω). The aim is to prove a stability result for the coefficient b (or a) or both
coefficients a and b under additive positivity assumptions on the coefficients. Our paper is based on earlier
works on controllability of phase-field systems and parabolic systems.
We obtain the following Lipschitz stability results

(i) Let ω be a subdomain of an open set Ω of R
n. Let (u, v), (resp. (ũ, ṽ) ) be solutions to (1) associated

to (a, b, c, d, u0, v0) (resp. to (a, b̃, c, d, ũ0, ṽ0)) satisfying regularity properties and an additive positivity
hypothesis:
(h1) Let r > 0, b ≥ 0, c ≥ c0 > 0, c + dr ≥ 0, ũ0 > 0, ṽ0 ≥ r, h ≥ r and g ≥ r,
(h2) ũ0 and ṽ0 belong to Hm(Ω) for m > n

2 − 2.
The first assumption allows us to give a maximum principle for ṽ:

r > 0, |ṽ(T ′, ·)| ≥ r > 0 for T ′ =
t0 + T

2
on Ω.

The second assumption gives regularity properties for ũ and ṽ using classical Sobolev imbeding, ũ and ṽ
belong to L∞(Ω). Then there exists a constant C = C(Ω, ω, c0, t0, T, r) such that

|b − b̃|2L2(Ω) ≤ C|∂tv − ∂tṽ|2L2((t0,T )×ω) + C|Δu(T ′, ·) − Δũ(T ′, ·)|2L2(Ω)

+ C|u(T ′, ·) − ũ(T ′, ·)|2L2(Ω) + C|v(T ′, ·) − ṽ(T ′, ·)|2L2(Ω).

To obtain a stability result for the coefficient a, we have to replace (h1) by
(h′

1) Let r > 0, a ≥ 0, c > 0, c + dr ≥ 0, ũ0 ≥ r, ṽ0 > 0, h ≥ r and g ≥ r.

(ii)If (u, v), (resp. (ũ, ṽ) ) are solutions to (1) associated to (a, b, c, d, u0, v0) (resp. to (ã, b̃, c, d, ũ0, ṽ0)).
Assume that assumption (h2) of (i) is fulfilled and furthermore
(h′′

1) Let r > 0, ar + b ≥ 0, c > 0, c + dr ≥ 0, ũ0 ≥ r, ṽ0 ≥ r, h ≥ r and g ≥ r, ,
(h3) (b − b̃) × (a − ã) ≥ 0,
then there exists a constant C ′ = C ′(Ω, ω, c0, t0, T, r) such that

|a − ã|2L2(Ω) + |b − b̃|2L2(Ω) ≤ C ′|∂tu − ∂tũ|2L2((t0,T )×ω) + C ′|∂tv − ∂tṽ|2L2((t0,T )×ω)

+ C ′|Δu(T ′, ·) − Δũ(T ′, ·)|2L2(Ω) + C ′|u(T ′, ·) − ũ(T ′, ·)|2L2(Ω) + C ′|v(T ′, ·) − ṽ(T ′, ·)|2L2(Ω).

The key ingredient to these stability results is a global Carleman estimate for the system with one control
force. The use of Carleman estimates to achieve stability and uniqueness results in inverse problems is now
well-established.
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Let Ω ⊂ R
n (n ≥ 1) be a bounded domain. Γ which is boundary of Ω is C2 if n ≥ 2. Ω is considered as an

isotropic heat conductive medium with heat conductivity:

γ(x, t) = 1 + (k − 1)χD(t)

for each 0 ≤ t ≤ T with 0 < T < ∞. Here k > 0 is a constant such that k �= 1, D(t) is a bounded domain
with C2 boundary ∂D(t) such that D(t) ⊂ Ω, Ω \ D(t) is connected, the dependency of ∂D(t) on t ∈ [0, T ]
is C1 and χD(t) is the characteristic function of D(t). We set D :=

⋃
0≤t≤T D(t) × {t}.

Now, we consider the boundary value problem:

(MP )
{(

PDu
)
(x, t) := ∂tu(x, t) − div

(
γ(x, t)∇xu(x, t)

)
= 0 in ΩT

∂νu(x, t) = f(x, t) on ΓT , u(x, 0) = 0 .

where ·T := · × (0, T ). The physical meaning of u and f are the temperature and heat flux, respectively.
Theorem(Unique Solvability) For given f ∈ H− 1

2 ,0(ΓT ), there exists a unique solution u = u(f) ∈
W (ΩT ) := {u ∈ H1,0(ΩT ) : ∂tu ∈ L2((0, T ) : (H1(Ω))∗)} to (MP).

Next, we define the Neumann to Dirichlet map ΛD as follow.

Definition(Neumann-to-Dirichlet map) Let u(f) be the solution to (MP). Define ΛD : H− 1
2 ,0(ΓT ) →

H
1
2 ,0(ΓT ) by

ΛD(f) := u(f) on ΓT .

Now, we consider the inverse problems:
(IP) Suppose k,D are unknown. Reconstruct D from ΛD.

Our main theorem is the following.

Theorem
If n = 1, there is a reconstruction procedure for the inverse problem for (IP) under some additional condition.
The details of the reconstruction procedure will be given in my talk.

The uniqueness and stability of the identification are known. See [1] and [2], respectively. However,
the reconstruction has not been known. For the reconstruction, we tied to develop the analogue of probe
method known for elliptic inverse problem. This is the first attempt to study the reconstruction for the
inverse boundary value problem for non-stationary heat equation.
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The Retrieval theory of GPS Dropsonde wind-finding system
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Wind measurement accuracy has been demonstrated to be a significant factor in airdrop accuracyThe key
technology of GPS-dropsonde wind-finding system is to build reasonable and well-posed retrieved arithmetic.
in physics and mathematics This paper study the following three questions:

(1) The research of direct problem. Based on the principle of fluid mechanics, a hydrodynamic equation
for the GPS-dropsonde moving in the wind is proposed in this paper.. The responding errors of No.120 and
No.20 balloon are analyzed in quantitative method; and we would proposed the reasonable arithmetic to
avoid such errors.

(2) Inverse problem study. The improved theoretical framework of variational adjoint theory is developed
based on the optimal theory, regularization idea and traditional adjoint methods. and this theory would be
used to 3-D GPS-dropsonde retrieval model depends on the discrete.

(3) Assimilation study. From the view of information technology, time and space tendency of observations
are assimilated to improve the results and the discrepancy between observations and model solution are
treated in H1 space rather than L2 space. At the same time, How the wind retrieved from dropsonde was
assimilated to Numerical prediction model was studied.

4848
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imuthal magnetic field
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Consider a viscous electrically conducting incompressible fluid between two rotating infinite cylinders in the
presence of an azimuthal external periodical magnetic field. The cylindrical system of coordinates (R, φ, z) is used.
The equations govern the problem are

∂uR
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φ
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BR
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R

∂Bφ

∂φ
+

∂Bz

∂z
= 0, (8)

where g is the gravity, ρ is the density, ν = μ/ρ is the kinematic viscosity, η is the magnetic diffusivity, u is the
velocity, B is the magnetic field, Ψ = (ΨR, Ψφ, Ψz) is the external periodical force, W1 = (W1,R, W1,φ, W1,z) and
W2 = (W2,R, W2,φ, W2,z) is a standard Wiener processes, ε � 1.

We studied Cauchy problem and corresponding inverse problem for SPDE (1)-(8). For Cauchy problem the
advanced numerical-analytical method analogous to method [1], [2], [3] is proposed. For corresponding inverse
problem the linear operator equation is obtained.
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tributions

Donald French
Department of Mathematical Sciences, University of Cincinnati, USA
donald.french@math.uc.edu

Charles Groetsch
Department of Mathematical Sciences, University of Cincinnati, USA
groetsch@uc.edu

Olfactory celia are thin hair-like filaments that extend from olfactory receptor neurons into the nasal
mucus. Transduction of an odor into an electrical signal is accomplished by a depolarizing influx of ions
through cyclic nucleotide gated channels in the membrane that forms the lateral surface of the celium. In an
experimental procedure developed by S. Kleene a celium is detached at its base and drawn into a recording
pipette. The celium base is then immersed in a bath of a channel activating agent (cAMP) which is allowed
to diffuse into the celium interior opening channels as it goes and initiating a transmembrane current. The
total current is recorded as a function of time and serves as data for a nonlinear integral equation of the
first kind modeling the spatial distribution of ion channels along the length of the celium. We discuss some
linear Fredholm integral equations that result from simplifications of this model. A numerical procedure
is proposed for a class of integral equations suggested by this simplified model and numerical results using
simulated and laboratory data are presented.
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Characterization of the eigenvalues of the far–field operator
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The far–field operator of a scattering problem maps the density of an incident Herglotz wave function to
the far–field pattern of the corresponding scattered field. It contains all information which can be observed
from an object by scattering experiments at a fixed frequency in the far–field regime. Without absorption it
is known that the far–field operator is compact and normal and that its eigenvalues lie on a circle through
the origin. Recently, the far–field operator has been used as an operator in the linear sampling and the
factorization method to reconstruct the scatterer, and a key step of the latter method is an eigenvalue
decomposition of the far–field operator.

We will show two characterizations of eigenvalues of the far–field operator involving an eigenvalue equa-
tion in the exterior domain and on the boundary, respectively. In the following we only consider acoustic
obstacle scattering problems, but similar results also hold true for electromagnetic and for medium scattering
problems.

Let ΩD and ΩN be smooth, compact, disjoint, and simply connected subsets of R
3, and denote by

Ωext := R
3 \ (ΩD ∪ ΩN) the exterior domain. Moreover, we define the trace operator γu := (u|∂ΩD , ∂u

∂n |ΩN)
with values in X1 := H1/2(∂ΩD)⊕H−1/2(∂ΩN). The scattered field us corresponding to the incident Herglotz
wave function ui(x) :=

∫
S2 eikx·ξg(ξ) dsξ satisfies

Δu + k2u = 0 in Ωext,

γu = 0 on ∂Ωext,

r

{
∂u

∂r
− iku

}
→ 0 as r = |x| → ∞

where u = us +ui denotes the total field. The far–field operator F : L2(S2) → L2(S2) maps the density g to
the far–field pattern u∞ of us. We further introduce the complementary trace operator γ2u := ( ∂u

∂n |ΩD , u|∂ΩN)
with values in X2 := H−1/2(∂ΩD) ⊕ H1/2(∂ΩN) and the boundary integral operator B : X2 → X1, ϕ �→ γv
where

v(x) :=
∫

∂ΩD

Φ(x − y)ϕ(y) dsy +
∫

∂ΩN

∂Φ(x − y)
∂n(y)

ϕ(y) dsy, x ∈ Ωext.

Here Φ(x) := eik|x|
4π|x| is the fundamental solution to the Helmholtz equation. Moreover, we will denote by

�(B) the operator with Φ replaced by its imaginary part �(Φ) in the definition of B. Then the following
holds true:

Theorem: Assume that k2 is not an eigenvalue of −Δ with Dirichlet boundary conditions on ∂ΩD and
Neumann boundary conditions on ∂ΩN, and let z ∈ C. Then the following statements are equivalent:

1. z is an eigenvalue of F .

2. There exists a solution u = ui + us to the scattering problem such that

4π

k
�(us) = zui in Ωext,

�(γ2u) = 0 on ∂Ωext.

3. There exists a real–valued solution ϕ ∈ X2 to the generalized eigenvalue problem

−4π

k
�(B)ϕ = zBϕ.
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Abstract: In this talk a new meshless and integration-free numerical scheme for solving an inverse heat
conduction problem will be discussed. The numerical scheme is developed based on the use of the fundamental
solution as a radial basis function. To regularize the resultant ill-conditioned linear system of equations, we
apply successfully both the Tikhonov regularization technique and the L-curve method to obtain a stable
numerical approximation to the solution. The approach is readily extendable to solve high-dimensional
problems under irregular domain and inverse source identification problems.
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In the new absolute positioning regularization algorithm for standalone GPS, Firstly, To make a decision
about the approximate GPS receiver position with the help of Bancroft method, which can offer the initial
value for linearization of the observation equation. Because the number of observation satellites is always
over than four, in order to make full use of these information, and now solve it with the LS method in china
and abroad. Because the solution of LS method not be unique and when observation data have noise, the
solution is ill-posed. In order to solve the problem, we introduce into the regularization method, which take
into account the characteristic of the observation data and the optimum choice of regularization parameter
and compute the error covariance matrix using the method of the Galilo data processing software. The
experiment result indicate that the horizontal positioning precision of the method using C/A code is about
three meters, better than five to ten meters precision offered by the traditional standard positioning service.

In the GPS static positioning, Using the classical Kalamn method. The correction to approximate GPS
receiver position which can offered by the Bancroft method is as the filtering state vector. We take into
account the state of GPS receiver in the static positioning and choosing the error covariance matrix. The
experiment result indicate that the positioning precision is very good.

In the GPS dynamic positioning, A new nonlinear model including errors computed using navigation mes-
sages (acquired from Satellite transmitted data) for position estimation is developed. A new GPS positioning
method based on an iterative algorithm, and the new model is proposed. The method uses an algorithm
that iteratively uses Unscented Kalman tilters and smoothers to compute the position estimates. The first
experimental results, and comparison of results obtained with different algorithms are also presented. First
results show that our approaches provide better estimation than other solutions. Future research directions
are also discussed.
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Unlike classical optimization methods, topology optimization (TO) algorithms do not require any prede-
fined shape or topology as a starting point for the design process. The design domain is divided in a number
of cells or elements, and the material properties of each cell are considered as optimization variables. Thus,
any shape or topology can be generated by these methods, which makes TO algorithms the best suited for
inverse problems[1].

Stochastic algorithms for optimization (e.g., genetic algorithms) do not rely on derivative information
for performing the search for optimal solutions, and present the ability of escaping local attractors on and
finding the global optimum for multimodal objective functions. For these reasons, they have been widely
used in applications where the behavior of the objective function is unknown, or the cost of the gradient
evaluation is too high. Natural systems have been traditionally a powerful inspiration for the development
of such algorithms. In this talk a new topology optimization algorithm based on the natural process of
Clonal Selection (CS) and Affinity Maturation (AM) in immune cells will be presented. These processes
are responsible by the evolution of protein shapes in cells of the immune system, for dealing with harmful
intruders in the body. By using an analogy with this system, it is possible to evolve arbitrary shapes to
match virtually any input signal.

The proposed algorithm is coupled with the Multigrid (MG) method[2], a technique for allowing mul-
tiresolution analysis using the Finite Element Method (FEM). This coupling allows the TO algorithm to
first search for the overall distribution of material within the design space (by optimizing a coarse mesh),
and then successively refining the solutions until an optimal topology is achieved. An example of topology
evolution using this scheme is the pattern-matching problem ilustrated in Figure 1.

Figure 1: Topology evolution starting from an initial random coarse grid (a), following successive refinements
in the mesh (b,c) until a final configuration is achieved (d).
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An inverse source problem for the heat equation is considered.
Let Ω be a bounded domain of n-dimensions (n = 1, 2) with smooth boundary. Let T be an arbitrary positive
number. Let u = u(x, t) satisfy the heat equation with a source term in Ω× ]0, T [:

ut = �u + f(x, t).

The problem is
Inverse Problem. Assume that there exist a non negative number T0 less than T and point x0 ∈ Ω such
that f(x0, T0) �= 0 and f(x, t) = 0 for all 0 < t < T0 and all x ∈ Ω.
Extract T0 and information about the set {x ∈ Ω | f(x, T0) �= 0} from the data u|∂Ω×]0, T [, ∂u/∂ν|∂Ω×]0, T [

and u( · , 0).
The number T0 and the set {x ∈ Ω | f(x, T0) �= 0} are the time and position when and where the heat source
f(x, t) firstly appeared.

It is shown that the idea of Ikehata’s enclosure method to the present problem which was introduced
for inverse boundary value problems for elliptic equations yields two types of extraction formulae of the
information. It is based on the new roles of the plane progressive wave solutions or their complex versions
for the backward heat equation.
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Error estimate for non-characteristic Cauchy problem of the 2-D heat equation
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In this paper, we get a Hölder type estimate for the 2-D heat equation and weight function method is
used to prove the result.Also,Hölder type continuous dependence results for discrete solutions of the heat
equation are proved and numerical example is given.
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Motivated by a class of ocean circulation inverse problems, we consider the following

Problem Given real-valued functions f(y), g(y), determine a real-valued, continuous function v(x) ∈
L1(0,∞) so that the (overspecified) elliptic system⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Δφ + v(x)∂φ
∂y = 0 in Ω,

φ(0, y) = f(y) on ∂Ω,

−∂φ
∂x (0, y) = g(y) on ∂Ω,

lim
x+|y|→∞

φ(x, y) = 0

admits a classical solution φ(x, y). Here Ω = (0,∞)× (−∞,∞) and Δ denotes the two-dimensional Laplace
opertator.

Let f(y) �≡ 0 and we suppose that the Dirichlet data f(y) is the Fourier image of a function f̂(λ) with
(1 + |λ|)f̂(λ) ∈ L1(R) and the Neumann data g(y) is the image of a function ĝ(λ) ∈ L1(R). Then our
problem is reduced to the inverse scattering problem for the energy dependent Schrödinger equation

E′′ − λ2E − iλ v(x) E = 0
(
′′ = d2

dx2 , 0 < x < ∞
)

.

The Jost solution e(x, λ) is defined for each λ in Re λ ≤ 0 as the solution of this equation with the asymptotic
behavior e(x, λ) = eλx[1 + o(1)] as x → ∞. By means of the transformation representation

e(x, λ) = eλx − λ

∫ ∞

x

K(x, t)eλtdt (Re λ < 0),

we can establish the following procedure for the reconsruction of v(x).

Therorem If our problem has a solution v(x) ∈ L1(0,∞) then v(x) can be reconstructed from f, g in the
following three steps:

Step 1. The function
e(0, λ)
e(0, λ)

on the imaginary axis can be determined uniquely from the data f, g, and is

represented as
e(0, λ)
e(0, λ)

= C +
∫ ∞

−∞
F (t)eλtdt (Re λ = 0)

in terms of a function F (t) ∈ L1(R).

Step 2. The integral equation

K(x, t) +
∫ ∞

x

K(x, r)F (r + t)dr +
∫ ∞

x

F (r + t)dr = 0 (x ≤ t < ∞)

with the function F (t) is solved uniquely in the space of bounded, continuous functions on the interval [x,∞)
for each x ≥ 0, and the transformation kernel K(x, t) is obtained.

Step 3. The function v(x) is determined from K(x, x) by

v(x) = −2i
d

dx
log(1 + K(x, x)).
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Eshelby conjectured in 1961 that if for a given uniform loading the field inside an elastic inclusion
is uniform, then the inclusion must be an ellipse or an ellipsoid. On the other hand, Pólya and Szegö
conjectured in 1951 that if the polarization tensor associated with an inclusion has the minimal trace, then
the inclusion must be a disk or a ball. We prove both conjectures in two dimensions. We show that if the
polarization tensor has the minimal trace, then the field inside the inclusion must be uniform. We then show
that if the (elastic or electric) field inside the inclusion is uniform, then the inclusion must be an ellipse.
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In this talk we are concerned with the inverse problem determining the shape of some unknown portion
of the boundary of a domain based on a parabolic equation on the domain. Such a problem has been
treated by “Kurt Bryan and Lester F. Caudill Jr., Stability and reconstruction for an inverse problem for the
heat equation, Inverse Problems 14 (1998) 1429–1453” in multi-dimensional case; we treat the problem in
somewhat different and more general situation. Let B be an n−1 dimensional bounded Lipschitz domain and
put Ω := B×(0, 1). We suppose that the back surface B×{0} is deformed and its shape is given by a Lipschitz
function xn = S(t, x′), where t ∈ [0, T ] and x′ ∈ B. Our aim is to determine the function S from measurements
of the temperature on the front surface B × {1}. Put Ω(t) := {x = (x′, xn) : x′ ∈ B, S(t, x′) < xn < 1} for
t ≥ 0 and Q̃T :=

{
(t, x) : t ∈ (0, T ), x ∈ Ω(t)

}
. We consider that the temperature u(t, x) on Q̃T is given by

the following parabolic equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) − Pu(t, x) = 0 on Q̃T

u(t, x) = 0 on {(t, x) : t ∈ (0, T ), x′ ∈ B, xn = S(t, x′)}
∂u

∂N (t, x) = ψ(t, x) on {(t, x) : t ∈ (0, T ), x′ ∈ B, xn = 1}
∂u

∂N (t, x) = 0 on {(t, x) : t ∈ (0, T ), x′ ∈ ∂B}
u(0, x) = h(x) on Ω(0),

where P is an elliptic operator:

Pu(t, x) = ∇x • (A(t, x)∇xu(t, x)) − b(t, x) •∇xu(t, x) − a(t, x)u(t, x)

and ∂/∂N denotes the conormal derivative relative to P. As in the paper of Bryan and Caudill, we also
consider the inverse problem through an appropriate linearized problem. The linearized problem is derived
in a systematic way by using the weak form and it approximates the original inverse problem for small
deformation of the back surface. Denote by d(t, x′) the temperature on the front surface of the deformed
domain corresponding to S(t, x′). Then we have the following to the linearized problem:

Theorem 1. Suppose that one of the following conditions is fulfilled:
(i) The shape S is independent of the time variable t, and h �≡ 0 or ψ �≡ 0.
(ii) For every open interval I ⊂ (0, T ), ψ �≡ 0 on I × (B × {1}).

Then, d(t, x′) on (0, T ) × B determines S(t, x′) on (0, T ) × B uniquely.

Theorem 2. Take a basis {Si}∞i=1 of H := H1,1
,0 ((0, T ) × B) and denote di(t, x′) the temperature on the

front surface in the case where S = Si. For any fixed m ∈ N , choose a sequence (a1, . . . , am) by the method
of least squares for ‖d −∑m

i=1 aidi‖2

L2((0,T )×B) . Put S(m)(t, x′) :=
∑m

i=1 aiSi(t, x′). Then there is a dense
linear subspace S of H such that limm→∞ S(m) = S in H for every S ∈ S. Moreover, for given S and S′ ∈ H,
denote by d and d′ the corresponding temperature on the front surface and by {ai} and {a′

i} the coefficients
determined by the the method of least squares from d and d′ respectively. Then it holds

max
1≤i≤m

|ai − a′
i| ≤ Km ‖d − d′‖L2((0,T )×B)

with a positive constant Km determined by d1, . . . , dm.
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Let Ω be the half-space in R3 with bounded perturbation (undulation), and consider the elastic wave
equation (∂2

t − L)u(t, x) = 0 in R × Ω with the Neumann boudary condition Nu = 0 on R × ∂Ω, where
L =

∑
aij∂xi

∂xj
is the isotopic operator with constant coefficients. Then, there exist several kinds of waves,

i.e., P-wave, S-wave, the Rayleigh wave, etc. The Rayleigh wave is concentrated near the boundary, and
seems to behave with reflection of situations of the boundary. It is known that the scattering theory of the
Lax-Phillips type can be constructed with setting of the free space R3

+ and that the limiting absorption
priciple is also obtained containing the part of the Rayleigh wave. Furthermore, the scattering kernel is
represented of the Majda type, and is decomposed into some components depending the channels, e.g., the
component for the incoming P-wave and the outgoing S-wave, etc.

The purpose in this talk is to describe the representation of the scattering kernel on the channel of
the Rayleigh wave and to show that informations of singularities of the kernel can be derived from the
representaion. In the free space R3

+ = {(x′, x3) : x3 > 0} there is the Rayleigh wave of the form

wR
0 (t, x′, x3; ω) =

2∑
j=1

Cj

∫
R

e−iσ(t−c−1
R

x′ω)e−|σ|c−1
R

ξ
(j)
R

x3a
(j)
R (σ, ω)dσ, ω ∈ S1,

where cR is the velocity of the Rayleigh wave, a
(1)
R (σ, ω) = t(ω, (sgnσ)iξ(1)

R ), a
(2)
R (σ, ω) = t(ξ(2)

R ω, (sgnσ)1)
and ξ

(j)
R , Cj are some positive constants only depending on the velocities of the waves. This has singlarity

on the boundary of the type δ(t − c−1
R x′ω). Furthermore, in the perturbed space there exsists the wave

wR
+,tot approximately equal to wR

0 as t → −∞. The scattering kernel SRR(s, θ, ω) (θ, ω ∈ S1) on the channel
of the Rayleigh wave is represented by means of wR

0 and wR
+ = wR

+,tot − wR
0 in the following way, which is

corresponding to Majda’s representation for the d’Alembert equation.
Theorem 1. We have for some positive constant CR

SRR(s, θ, ω) = CR

∫
Ω∩R3

+

∫
R

∂s′wR
0 (s′, y; θ) · (∂2

t − L)wR
+(s′ − s, y; ω)ds′dy

+CR

∫
∂(Ω∩R3

+)

{∫
R

∂s′wR
0 (s′, y; θ) · (NwR

+(s′ − s, y; ω))ds′ −
∫
R

N∂s′wR
0 (s′, y; θ) · wR

+(s′ − s, y; ω)ds′
}
dSy.

Informations of sing supp [SRR(·, θ, ω)] are derived from this theorem. The Dirichlet-Neumann operator
has a hyperbolic part in the elliptic region of L. The Rayleigh wave comes from this part, and is expressed
by means of the scalar-valued wave equation on the boundary, which is equal to (∂2

t − c2
RΔ)u = 0 outside

the region of the perturbation. Let (q(t, y′; ω), p(t, y′; ω)) be the bicharacterisic curve for this wave equation
with (q(0, y′; ω), p(0, y′; ω)) = (y′, c−1

R ω). Assume that any of those curves is non-trapping, and set

M+
ω (θ) = {y′ ∈ ∂R3

+; lim
t→∞ p(t − s, y′; ω) = c−1

R θ, c−1
R ω y′ = s (for s small enough negatively)},

s+(θ, ω) = sup
y′∈M+

ω (θ)

lim
t→∞(c−1

R q(t − s, y′; ω) · θ − t),

which are independent of s. Let M+
ω (θ) �= φ.

Theorem 2. (i) sing supp [SRR(·, θ, ω)] ⊂ (−∞, s+(θ, ω)].
(ii) If M+

ω (θ) consists of only one point, SRR(s, θ, ω) is singular at s = s+(θ, ω).
Theorem 2 is proved by constructing the asymptotic solutions for wR

+, etc. and inserting them into the
expression after modifying the represntation in Theorem 1.
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The present authors proposed the active electric potential CT (computed tomography) method for iden-
tification of cracks and defects. In this method cracks and defects are identified from electric potential
distribution measured on the surface of a cracked body under electric current application. The present au-
thors also proposed the passive electric potential CT method using piezoelectric material for identification of
cracks and defects. The use of piezoelectric material made it possible to obtain electric potential distribution
without application of the electric current. The usefulness of the passive electric potential CT method has
been examined by numerical simulations and experiments.

In this study the passive electric potential CT method using piezoelectric film was applied to the identi-
fication of plural through cracks. For identification of cracks an inverse analysis scheme based on the least
residual method was applied, in which square sum of residuals is evaluated between the measured electric
potential distributions and those computed by using the finite element method. Akaike information criterion
(AIC) was used to estimate the number of cracks. Numerical simulations were carried out on the identifica-
tion of plural cracks and a single crack. The location and size of these cracks were quantitatively estimated
by the present method. The number of cracks was correctly estimated, even when the plural cracks were
closely located and the measured electric potential distribution was similar to that for a single crack.
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Given a nonlinear dynamical system
u∗t = f(q∗, u∗, t)

that describes the evolution of the physical state u∗ but involves uncertain parameters q∗, the task of online
parameter identification is to estimate q∗ simultaneously to the evolution of u∗ based on in general partial
and noisy observations yδ

∗ of the latter. On-line or real-time determination of process parameters plays a
central role in adaptive control. It is a self-contained important part of self-tuning regulators but also occurs
implicitly in model-reference adaptive controllers. The theory of on-line estimators is rather well developed
in the linear and finite dimensional case, i.e., when both u∗ and q∗ belong to finite dimensional spaces, but to
our knowledge the nonlinear and infinite dimensional case, e.g., online estimation of parameter functions or
online parameter estimation in PDEs, is only considered in the context of time dependent partial differential
equations, then requiring full observations of the state u∗ and its spatial derivatives in dependence of the
PDE-order, i.e., the exact data take the form y∗(t) = (u∗(t),∇u∗(t), ...).

In this talk, we present an approach to the online estimation problem in (possibly) infinite dimensions
that is based on an abstract, nonlinear and time-dependent parameter-to-output map. Our approach also
allows for partial state observations and - in the PDE case - makes spatial data differentiation redundant. We
present both theoretical and numerical results for nonlinear ODE as well as PDE examples and comparisons
to existing techniques.
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The inverse problem of recovering the geometry and the physical properties of a scatterer from the
knowledge of the far field pattern of a scattered field is of fundamental importance for example in non-
destructive testing or in medical imaging. In this talk we consider a time-harmonic scattering problem from
a sound hard crack which is modeled by

Definition 1. (DP)
For an open arc Γ ⊂ IR2

Γ := {z(s) : s ∈ [−1, 1], z ∈ C3[−1, 1] and |z′(s)| �= 0,∀s ∈ [−1, 1]}
with end points x∗

−1, x
∗
1, given an incident plane wave ui(x, d) := eik<x,d> with a wave number k and a unit

vector d giving the direction of propagation, find a solution u := ui + us ∈ C2(IR2 \ Γ) ∩ C(IR2 \ Γ0) to the
Helmholtz equation

Δu + k2u = 0, in IR2 \ Γ, k > 0. (1)

which satisfies the Neumann boundary conditions

∂u±
∂ν

= 0 on Γ0 := Γ \ {x∗
−1, x

∗
1} (2)

and the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂us

∂ν
− ikus

)
= 0, r := |x| (3)

uniformly for all directions x̂ := x
|x|

We shall use the boundary integral equation method for solving the scattering problem. The scattering
problem in the unbounded domain is thus converted into a boundary integral equation. The inverse problem
we are considering is

Definition 2. (IP)
Determine the scatterer Γ if the far field pattern u∞(·, d) is known for all incident directions d and for one
wave number k > 0.

A common way to handle the inverse scattering problem is via solving the so-called far field equation.
Because of the nonlinearity of the far field operator, linearization methods such as Newton method will be
used. For the reconstruction of the shape of the crack, we will therefore need the Fréchet derivative of the far
field operator which maps the unknown crack to the far field pattern of the scattered field. The computation
of the Fréchet derivative of the far field operator is much involved. Follow the new method proposed by
Kress and Rundell [1] based on the reciprocity gap functional, we will first derive the equivalence of the
inverse problem with a system of two nonlinear integral equations and then use the Newton method for the
reconstruction of the unknown crack.
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In this work, we present a preconditioned (F ∗
F )1/4 method for inverse obstacle scattering problem for

time harmonic plane waves. In particular, appropriate preconditioniner is constructed via the Algebraic
Multigrid method and the problem becomes well conditioned due to eigenvalues shifting away from zero.
We finally characterize the scattering obstacle using only the spectral data of the preconditioner and not
F , and we hence avoid the computation of the regularization constant. In figure 1, ◦ and × represent the
eigenvalues of F and AMG preconditioner, respectively. Figure 1 displays the eigenvalues of both operators
about the origin is shown. It is easy to see from that the large number of eigenvalues of F are clustered
around the origin compared to the ones of AMG preconditioner. The actual image reconstruction using the
spectral data of the AMG preconditioner is shown in figure 2. The two objects are not penetrable and are
excited by a harmonic incident wave while the data are contaminated by 5% Gaussian noise.
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We consider a steady slow viscous incompressible flow of fluid (creeping flow) which occupies the region
Ω between two infinitely long cylinders in 2-D, or between two spheres in 3-D, having outer boundary Γ0 and
inner boundary Γ1. The inverse problem under investigation requires the reconstruction of the fluid velocity
u and the pressure p of such a flow from the knowledge of the Cauchy data, i.e. fluid velocity and traction
on the part of the boundary Γ0, i.e.⎧⎨⎩

Δu −∇p = 0, ∇ · u = 0 in Ω
u = φ ∈ L2(Γ0), on Γ0

t(u, p) =:
(∇u + (∇u)T − p

)
ν = ψ ∈ L2(Γ0) on Γ0

If u is divergence free and (u, p) ∈ L2(Ω)× (H1(Ω))∗ satisfies the Stokes equation Δu−∇p = 0, then we
call (u, p) a Stokes pair.

The iterative Landweber-Fridman type method for solving this Cauchy problem is as follows:
Step 1. Set k = 0 and choose an arbitrary intial guess η

0
∈ L2(Γ1). The first approximation is the

Stokes pair (u0, p0) subject to u0 = η
0

and t(u0, p0) = ψ on Γ0.
Step 2. Find the Stokes pair (v0, q0) with v0 = 0 on Γ1 and t(v0, q0) = φ − u0 on Γ0.
Step 3. For k ≥ 1, having constructed (uk−1, pk−1) and (vk−1, qk−1), the Stokes pair (uk, pk) satisfies

uk := η
k

= η
k−1

− γt(uk, pk) = ψ on Γ0, where γ > 0.
Step 4. Finally, the Stokes pair (vk, pk) is constructed with vk = 0 on Γ1 and t(vk, qk) = φ − uk on Γ0.

The mixed direct problems solved in this procedure are well-posed in L2(Ω) × (H1(Ω))∗, and the different
restrictions to the boundary are well-defined. This and the following theorem can be proved.

Therorem Let φ and ψ be given in 
L2(Γ0). Then, if γ > 0 is sufficiently small, the sequence (uk, pk) in
the above procedure converges to the solution of the Cauchy problem (u, p), which is assumed to exist in
L2(Ω) × (H1(Ω))∗, for any initial guess η

0
∈ L2(Γ1).

Suppose now that instead of φ, we have only its approximation, say φε ∈ L2(Γ0), satisfying ‖φ−φε‖L2(Γ0) ≤ ε,
where ε ≥ 0 is an upper bound for the error in the measurements. Then we stop the iteration of the algorithm
above according to the discrepancy principle, namely at the smallest index k for which ‖uε

k − φε‖L2(Γ0) ≈ ε.

From a numerical point of view, it might be difficult to choose the parameter γ > 0 in the right interval.
However, it is possible to propose parameter-free procedures such as the conjugate gradient and the minimal
error methods.

The numerical implementation based on the boundary element method confirm that the iterative proce-
dures produce convergent and stable numerical solutions.
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Conditional stability for source parameter identification in multidimensional
advection-dispersion equation with final observations

Gongsheng Li
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ligs@sdut.edu.cn

Consider the following multidimensional advection-dispersion equation with Dirichlet boundary condition:

ct − DL�c + u ∇ · c + q(x)c = 0, (x, t) ∈ ΩT (1)

c(x, 0) = 0, x ∈ Ω (2)

c(x, t)|∂Ω = g(x, t), x ∈ ∂Ω, 0 ≤ t ≤ T (3)

where ΩT = Ω × (0, T ), and Ω ⊂ RN be bounded domain, T > 0.

Our problem is to determine the source parameter q = q(x) with the following overposed final observations
at t = T :

c(x, T ) = cT (x), x ∈ Ω. (4)

Suppose < c1, q1 > and < c2, q2 > are two pairs of solutions of the inverse problem (1)-(4) correspond-
ingly to the known data (g1, c

1
T ) and (g2, c

2
T ) respectively, Then it follows that∫

ΩT

c2(q2 − q1) ϕ dxdt =
∫

Ω

(c1
T − c2

T )v(x)dx + DL

∫ T

0

∫
∂Ω

(g1 − g2)ϕn dS dt (5)

where ϕ = ϕ(x, t) denotes a solution of the following adjoint problem with input data v = v(x):

ϕt + DL�ϕ + u∇ϕ − q1ϕ = 0,

ϕ|∂Ω = 0,

ϕ(x, T ) = v(x).

By data compatibility analysis and integral identity method based on the above identity (5), a conditional
stability for the inverse problem (1)-(4) can be constructed via a suitable topology.

Keywords: Inverse problem of determining source parameter; multidimensional advection-dispersion
equation; integral identity method; conditional stability
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Estimation of coefficients in a hyperbolic equation with impulsive inputs
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For the solution to

∂
2
t u(x, t) −�u(x, t) + q(x)u(x, t) = δ(x1)δ′(t), u|t<0 = 0,

we consider an inverse problem of determining

q(x), x ∈ Ω

from data
f = u|ST

and g =
∂u

∂ν
|ST

.

Here Ω ⊂ {(x1, . . . , xn) ∈ Rn
|x1 > 0}, n ≥ 2, is a bounded domain,

ST = {(x, t); x ∈ ∂Ω, x1 < t < T + x1}

and T > 0.
For suitable T > 0, we prove an L

2(Ω)-size estimation of q:

‖q‖L2(Ω) ≤ C

{
‖f‖H1(ST ) + ‖g‖L2(ST )

}
,

provided that q satisfies a priori uniform boundedness conditions.
We use an inequality of Carleman type in our proof.
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Inverse boundary value problem for Stokes equation

Xiaosheng Li
Department of Mathematics, University of Washington, U.S.A.
xli@math.washington.edu

We prove a global identifiability of the viscosity parameter in an incompressible fluid by boundary mea-
surements. This is a joint work with H. Heck and J-N Wang.
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An expansion theorem for two-dimensional elastic waves and its application

Kun-Chu Chen
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Let u(x) ∈ C2 be a solution of the scalar Helmholtz equation Δu + k2u = 0 in the exterior of the ball
with radius a > 0 and satisfy Sommerfeld’s radiation condition. It is a well-known property [1], [4] that u,
in the spherical coordinates (r, θ, φ), can be expressed as

u(r, θ, φ) = r−1eikr
∑∞

n=0 fn(θ, φ)r−n, (1)

where the series converges for r > a and converges absolutely and uniformly with respect to r, θ, φ in the
domain r > a + ε > a. The series may be differentiated term by term in all variables. Moreover, the
coefficients fn for n > 0, can be constructed recursively from the far-field pattern f0(θ, φ). Similar results
for Maxwell’s equations and elastic equations in three dimensions were proved by Wilcox [5] and by Dassios
[2], respectively. In two dimensions, a convergent expansion theorem for the scalar radiation solution was
established by Karp [3]. However, a similar expansion theorem for two-dimensional elastic waves is still
missing. The present paper is an attempt to fill this gap.

References
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Robust generalized cross-validation for choosing the regularization parameter
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Linear Fredholm integral equations of the first kind

Kf(x) ≡
∫ b

a

k(x, t)f(t) dt = g(x)

arise in many important applications, often with discrete noisy data yi = g(xi)+ εi, i = 1, . . . , n. Since these
equations are ill-posed, it is essential to use some form of regularization. The popular method of Tikhonov
regularization gives a good estimate fλ of the solution, provided we make a good choice of the regularization
parameter λ. One of the most successful methods for choosing the parameter is generalized cross-validation
(GCV). It is known to have favourable asymptotic properties as n → ∞; in particular, the “expected” GCV
estimate λV is asymptotically optimal with respect to the risk ER(λ) =

∑
(Kfλ(xi) − g(xi))2, meaning

that ER(λV )/minER(λ) → 1 as n → ∞. However, for small or medium sized n, GCV may not be reliable,
sometimes giving a value of λ that is far too small (corresponding to a very noisy fλ).

We propose a new robust GCV method (RGCV) which chooses λ to be the minimizer of

γV (λ) + (1 − γ)F (λ),

where V (λ) is the GCV function, F (λ) is a certain average measure of the influence of each data value on
fλ, and γ ∈ (0, 1) is a robustness parameter. As with GCV, the method requires no knowledge of the error
variance or the smoothness of the solution. We show that because of the properties of F (λ), the RGCV
method is more reliable than GCV for smaller values of n. We also show that RGCV has good asymptotic
properties as n → ∞, including that the “expected” RGCV estimate of λ is asymptotically optimal with
respect to the “robust risk” γER(λ)+(1−γ)v(λ), where v(λ) is the variance component of the risk. We will
compare RGCV and GCV using numerical simulations for the problem of estimating the second derivative
from noisy data.
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Dynamical systems method for solving the operator equations of the first kind

Xingjun Luo
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The DSM(dynamical systems method) for solving equation Au = f consists of solving the Cauchy
problem

u̇δ,h(t) = Φδ,h(t, uδ,h(t)), t > 0, uδ,h(0) = u0 (1)

where
Φδ,h(t, uδ,h(t)) = −[Bhuδ,h(t) + ε(t)uδ,h(t) −Fδ,h], (2)

or
Φδ,h(t, uδ,h(t)) = −(Bh + ε(t))−1

[
Bhuδ,h(t) + ε(t)uδ,h(t) −Fδ

]
; (3)

with
Bh = A∗

hAh, Fδ,h = A∗
hfδ, ‖A −Ah‖ ≤ h, ‖f − fδ‖ ≤ δ. (4)

We set r =
√

δ2 + h2, y is the unique minimal-norm solution to equation Au = f.

The purpose of this talk is to prove the following theorems:

Therorem Under certain conditions on ε(t) the solution uδ,h to (1) at t = tδ,h, will have the property

lim
r→0

‖uδ,h(tδ,h) − y‖ = 0,

this tδ,h can be chosen as a root of the following equation√
ε(t) = (δ + h)b, b ∈ (0, 1).

Let us use Euler’s method to solve Cauchy problem (1) with (2), (1) with (3), respectively, numerically.

pn+1
δ,h = pn

δ,h − ωn

[
(Bh + εn)pn

δ,h −Fδ,h

]
, n = 0, 1, 2 · · · , (5)

p0
δ,h := u0, εn := ε(tn), tn := Σn

i=0ωi, ωi > 0 (6)

qn+1
δ,h = (1 − ωn)qn

δ,h + ωn(Bh + εn)−1Fδ,h, n = 0, 1, 2 · · · , (7)

q0
δ,h := u0, εn := ε(tn), tn := Σn

i=0ωi, ωi > 0, (8)

we can also get another iterative process by using other methods, such as the implicit Euler method, Runge-
Kutta method. In this section it is only proved that under certain conditions the iterative process (7) with
(8) converges to y.

Therorem Assume A is linear, bounded operator in H. Let
1) δ be the level of noise in (7): ‖f − fδ‖ ≤ δ and (4) holds;
2) n = n(δ, h) be chosen in such away that lim

r→0
n(δ, h) = ∞;

3) ε(t) ∈ C[0,∞), ε(t) ↘ 0(t → ∞), and |ε̇(t)|
ε(t)2 → 0(t → ∞);

4)
∑∞

n=1 ωn = ∞, 0 < ωn < 1, lim
r→0

δ+h√
εn(δ,h)

= 0.
Then

lim
r→0

‖qn
δ,h − y‖ = 0

where n := n(δ, h).

7171



An Algorithm Reconstructing Source Term for Neutron Transport Equation
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Based on the fundamental solution of neutron transport equation, we gave an algorithm for reconstructing
the source term of this differential-integral equation and numerical simulation. The numerical results show
that this algorithm is reliable and efficient.
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An inverse problem for the one-dimensional wave equation in multilayer media
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We consider half-line media which consist of many kinds of substances. Assume that we can observe
only the data near the boundary point of the half-line. Our purpose is to guess the situation away from the
boundary point by the nondestructive inspections.

Now, we introduce the notations and formulate this problem. Put h0 := 0. Let hk be a positive constant
and hk > hk−1 for k = 1, . . . , N − 1. We call the interval (hk−1, hk) Medium k for k = 1, . . . , N − 1 and
the interval (hN−1,∞) Medium N . Let ak and bk be positive constants for k = 1, . . . , N . The positive
number ak describes the speed of the waves through Medium k, and bk the impedance of Medium k. Put
Pk := ∂2

t − a2
k∂2

x for k = 1, . . . , N . Suppose 0 < y < h1. We consider the following equations:

(W.1) P1u(t, x) = δ(t, x − y), 0 < x < h1,

(W.k) Pku(t, x) = 0, hk−1 < x < hk (k = 2, . . . , N − 1),
(W.N) PNu(t, x) = 0, hN−1 < x,

(B) ∂xu(t, x)|x=0+0 = 0,

(I.k) u(t, x)|x=hk−0 = u(t, x)|x=hk+0 (k = 1, . . . , N − 1),
(J.k) akbk∂xu(t, x)|x=hk−0 = ak+1bk+1∂xu(t, x)|x=hk+0 (k = 1, . . . , N − 1).

The equation (B) means the free boundary condition at the point x = 0. The equation (I.k) describes the
continuity of the displacement of the waves at the point x = hk, and (J.k) the continuity of the stress.
The equations (E) = {(W.1)–(W.N), (B), (I/J.1)–(I/J.N − 1)} express the situation that the initial data is
the delta function at the point y in Medium 1 at the time t = 0 with the boundary condition (B) and the
interface or transmission conditions (I/J.k).

In this talk, we show the following main result.

Main result. Suppose that the constants a1, b1, y are known. Assume bj �= bj+1 for j = 1, . . . , N − 1.
Assume that the observation data v(t) := u(t, 0) are given on [0, T ), where u(t, x) denotes the solution of
the equations (E). Then bk+1 and (hk − hk−1)/ak are reconstructed by the following process:

• The first step: Put v1(t) := (1/a1)H(t − y/a1) − v(t), where H is the Heaviside function.

• The (k + 1)-st step (k = 1, 2, . . .): If vk(t) ≡ 0 then the process is finished. If vk(t) �≡ 0, then put
tk := inf{t ∈ [0, T ) : vk(t) �= 0}, reconstruct the constants (hk − hk−1)/ak and bk+1 by

hk − hk−1

ak
:=

1
2

(
tk +

y

a1

)
−

k−1∑
j=1

hj − hj−1

aj
,

bk+1 :=

22k−2
k−1∏
j=1

(bjbj+1) + vk(tk + 0)a1

k−1∏
j=1

(bj + bj+1)2

22k−2
k−1∏
j=1

(bjbj+1) − vk(tk + 0)a1

k−1∏
j=1

(bj + bj+1)2
bk,

define vk+1(t) by

vk+1(t) := vk(t) +
1
a1

g(k)

(
t;

y

a1
; b1, . . . , bk+1;

h1

a1
,
h2 − h1

a2
, . . . ,

hk − hk−1

ak
; T

)
,

and go the next step, where g(k) can be expressed explicitly, however we omit the explicit formula here.
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Direct Computation of Harmonic Moments for Tomographic Reconstruction
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We present the tomographic reconstruction of a 2D polygonal object D from its projections. Let f(x, y)
and p(r, θ) be a characteristic function of D and its projection

p(r, θ) =
∫ ∫

C

f(x, y)δ(r − x cos θ − y sin θ)dxdy, (1)

respectively. Then, it is shown[1] that the harmonic moments of the object cn ≡
∫ ∫

C

f(x, y)(x + iy)ndxdy

are related to the vertices vk(∈ C) of D as

n(n − 1)cn−2 =
N∑

k=1

akvn
k , (2)

where N is the number of the vertices of D. Eq. (2), so called the moment problem, can be algebraically
solved for vk from cn−2 for n = 2, 3, · · · , 2N − 3[1]. However so far, the harmonic moments have been
obtained indirectly via the geometrical moments of the object μp,q ≡ ∫ ∫

C
f(x, y)xpyqdxdy, through the

following three steps[2]: 1) compute the geometrical moments of the projections hn(θ) ≡ ∫
R

p(r, θ)rndr from
projections, 2) solve the simultaneous equations hn(θ) =

∑n
j=0 Cn,j cosn−j θ sinj θμn−j,j for μn−j,j , then 3)

compute cn =
∑n

j=0 Cn,ji
jμn−j,j .

We showed first that the harmonic moments can be computed much more directly and efficiently from
projections as follows:

Theorem 1 2πcn =
∫ 2π

0

∫ ∞

0

p(r, θ)rneinθdrdθ (3)

Furthermore, we showed the following theorem holds, which is effective for the real condition where the
projection number is finite:
Theorem 2 The harmonic moments can be strictly computed from the finite number of projections as

cn

2n
=

1
M

M−1∑
k=0

∫ ∞

0

p(r, θk)rneinθkdr (4)

if the projection number M satisfys

M > N when M is odd, (5)
M > 2N when M is even. (6)

From this theorem, we observe an interesting property: in order to reconstruct the object shape from
less number of projections, the projection number should be odd. Numerical results will be shown at the
conference.
References
[1] G. H. Golub et al., SIAM J. on Sci. Comp., pp. 1-25, 1998.
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pp. 317-342, 1998.
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An inverse initial-boundary value problem for the operator

Lp =
∂

2

∂t2
−

∂
2

∂x2
− p1(x)

∂

∂t
− p2(x)

∂

∂x

Wuqing Ning

Graduate School of Mathematical Sciences, the University of Tokyo, Japan
ning@ms.u-tokyo.ac.jp
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We consider a wave equation with damping coefficient

∂
2
u

∂t2
(x, t) =

∂
2
u

∂x2
(x, t) + p1(x)

∂u

∂t
(x, t) + p2(x)

∂u

∂x
(x, t), 0 < x < 1,−T < t < T ,

u(x, 0) = 0,
∂u

∂t
(x, 0) = δ(x), 0 ≤ x ≤ 1,

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, −T ≤ t ≤ T

where T ≥ 2, the complex-valued functions p1, p2 ∈ C
1[0, 1] and δ(x) is the Dirac delta function. We

discuss the inverse problem of determining simultaneously the coefficients p1(x) and p2(x), 0 ≤ x ≤ 1 from
observation data u(0, t),−T ≤ t ≤ T . We prove a reconstruction formula for p1(x) and p2(x) from u(0, t) by
the inverse spectral theory.
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Inverse crack problem and the Mittag-Leffler function
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Let Ω be a two-dimensional simply connected domain with smooth boundary and Σ = ∪M
m=1Σm ⊂ Ω be a

finite union of mutually disjoint perfectly insulated cracks. We assume that each Σm is non-self-intersecting
smooth curve. Let u be a non constant solution of the Laplace equation in Ω \ Σ and satisfy ∂u/∂ν = 0
on Σ. The so-called inverse crack problem is to extract information about unknown cracks Σ from Cauchy
data (f, g) = (u|∂Ω, ∂u/∂ν|∂Ω) for finitely many or infinitely many u. This problem corresponds to electrical
impedance tomography that finds the unknown cracks in the conductive material using the electrical potentials
and currents on the surface.

For a similar inverse problem for cavities instead of cracks, Ikehata has established an extraction formula
of the convex hull of the unknown cavities from (f, g) for a single u under the condition that the cavities are
polygonal and the diameter is so small compared with the distance between the cavities and ∂Ω. The formula
is based on the asymptotic behaviour of the so-called indicator function calculated for a single set of Cauchy
data as τ −→ ∞ which involves the harmonic function v(x; τ, ω) = eτx·(ω+iω⊥) with a large parameter τ
and two unit vectors ω, ω⊥ perpendicular to each other. Moreover, Ikehata has proven that: if one has g
for u with f = v|∂Ω, then another indicator function calculated from infinitely many set of the Cauchy data
(f, g) yields a similar extraction formula of the convex hull of the cavities having general shape. Numerical
implementation of the both types of the formulae are done in [Ikehata-Ohe, Inverse Problems, 18(2002),
111-124] and [Ikehata-Siltanen, Inverse Problems, 16(2000), 1043-1052].
In [Ikehata, CONM, 348(2004), 41-52], Ikehata proposed the idea of introducing two new indicator functions
by replacing v above with a harmonic function with the same large parameter τ coming from the Mittag-
Leffler function which is a generalization of the exponential function. The numerical implementation of the
formula with the new indicator function of infinitely many measurement type has been done in [Ikehata-
Siltanen, Inverse Problems 20(2004), 1325-1348] for inclusions.

In this talk, we study the asymptotic behaviour of the new indicator functions in the inverse crack
problem, and discuss a numerical reconstruction method for cracks.
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State estimation approach to nonstationary inverse problems: discretization
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We consider the following nonstationary inverse problem. We are interested in the values of the quantity
X in a domain D along time. We are not able to perform direct measurements of X but we can observe the
quantity Y at direct time instants. The quantity Y depends linearly on X at the given time instant. We
have a model for the time evolution of the quantity X. Since we cannot be sure that the evolution model
is correct, we have added a source term representing possible modelling errors. The quantity Y cannot
be measured exactly. In the measured values of Y there is an additional measurement noise. We want to
calculate an estimate for X based on the measured values of Y . To be able to solve the nonstationary inverse
problem we view it as a state estimation problem. The state estimation system we are interested in consists
of the equations

dX(t) = AX(t)dt + dW(t), t > 0, (1)
X(0) = X0, (2)
Y (t) = BX(t) + S(t), t > 0. (3)

The time evolution of the state of the system X is modeled by a stochastic differential or partial differential
equation (1). We assume that A is a densely defined sectorial operator and W is a Hilbert space valued Wiener
process. The observation equation (3) is linear with additive measurement noise S. The time discretization
of the continuous infinite dimensional state estimation system (1)–(3) is exact since the solution to the state
evolution equation (1) is given by an analytic semigroup and the observation equation (3) depends only
on the given time instant. For computational reasons the space discretization of the time discrete infinite
dimensional state estimation system is performed. The novel contribution of the article is the analysis of
the space discretization. The distributions of the discretization errors in the discretized state evolution and
observation equations are introduced. The solution to the corresponding finite dimensional filtering problem
is presented.
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Carleman estimate and applications for the one-dimensional heat equation with
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Many inverse problems can be solved by means of Carleman-type estimates. We consider here the following
heat equation for (t, x) ∈ Q := [0, T ] × (0, 1) :

∂tq − ∂x(c∂xq) = f,

with Dirichlet boundary conditions. In this work, the coefficient c is positive and piecewise C1 with a finite
number of discontinuities, x1, . . . , xn.
Consider first a subinterval ω := (a, b) ⊂⊂ Ω := (0, 1) and the case when moving from a to 0, resp. from b
to 1, the jumps encountered for c are non negative. In this case, the Carleman estimate with an observation
on ω (see the term of the r.h.s. of (∗)) is known ([DOP]). In the case of arbitrary signs for the jumps in the
coefficient c, the existence of such an estimate was open. In the one dimensional case, some controllability
results have however been proved ([FZ]). In the one-dimensional case, without any monotonicity condition
on c, we prove that such a Carleman estimate remains valid. Consequently, in our talk, we will deduce the
usual applications : controllability, extension to a class of non-linear heat equations, inverse problems...
The main result is the following
Theorem. Let an open subset ω ⊂⊂ Ω, ω �= ∅. There exist λ1 = λ1(Ω, ω) > 0, s1 = s1(λ1, T ) > 0 and a
positive constant C = C(Ω, ω) so that the following estimate holds

(∗)
sλ2

∫∫
Q

e−2sηϕ|c∂xq|2 dxdt + s3λ4
∫∫

Q
e−2sηϕ3|q|2 dxdt

≤ C
[
s3λ4

∫∫
(0,T )×ω

e−2sηϕ3 |q|2 dxdt +
∫∫

Q
e−2sη |∂tq ± ∂x(c∂xq)|2 dxdt

]
,

for s ≥ s1, λ ≥ λ1 and for all q ∈ ℵ.
Note that we also obtain the same type of inequality with a boundary observation. We have used the following
notations : q ∈ ℵ if and only if q is continuous on Q, C2 on Q′ := [0, T ]× (Ω\{x1, . . . , xn}) and, for each t ∈
(0, T ), x → q(t, x) belongs to the domain of the selfadjoint operator ∂x(c∂x) in L2(Ω) (which implies the usual
transmission conditions). In the l.h.s. of (∗), we can introduce the quantity ‖M1(e−sηq)‖2 + ‖M2(e−sηq)‖2,
usual in these Carleman inequalities.
The functions η and ϕ are positive weight functions on Q given by

ϕ(x, t) =
eλβ(x)

t(T − t)
, η(x, t) =

eλβ̄ − eλβ(x)

t(T − t)
,

with β̄ > ‖β‖∞ (see e.g. [FI], [DOP]).
In the proof of the Carleman estimate, the construction of the continuous function β is essential [FI]. We
show that a modification of the usual requirements on β, enables us to consider the earlier situation, as well
as that without monotonicity conditions, and opens other perspectives.

References
[DOP] A. Doubova, A. Osses and J.-P. Puel, Exact controllability to trajectories for semilinear heat equations
with discontinuous diffusion coefficients, ESAIM: COCV, 2002, 8, 621-661.
[FI] A. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Lecture notes, 34, 1996,
Seoul National University, Korea.
[FZ] E. Fernández-Cara and E. Zuazua, On the null controllability of the one-dimensional heat equation with
BV coefficients, Special issue in memory of Jacques-Louis Lions, Comput. Appl. Math., 2002, 21, no. 1,
167-190.
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Recovering first order terms from boundary measurements

Mikko Salo
Department of Mathematics and Statistics / RNI, University of Helsinki, Finland
mikko.salo@helsinki.fi

We consider the problem of recovering nonsmooth first order terms in scalar elliptic equations from
boundary measurements, in dimensions three and higher. The main example is to construct a magnetic
field from the Dirichlet to Neumann map related to the Schrödinger operator. This extends earlier results
on the problem (due to Nakamura-Sun-Uhlmann and others) by relaxing the regularity assumptions on the
coefficients, and by giving a constructive method.

More precisely, consider the magnetic Schrödinger operator

H =
n∑

j=1

(1
i

∂

∂xj
+ Wj

)2

+ V

where W : Ω → Rn is a magnetic potential and V : Ω → R is an electric potential in a bounded domain Ω.
The Dirichlet to Neumann map is given by the magnetic normal derivative

Λ : f �→ (∇ + iW )u · ν|∂Ω

where u is the solution of Hu = 0 in Ω with boundary values f on ∂Ω. We show that one may construct the
magnetic field curlW and the electric potential V from the boundary measurements Λ.
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The inverse scattering problem for Schrödinger and Klein-Gordon equations with
a nonlocal nonlinearity

Hironobu Sasaki
Department of Mathematics, Hokkaido University, Japan
hisasaki@math.sci.hokudai.ac.jp

We consider the inverse scattering problem for the nonlinear Schrödinger equation

i∂tu + Δu = f(u) (1)

and for the nonlinear Klein-Gordon equation

∂2
t w − Δw + w = f(w) (2)

in space-time R×Rn. The nonlocal nonlinear term f(v) has the form f(v) = λ(x)(| · |−σ ∗ |v|2)v, where we
assume that λ ∈ C1(Rn) ∩ W 1

∞(Rn) and λ(0) �= 0.

The purpose of this talk is to determine σ, and to reconstruct λ from the knowledge of the scattering
operator:

To state our results, we give some notation. Let 〈x〉 = (1+ |x|2)1/2. For s, k ∈ R, let Hs
p and Hs,k be the

Sobolev space (1 − Δ)−s/2Lp(Rn) and the weighted Sobolev space (1 − Δ)−s/2 〈x〉−k
L2(Rn), respectively.

Especially, Hs denotes Hs
2 . For 1 ≤ r ≤ ∞, let ŕ be the Hölder conjugate of r. For α > 0, φ : Rn → C, we

denote φ(α−1(x − x0)) by φα,x0(x). For (1), we set

T [φ] = lim
ε↓0

i

ε3
〈(S − I)(εφ), φ〉L2(Rn) ,

where S is the scattering operator for (1). For (2), we put

K[φ] = lim
ε↓0

i

ε3

〈
(S − I)(ε t(φ, 0)), t(0, φ)

〉
H1(Rn)⊕L2(Rn)

,

where S is the scattering operator for (2).

Therorem 1. Let n ≥ 2, 1 < σ ≤ 4, σ < n. Assume that φ ∈ H1 ∩ H0,1 and φ �= 0. For (1), we have the
formula for determining σ

σ = 2n + 2 − lim
α↓0

ln
|T [φeα]|

|T [φα]| + α2n+2
.

Therorem 2. Let I = (6(n − 1)/(3n − 5), 2n/(n − 2)]. Suppose that n ≥ 3, max{n/(n − 1), 4/3} < σ ≤ 4,
σ < n,

φ ∈ H1,1/3 ∩
⋂
r∈I

H
(n+1)(1/2−1/r)
ŕ

and φ �= 0. For (2), we have the formula for determining σ

σ = 2n + 1 − lim
α↓0

ln
|K[φeα]|

|K[φα]| + α2n+1
.

Remark By using the determined σ, we have the reconstruction formula for λ. For instance, the formula
for λ of (1) is given by

λ(x0) =
limα→0 α−(2n+2−σ)T [φα,x0 ]∫ |y|−σ|u0(t, x − y)|2|u0(t, x)|2d(t, x, y)

.

Here, φα,x0(x) denotes φ(α−1(x − x0)), and u0 = eitΔφ.
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Inverse analysis on circular cylindrical shell subjected to hydrostatic pressure

Akira Satoda
Graduate Student,Polytechnic University
m17523@uitec.ac.jp

Ryuji Endo
Department of Architectural System Engineering,Polytechnic University
endo@uitec.ac.jp

Nobuyoshi Tosaka
Department of Mathematical Information Engineering,Nihon University
n7tosaka@cit.nihon-u.ac.jp

The inverse analysis to identify the water level and system rigidity as unknown parameters are performed
on circular cylindrical shell subjected to hydrostatic pressure. The displacements of radius direction on some
locations are adopted as the observation data in the inverse problem.

Governing equation of the circular cylindrical shell subjected to hydrostatic pressure is given as follows,

Da2w,xxxx +Etw = −a2γ(h1 − x1)
where t, a and x1 are thickness, radius, parameter of axis direction of shell, γ is water density, E is Young’s
modulus, and D, h1 are the bending stiffness and water level as unknown parameter that should be identified.
Generaly, D is given as

D = Et3

12(1−ν2)

where ν is Poisson’s ratio.
The observation equation should be expressed with nonlinear operator becouse the relation between the

bending stiffness and displacement given in the state vector becomes the nonlinear expression. The extended
observation equation can be written as follows,

Yk = mk(Zk) + vk

We expand the nonlinear observation equation in the neighbor hood of estimation. Negleoting the higher
terms of expansion we can obtain the following observation equation with the sensitivity matrix as result of
a linearization of the nonlinear obsavation equation,

Yk = MkZk + vk

where
Mk =

(
∂mk(Zk)

∂Zk

)
Zk=Ẑk/k−1

The filter equation can be written as follows,

Ẑk+1/k = Ẑk/k−1 + Bk(ωk − mk(Ẑk)k/k−1)

where
Bk = MT

k (MkMT
k + γQk)−1

where Bk is the parametric projection filter as filter gain. The parametric projection filter is including
the parameter γ to be regularized the filtering process. The procedure to obtain the adaptive parameter γ
in each filtering step is introduced in this inverse analysis.

The natable characteristics of present filtering algorithm in appling the inverse problem are made clear
through several numerical caluculations.
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Convergence property of the variational method
for the Cauchy problem of the Laplace equation

Takemi Shigeta
Department of Electronics and Computer Science, Tokyo University of Science, Yamaguchi, Japan
shigeta@ed.yama.tus.ac.jp

For a two dimensional annulus domain := {(x y); Rid
2 < x2 + y2 < Rd

2} with the outer boundary
Γd = {(x y); x2 + y2 = Rd

2} and the inner one Γid = {(x y); x2 + y2 = Rid
2}, we consider the Cauchy

problem of the Laplace equation:

Problem For given Cauchy data (u q) ∈ H1/2(Γd) × { v n ∈ H 1/2(Γd); −Δv = 0 in , v|Γd = u,
v|Γid = , ∈ H1/2(Γid)}, nd u ∈ H1/2(Γid) such that

−Δu = 0 in

u = u
u

n
= q on Γd

where n denotes the unit outward normal to Γd.
This problem can be regarded as the following minimization problem:

Problem Find ∗ ∈ H1/2(Γid) such that

J( ∗) = inf
∈H1/2(Γid)

J( ) J( ) :=
∫

Γd

|v( )− u|2dΓ

where v = v( ) ∈ H1( ) depending on ∈ H1/2(Γid) is the solution of the primary problem:

−Δv = 0 in
v

n
= q on Γd

v = on Γid

To nd the minimum of J( ), we generate a minimizing sequence { k}∞k=0 by the steepest descent method:
k+1 = k− ρkJ ′( k) starting with an initial guess 0, with a suitably chosen numerical sequence {ρk}∞k=0.

The rst variation is explicitly given by J ′( ) = − v̂ n|Γid , where v̂ = v̂(v( )) ∈ H2( ) depending on the
solution v = v( ) of the primary problem is the solution of the adjoint problem:

−Δv̂ = 0 in
v̂

n
= 2(v − u) on Γd

v̂ = 0 on Γid

We obtain a simple theorem and its corollary on a convergence property as follows:

Theorem For the exact ∗, suppose that the error μk = ∗ − k can be expanded in the nite Fourier
series:

μk =
N∑

|j|=M

a
(k)
j eijθ

with some nonnegative integers M N (M ≤ N). Then, { k}∞k=0 converges to ∗ for 0 < ρk < 2 CM with
Cj := 8Rd

2|j|+1Rid
2|j| 1 (Rid

2|j| + Rd
2|j|)2.

Corollary The optimal step size ρopt in the sense that the compression factor δ in ‖μk+1‖L2(Γid) ≤
δ‖μk‖L2(Γid) is minimized is given by ρopt = 2 (CM + CN ).

Based on the results above, the Armijo criterion is no longer necessary to choose the step sizes for each
iteration. Hence, the cost of numerical computations can be reduced. We con rm the propriety of these
theoretical results through some numerical results obtained by the nite element method.
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Structural damage identification based on variable parametric projection filter

Sumiko Shiota
Technical Institute of Maeda Co., Japan
shiota.s@jcity.maeda.co.jp

Ryuji Endo
Department of Architectural System Engineering,Polytechnic University
endo@uitec.ac.jp

Nobuyoshi Tosaka
Department of Mathematical Information Engineering,Nihon University
n7tosaka@cit.nihon-u.ac.jp

The structural damage identification analysis of some kinds of frame structure model are perfomed as
a frame work of inverse problem. As the inverse analysis method filtering algorithm based on parametric
projection filter are employed in filter equation. In this study the natural frequencies calculated by motion
equation of shear-type structure and lateral stiffness of each story on frame structure model are adopted as
the observation data and unknown parameter that should be identified, respectively.

The natural frequency equation of the frame model assumed shear deformation is written as follows,

| − ω2M + K| = 0

where ω is circular natural frequency, M is mass matrix and K is lateral stiffness matrix.
The observation equation should be expressed with nonlinear operator becouse the relation between the

natural frequencies and lateral stiffness given in the state vector becomes the nonlinear expression. The
extended observation equation can be written as follows,

Yk = mk(Zk) + vk

We expand the nonlinear observation equation in the neighbor hood of estimation. Negleoting the higher
terms of expansion we can obtain the following observation equation with the sensitivity matrix as result of
a linearization of the nonlinear obsavation equation,

Yk = MkZk + vk

where
Mk =

(
∂mk(Zk)

∂Zk

)
Zk=Ẑk/k−1

The filter equation can be written as follows,

Ẑk+1/k = Ẑk/k−1 + Bk(ωk − mk(Ẑk)k/k−1)

where
Bk = MT

k (MkMT
k + γQk)−1

where Bk is the parametric projection filter as filter gain. The parametric projection filter is including
the parameter γ to be regularized the filtering process. The procedure to obtain the adaptive parameter γ
in each filtering step is introduced in this inverse analysis.

The natable characteristics of present filtering algorithm in appling the inverse problem are made clear
through several numerical caluculations.
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Point-wise determination of the surface impedance from scattering data. I. The
acoustic case.

Gen Nakamura
Department of Mathematics, Hokkaido University, Japan
gnaka@math.sci.hokudai.ac.jp

Mourad Sini
Department of Mathematics, Yonsei University, Seoul, South Korea.
sini@yonsei.ac.kr

The propagation of time-harmonic acoustic fields in a homogeneous media is governed by the Helmholtz
equation

Δu + κ2u = 0 in R
3 \ D (1)

where κ is the real positive wave number. At the boundary of the scatterers the total field u satisfies the
impedance boundary condition

∂u

∂ν
+ iλu = 0 on ΓI (2)

with some continuous function λ and the Dirichlet condition

u = 0 on ΓD (3)

where ∂D = ΓI ∪ ΓD with ΓI and ΓD disjoint. We assume that λ(x) ≥ λ0 > 0 where λ0 is a constant.
Given an incident field ui which satisfies Δui + κ2ui = 0, we look for solutions u := ui + us of (1) and

(2) where the scattered field us is assumed to satisfy the Sommerfeld radiation condition

lim
r→∞ r(

∂us

∂r
− iκus) = 0, (4)

r = |x| and the limit is uniform with respect to all the directions θ := x
|x| . It is well known that this reflected

field satisfies the following asymptotic property,

us(x) =
eiκr

r
u∞(θ) + O(r−2), r → ∞, (5)

where the function u∞(·) defined on the unit sphere S is called the far-field associated to the incident field
ui. Taking particular incident fields given by the plane waves, ui(x, d) := eiκd·x, d ∈ S, we define the far-field
pattern u∞(θ, d) for (θ, d) ∈ S × S.

We prove a point-wise formula which gives explicitly the values of this surface impedance as a function
of the far field pattern. This formula enables us to distinguish and recognize the coated and the non coated
parts of the obstacle.
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A reconstruction scheme for identifying source locations in two dimensional heat
equations

Tomoya Takeuchi
Graduate school of Mathematical Sciences, The University of Tokyo, Japan
take@ms.u-tokyo.ac.jp

We considered the source location determination problem for a two dimensional heat equations with
unknown source locations. We propose a numerical reconstruction scheme for recovering the number of
unknown sources and all source locations.

8787



Can all measurable plane sets be reconstructed by two projections?

Takashi Takiguchi
Department of Mathematics, National Defense Academy of Japan, Japan
takashi@nda.ac.jp

We discuss reconstruction of measurable plane sets from their two projections. Let F ⊂ R
2 be a measur-

able plane set such that λ2(F ) < ∞, where λi is the Lebesgue measure on R
i, i = 1, 2. Denote by f(x, y)

the characteristic function of F . Let x(α) (resp. y(β)) axis be the x axis rotated by the angle α (resp. the y
axis rotated by the angle β).

For −π/2 < α, β < π/2 (α < π/2 + β), we define the projection functions as

f
(α,β)
1 (y′) :=

∫ ∞

−∞
f(−y′ sin β + t cos α, y′ cos β + t sin α)dt,

f
(α,β)
2 (x′) :=

∫ ∞

−∞
f(x′ cos α − t sin β, x′ sin α + t cos β)dt,

where x′ = (x′, α), y′ = (y′, π/2 + β) in the polar coordinate.

A number of studies are done on the problem to reconstruct F from the given pair of projections f
(0,0)
1 =:

f1 and f
(0,0)
2 =: f2, where f1 and f2 are non-negative and have the same L1 norm. It was proved by G.G.

Lorentz that the answer to this problem (for α = β = 0) splits into three cases; (i) F is uniquely reconstructed
(unique case), (ii) F is non-uniquely reconstructed (non-unique case) and (iii) There is no set having f1, f2

as projections (inconsistent case).
For the unique case, A. Kuba A. and A. Volčič gave a reconstruction formula.
L. Huang and the author studied stability in this reconstruction and gave an algorithm for approximation

of the reconstruction from projections possibly containing noise and error.

In this talk, we first discuss generalization of the known results for α = β = 0 in the frame of general α
and β. The main purpose in this talk is to study the following problem.

Problem
For any measurable plane set F , are there any angles α and β such that F is uniquely reconstructed from

the pair of projections f
(α,β)
1 and f

(α,β)
2 ?

We give an example to show that this problem is negatively solved.
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A note on the construction of the complex geometrical optics solutions for sec-
ond order elliptic equations

Hideki Takuwa
Department of Mathematics, Graduate School of Science, Osaka University, Japan
takuwa@gaia.math.wani.osaka-u.ac.jp

Let n (≥ 3) be an integer and Ω be a bounded domain in R
n with C∞ boundary ∂Ω. We set the second

order elliptic operator in Ω̃ (⊂ Ω) by L(x,Dx) =
∑n

j=1 D2
xj

+
∑n

j=1 bj(x)Dxj
+ q(x), where Dxj

= −i∂/∂xj ,
bj ∈ C∞(Ω̃; C) and q ∈ L∞(Ω̃; C).

The problem of this talk is to construct a non-local exact solution L(x,Dx)(eih−1g(x)a(x; h)) = 0 on Ω,
where g ∈ C∞(Ω̃; C) and h > 0 small enough. The solution u(x; h) = eih−1g(x)a(x; h) is called a complex
geometrical optics solution. This kind of solutions is used in the inverse problems. When bj(x) = 0, it is
known that the information of Dirichlet-Neumann map (DN map) gives the identification of the potentials.
In the case bj(x) = 0, Bukhgeim-Uhlmann showed some partial data of DN map implies the uniqueness of
the potential q(x). Recently Kenig-Sjöstrand-Uhlmann proposed the new approach for this problem.

The purpose of this talk is to review of the result by Kenig-Sjöstrand-Uhlmann in order to apply their
method to the case bj(x) �= 0. We shall prove the next result:
Proposition 1 Let s = 0, 1 and ϕ be a limiting Carleman weight for |Dx|2. For h > 0 small enough,
v ∈ Hs−1(Ω) , there exists u ∈ Hs(Ω) such that{

e−ϕ(x)/h(−h2L(x,Dx))(eϕ(x)/hu) = v,

h||u||Hs(Ω) ≤ ||v||Hs−1(Ω).

The function ϕ ∈ C∞(Ω̃; R) with ∇xϕ(x) �= 0 is a limiting Carleman weight for |Dx|2 if and only if

{a, b}(x, ξ) = 0, when a(x, ξ) = b(x, ξ) = 0,

where a(x, ξ) = |ξ|2 − |∇xϕ(x)|2 and b(x, ξ) = 2∇xϕ(x) · ξ. The key to prove Proposition 1 is to show
Carleman estimate.
Proposition 2

h(||eϕ(x)/hv|| + ||hDeϕ(x)/hv||) ≤ C||eϕ(x)/h(h2
n∑

j=1

D2
xj

+ h2
n∑

j=1

bj(x)Dxj )v||,

for v ∈ C∞
0 (Ω).

Kenig-Sjöstrand-Uhlmann showed this estimate for bj(x) = 0. We consider Proposition 2 from two points
of view. One is the expansion of the phase function. The other is a transformation that appears in L2 well
posedness for Schrödinger equation. By considering two viewpoints, we can obtain Proposition 2. The details
will be explained in the talk.

8989



Inverse spectral scattering on graphs

V. A. Marchenko
Mathematical Division, Institute for Low Temperature, Kharkov, Ukraine

K. Mochizuki
Mathematical Department, Chuo University, Tokyo, Japan

I. Trooshin
Mathematical Department, Chuo University, Tokyo, Japan
and
Institute for Problems of Precision Mechanics and Control, Saratov, Russia

We investigate an inverse spectral scattering problem on noncompact graphs, containing compact edges.
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Developed identification of coefficient inverse issue for 2D parabolic model by
boundary pointwise observation

Quan-Fang Wang
Department of Automation and Computer-Aided Engineering, The Chinese University of Hong Kong, HK
qfwang@acae.cuhk.edu.hk

Let Ω be an open set in R2 and Q = Ω × (0, T ), ∂Ω be the boundary of Ω. One interesting issue arising
in inverse problems described by parabolic partial differential equations of u(x, t),x = (x1, x2).{

ut − Δuxx + a(x)u = s(x, t), (x, t) ∈ Q,
ut(x, 0) + ku(x, 0) = u0(x), x ∈ ∂Ω.

(1)

Here in (1), a(x) > 0 is unknown coefficient and k is constant. s(x, t) = δ(t)δ(x−x0) is the source function.

Inverse Problems I: Given the boundary pointwise observation u(x, t) = δ(t)
m∑

j=1

δ(x−x′
j), x,x′

j ∈ ∂Ω

for source function s(x, t) to identify the unknown coefficient a(x) in Ω.
A developed global convergent algorithm is considered to solve the problems I. For experiment setting,

Ω is regarded as the rectangle, e.g. Ω = (0, l) × (0, l) and l is proper positive constant.

• Sequential minimization algorithm.

– Transformation. Using Laplace transformation to convert the equation (1) to boundary problem
of integrate equations without unknown a(x).

– Approximate. Constructing the approximate solutions using taylor expand formula for two aug-
ments, and assume that involving time functions is quadratic polynomial with undeterminate
parameter. For example, let us discrete the rectangle as 0 ≤ x1

1 < x2
1 <, ..., < xn−1

1 < xn
1 ≤ 1,

0 ≤ x1
2 < x2

2 <, ..., < xn−1
2 < xn

2 ≤ 1, and let i, j be the nodes number of sub-rectangle, then
approximate solution p(x1, x2, s) ≈ pij(x1, x2, s) at ij-element is approached by

pij(x1, x2, s) = ai(s)
(x1 − xi−1

1 )2

2
+ bj(s)

(x2 − xj−1
2 )2

2
+ cij(s)(x1 − xi−1

1 )(x2 − xj−1
2 )

+p′(xi−1
1 , xj−1

2 , s)(x − xi−1
1 ) + p′(xi−1

1 , xj−1
2 , s)(x − xj−1

2 ) + pij(xi−1
1 , xj−1

2 , s).(2)

Here in (2), the ai(s), bj(s), cij(s) are assumed as ai(t) = αis
2 +s, bj(t) = βjs

2 +s, cij = γijs
2 +s

for αi, βj , γij ∈ R1.
– Numerical solution. Considering extrapolated boundary condition, implement the iteration of

quadratic polynomial pij on each discrete sub-rectangle to minimize the approximate cost function
given by Carleman’s weighted functions.

• Inversion. Calculating unknown coefficients without calculating the approximate solutions.

• Numerical demonstration. Unknown coefficient a(x) is identified for various observation in Fig. 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 1. Contour plot of a(x)

It’s hope that the new conclusions will be a development for global convergent algorithm to coefficient
inverse problems in two dimensional case.
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On mixed and componentwise condition numbers for Moore-Penrose inverse and
linear least squares problems with applications to Tikhonov regularization

Felipe Cucker
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Yimin Wei
School of Mathematical Sciences, Fudan University, Shanghai, 200433, P.R. China
& Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University), Ministry of Education.
ymwei@fudan.edu.cn

Classical condition numbers are normwise: they measure the size of both input perturbation and output
using some norms. To take into account the relative of each data component, and, in particular, a possible
data sparseness, componentwise condition numbers have been increasingly considered. These are mostly of
two kinds: mixed and componentwise.

In this talk, we give explicit expressions, computable from the data, for the mixed and componentwise
condition numbers for the computation of the Moore-Penrose inverse as well as for the computation of
solutions and residues of linear least squares problems. In both case the data matrices have full column
(row) rank.

We will apply our new results to the Tikhonov regularization problem, which will improve the known
results by several authors.
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Inverse problems for n-dimensional Vibrating System

Tomohiro Yamazaki
Graduate School of Mathematical Science, University of Tokyo, Japan
nn36041@ms.u-tokyo.ac.jp

We consider the following ordinary differential operator AP,hk,Hk
:⎧⎨⎩

AP : {L2(0, 1)}2n → {L2(0, 1)}2n

(AP u)(x) = B2n
du
dx (x) + P (x)u(x) (0 ≤ x ≤ 1)

D(AP ) =
{
u ∈ {H1(0, 1)}2n | ul+2(0) = hlul(0), ul+2(1) = Hlul(1) (l = 1, 2, · · · , n)

}
Here B2n :=

(
En O
O En

)
and En is n × n-identity matrix, and

P (x) :=

⎛⎜⎜⎜⎝
p1,1(x) p1,2(x) . . . p1,2n(x)
p2,1(x) p2,2(x) . . . p2,2n(x)

...
...

. . .
...

p2n,1(x) p2n,2(x) . . . p2n,2n(x)

⎞⎟⎟⎟⎠
where pk,l(x) (k, l = 1, 2, · · · , 2n) are real-valued C1-functions defined on [0, 1]. hl,Hl (l = 1, 2, · · · , n) are
real values satisfying |hl| �= 1, |Hl| �= 1.

Now we consider the following mixed problem:

E(P, a)

⎧⎪⎪⎨⎪⎪⎩
∂u
∂t (t, x) = B2n

∂u
∂x (t, x) + P (x)u(t, x) − T ≤ t ≤ T, 0 ≤ x ≤ 1

un+l(t, 0) = hlul(t, 0) 1 ≤ l ≤ n, − T ≤ t ≤ T
un+l(t, 1) = Hlul(t, 1) 1 ≤ l ≤ n, − T ≤ t ≤ T
u(0, x) = a(x)

This system describes proper vibrations for various phenomena such as an electric oscillation in n transmission
lines. For the case of the electric oscillation, u(x) means the electric current and the voltage, and P (x) means
the characteristic of the transmission lines.

I talk about the uniqueness for the following inverse problem:

”Determine a coefficient matrix P (x) and an initial value a(x) from the boundary values u(t, 0), u(t, 1).”

For the case of n = 1, there are results by M. Yamamoto and I. Trooshin. Here, I talk about the case
of n = 2 for simplicity. In that case, the analysis is more complicated than for the case of n = 1. For the
case of n ≥ 3, we can apply the similar methods and obtain the similar results to the results for the case of
n = 2.

We introduce the following set:

MT (P, a) :=
{
(Q, b) ∈ {C1[0, 1]}20 | v(t, 0) = u(t, 0), v(t, 1) = u(t, 1) (t ∈ [−T, T ])

}
where u, v are the solutions to E(P, a), E(Q, b). It is obvious that (P, a) ∈ MT (P, a). If we had MT (P, a) =
{(P, a)}, then the boundary values determine P and a uniquely. Therefore, for the discussion of uniqueness
or non-uniqueness in our inverse problem, it is sufficient to determine the set MT (P, a).

I talk about the necessary and sufficient condition for (Q, b) ∈ MT (P, a). Here, we apply the spectral
property of the operator AP,hk,Hk

.
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A solution method for positive linear inverse problems and
its application to trip distribution with inconsistent data

Kiyoshi Yoneda
Department of Industrial Economics, Fukuoka University, Japan
yoneda@econ.fukuoka-u.ac.jp

This talk presents a method for solving positive linear inverse problems

Xθ ≈ y X : matrix of nonnegative elements θ, y : positive vectors, θ unknown

together with its application to trip distribution. The method is a positive parallel to the method of least
squares such that guarantees the unique existence of positive solution, permits a quadratically convergent
iteration, enables control of the solution stability, and provides a statistical interpretation of the results.

Assume that the first dim θ elements of y represent guesses for the elements of θ. Then the upper part of
X is an identity matrix; it secures that the system of equations is overdetermined. Weights w are introduced
in order to reflect that elements of y may have different accuracies. If y = Xθ + ε is solved by the method
of weighted least squares θ̂ := arg minθ

∑
i wiJi(θ), Ji(θ) := (yi −Xi ·θ)

2 = ε2
i , where Xi · is the i-th row of

X, the solution may well include negative values even if the above nonnegativity and positivity conditions
for X and y hold.

The proposed method assumes the errors ξi to be multiplicative rather than additive and replaces the
least squares by the least rectangles:

yi = ξi Xi ·θ Xi · : i-th row of X Ji(θ) :=
yi −Xi ·θ

Xi ·θ
log

yi

Xi ·θ
= (ξi − 1) log ξi .

While the least squares minimizes the sum of square areas with the sides εi, the least semilogs minimizes
the sum of ξi−1 by log ξi rectangle areas, as illustrated in Figure (a). A variable transformation renders the

                     

− 
  

− 
  

  
 

  
 

  
 

  
 

  
  

 

(a) A rectangle to minimize
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(b) Loss functions
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(c) Probability distributions

optimization unconstrained as the dashed line in Figure (b). The problem permits a Newton type algorithm
which converges quadratically. The gradient and the Hessian have simple closed forms. The method enjoys a
straightforward statistical interpretation as a maximum likelihood estimation of the probability distributions
in Figure (c), solid and dashed lines corresponding to those in Figure (b).

The method is applied to trip distribution. The basic problem is to fill in the entries of a matrix, called
origin-destination (OD) table, given its row sums and column sums. This amounts to solving a consistent
but underdetermined system of linear equations {∑j θi j = yi·,

∑
i θi j = y·j}. The standard method of trip

distribution involves picking a plausible solution based on a principle such as entropy maximization. When
the data are inconsistent, e.g.

∑
i yi· 
=

∑
j y·j it has been customary to use some ad hoc convention such as

adjusting the row and the column sums so that both add up to the same amount. Application of the method
of least rectangles permits to abolish such conventions facilitating automatic data acquisition.
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Inverse problems of determination of principal parts for a parabolic equation

Ganghua Yuan
Graduate School of Mathematical Sciences, The University of Tokyo, Japan
ghyuan@ms.u-tokyo.ac.jp

Masahiro Yamamoto
Graduate School of Mathematical Sciences, The University of Tokyo, Japan
myama@ms.u-tokyo.ac.jp

We consider an initial/boundary value problem for a parabolic equation:⎧⎪⎪⎨⎪⎪⎩
∂ty(t, x) −

n∑
i,j=1

∂j(aij(x)∂iy(t, x)) + c(x)y(t, x) = h(t, x), (t, x) ∈ Q ≡ (0, T ) × Ω,

y(t, x) = 0, (t, x) ∈ Σ ≡ (0, T ) × ∂Ω,
y(0, x) = 0, x ∈ Ω.

(1)

Here Ω ⊂ R
n is a bounded domain whose boundary ∂Ω is of C2. The input h ∈ C∞

0 ((0, T ) × ω), ω is an
arbitrarily fixed sub-domain of Ω.

We assume that c ∈ C6(Ω), c > 0 on Ω and

aij ∈ C6(Ω), aij = aji, 1 ≤ i, j ≤ n,

and that the coefficients {aij} ≡ {aij}1≤i,j≤n satisfy the uniform ellipticity: there exists a constant r > 0
such that

n∑
i,j=1

aij(x)ζiζj ≥ r|ζ|2, ∀ζ ∈ R
n, x ∈ Ω.

We consider the following inverse problems:

(1). Determine aij , 1 ≤ i, j ≤ n, globally.

Inverse problem I. Let Γ0 �= ∅ be an arbitrary fixed relative open subset of ∂Ω. Determine aij(x),
x ∈ Ω, 1 ≤ i, j ≤ n by boundary measurements on (0, T ) × Γ0 of solution y to (1) and measurements on Ω
of y at a fixed time θ ∈ (0, T ).

(2). Determine aij , 1 ≤ i, j ≤ n, locally.

Let S ⊂ ∂Ω be a fixed relative open subset of ∂Ω, Ω0 be a subdomain of Ω satisfying ∂Ω0 ⊃ S.

Inverse problem II. Determine aij(x), x ∈ Ω0, 1 ≤ i, j ≤ n by boundary measurements on (0, T ) × S
of solution y to (1) and measurements in Ω0 of y at a fixed time θ ∈ (0, T ).

Our main results:

(1). We obtain uniqueness and Lipschitz stability for Inverse problem I.

(2). We obtain uniqueness and Hölder stability for Inverse problem II.
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Submissive Quantum Mechanics: New Status of the Theory in Inverse Problem
Approach

Boris Zakhariev
Joint Institute for Nuclear Research,Laboratory of theoretical Physics, Dubna, Russia
zakharev@thsun1.jinr.ru

In recent years we have achieved a breakthrough in quantum mechanics and deepening its formalism due to
new approach: using inverse problem theory and super-symmetry with computer visualization without which
the contemporary graduation even from the best universities of the world is still quantum-defective. Our last
achievement is radical improvement of the theory of waves in periodic structures (it opens the ”black box”
of classical Bloch-Floquet theory). Its generalization to multi-channel formalism gives us complete sets of
exactly solvable models taking into account internal excitations. This enriches our quantum intuition (making
possible even qualitative solutions ’in mind’. We have recently published our new book with the same title
in Russian and put also its English version ( still draft) into Internet: http://thsun1.jinr.ru/ zakharev/ ( free
access). (Springer Verlag referee Reshetikhin, prof. from Chicago, estimated this book as ”very good”). The
new theory reveals the elementary and universal constituents (”bricks” and building blocks) for construction
(at least theoretically) of quantum systems with the given properties as with a ”children toy constructor
set”. This means the most perfect degree of understanding of the subject. The fundamental depth of the
discovered algorithms (complete sets of exact models) is combined with the extremely clear presentation. I
have also published books ”Lessons in Quantum Intuition”; ”New ABC of Quantum Mechanics (in pictures)”
and a big article in Physical Encyclopedia v.4. Millions of physicists, have studied quantum mechanics but
have no notion about inverse problem and SUSY achievements with notion of the elementary and universal
constituents (”bricks” and building blocks) for exact and qualitatively clear spectral, decay and scattering
control. Quantum mechanics was as a Moon visible only from one side (direct problem). Now it is possible
to get much more deep notion about this science using inverse methods.
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