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Abstract. Let H(D) be an algebra of all holomorphic functions on the open
unit disc D and X a subspace of H(D). When g is a function in H(D), put

Jg(f)(z) =
∫ z

0
f(ζ)g′(ζ)dζ and Ig(f)(z) =

∫ z

0
f ′(ζ)g(ζ)dζ (z ∈ D)

for f in X. In this paper, we study J [X] = {g ∈ H(D) ; Jg(f) ∈ X for all f in X} and
I[X] = {g ∈ H(D) ; Ig(f) ∈ X for all f in X}. We apply the results to concrete spaces.
For example, we study J [X] and I[X] when X is a weighted Bloch space, a Hardy space
or a Privalov space.

§1. Introduction

Let D denote the open unit disc in the complex plane 6C and H = H(D) the set
of all holomorphic functions on D. For a given g in H, define three operators :

(Mgf)(z) = g(z)f(z) (f ∈ H, z ∈ D)

(Jgf)(z) =
∫ z

0
f(ζ)g′(ζ)dζ (f ∈ H, z ∈ D)

and
(Igf)(z) =

∫ z

0
f ′(ζ)g(ζ)dζ (f ∈ H, z ∈ D).

Then (Jgf)(z) + (Igf)(z) = (Mgf)(z) − g(0)f(0). If g(z) = z then Jg is the
Voltera integral operator and if g(z) = log 1/(1− z) then Jg is the Cesáro operator.

In this paper we assume that X is a subspace of H which contains constants. X1

denotes the set {f ∈ H ; f ′ ∈ X}. For each subspace X put

M [X] = {g ∈ H ; Mg(X) ⊆ X},
J [X] = {g ∈ H ; Jg(X) ⊆ X}

and
I[X] = {g ∈ H ; Ig(X) ⊆ X}.

We define that Jn+1[X] = J [Jn[X]] and In+1[X] = I[In[X]] for n ≥ 1 where J1[X] = J [X]
and I1[X] = I[X]. For X and Y which are subspaces of H, XY denotes a subspace of H
which is generated by a product of a function in X and one in Y . Let Y n be a subspace
of H which is generated by finite n products of functions in a subspace Y of H. For a
subspace X of H, B(X) denotes the set of all bounded linear operators on X.

Now we give a lot of examples of X. For 0 < p ≤ ∞, Hp is the usual Hardy space
on D, N is the Nevalinna class and N+ is the Smirnov class on D. These are F-spaces,
and N and N+ are algebras. It is known that J [Hp] = BMOA (see [2], [1]), z /∈ J [N ] [5]
and z /∈ J [N+] [7]. The Bloch space B is defined to be a Banach space in H with the
norm

‖f‖ = sup
z∈D

(1− |z|2)|f ′(z)|+ |f(0)|.
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Then B contains H∞ properly. Recently, R.Yoneda [8] described J [B] and he [9] also
proved that I[B] = H∞. It is well known that M [Hp] = H∞.

In Section 2, we assume only that X is a subspace of H. Theorem 1 implies that
J [X]n ⊂ X for any n ≥ 1. In Section 3, we study J [X] and I[X] when X is an invariant
subspace of H or a subalgebra of H. Theorem 2 implies that if H∞X ⊂ X and J [X]
contains z then J [X] ⊇ H∞

1 . In Section 4, assuming that X is a F-space we show that
J [X] is contained in some weighted Bloch space and I[X] ⊂ H∞. In Section 5, we define

a weighted Bloch space Bω and we describe J [Bω]. In Section 6, we study J

⋂
t<p

H t

 and

I

⋂
t<p

H t

. In Section 7, we show that J [Np] is a subalgebra of Np which contains Np
1 ,

where Np is a Privalov space.

§2. Subspace

In this section, we study M [X], J [X] and I[X] assuming only that X is a subspace
of H.

Lemma 1. Let X be a subspace of H and f, g in H.
(1) IgIf = Igf = IfIg on X
(2) IgJf = JfMg on X
Proof. (1) For k ∈ X,

((IgIf )k)(z) =
∫ z

0
(Ifk)′(ζ)g(ζ)dζ =

∫ z

0
k′(ζ)f(ζ)g(ζ)dζ = (Ifgk)(z)

(2) For k ∈ X,

((IgJf )k)(z) =
∫ z

0
(Jfk)′(ζ)g(ζ)dζ =

∫ z

0
k(ζ)f ′(ζ)g(ζ)dζ

= (Jf (gk)(z) = ((JfMg)k)(z).

Theorem 1. Let X be a subspace of H with constants. Then J [X] is a subspace
of X with constants and J [X]n ⊂ X.

Proof. If g ∈ J [X] then Jg(1) = g − g(0) ∈ X and so g ∈ X because 1 ∈ X.
Hence J [X] is a subspace of X with constants.

Assuming J [X]n ⊂ X, we will show that J [X]n+1 ⊂ X. Suppose that g ∈ J [X]

and {gj}n
j=1 ⊂ J [X]. In order to prove that g

n∏
j=1

gj belongs to X, we will use the following
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equalities.

∫ z

0
g(ζ)

 n∏
j=1

gj

′

(ζ)dζ

= g(z)

 n∏
j=1

gj

 (z)− g(0)

 n∏
j=1

gj

 (0)−
∫ z

0
g′(ζ)

 n∏
j=1

gj

 (ζ)dζ

and ∫ z

0
g(ζ)

 n∏
j=1

gj

′

(ζ)dζ =
n∑

`=1

∫ z

0
(g(ζ)

∏
j 6=`

gj(ζ))g′`(ζ)dζ.

By hypothesis on induction,
n∏

j=1

gj ∈ X and so
∫ z

0
g′(ζ)

 n∏
j=1

gj

 (ζ)dζ ∈ X because g ∈

J [X]. By hypothesis on induction, for ` = 1, · · · , n g
∏
j 6=`

gj ∈ X and so
∫ z

0
(g(ζ)

∏
j 6=`

gj(ζ))g′`(ζ)dζ ∈

X because g` ∈ J [X]. By the above two equalities, g
n∏

j=1

gj belongs to X. This implies

that J [X]n+1 ⊂ X.

Proposition 1. Let X be a subspace of H with constants. Then I[X] is a
subalgebra of H.

Proof. If k ∈ I[X] and g ∈ I[X] then it is easy to see that IkIg = Ikg (see
Proposition 3). Hence IkIg(X) = Ik(Ig(X)) ⊆ Ik(X) ⊆ X and so kg belongs to I[X]. It
is clear that I[X] is a subspace of H.

Proposition 2. Suppose X is a subspace of H with constants.
(1) M [X] is an algebra in X.
(2) J [X] ∩M [X] = I[X] ∩M [X].
(3) J [X] ∩ I[X] ⊆ M [X].
(4) J [X] ⊂ M [X] if and only if J [X] ⊂ I[X]. Similarly I[X] ⊂ M [X] if and only

if I[X] ⊂ J [X].
Proof. (1) is clear. (2) and (3) follow from the equality : Jgf + Igf = Mgf −

g(0)f(0). (4) If J [X] ⊂ M [X] then by (2) J [X] ⊂ I[X]. Conversely if J [X] ⊂ I[X] then
by (3) J [X] ⊂ M [X].

§3. Invariant subspace and subalgebra

In this section, we study J [X] and I[X] when X is an invariant subspace or a
subalgebra of H.
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Theorem 2. Suppose that X is a subspace of H with constants and kX ⊂ X for
any k in H∞.

(1) If g0 is an arbitrary function in J [X], then J [X] contains {g ∈ H ; |g′(z)| ≤
|g′0(z)|(z ∈ D)}.

(2) If J [X] contains z then it contains H∞
1 .

(3) Suppose J [X] contains z. If {gn} is in J [X] and g′n → g′ uniformly on D
then g belongs to J [X].

(4) zJ [X] ⊂ J [X] if and only if Jz(J [X]X) ⊂ X.
(5) J [X] ∩H∞ ⊂ I[X] and hence I[X] contains H∞

1 if z ∈ J [X].
Proof. (1) If g ∈ H and |g′(ζ)| ≤ |g′0(ζ)|(ζ ∈ D), then g′(g′0)

−1 ∈ H∞ and so
fg′(g′0)

−1 ∈ X for any f ∈ X. Hence for any f ∈ X∫ z

0
f(ζ)g′(ζ)dζ =

∫ z

0
f(ζ)g′(ζ)g′0(ζ)−1g′0(ζ)dζ

belongs to X because fg′(g′0)
−1 ∈ X and g0 ∈ J [X]. This implies that g belongs to J [X].

(2) Since z ∈ J [X], by (1) and the definition of H∞
1 , H∞

1 is contained in J [X].
(3) If g′n → g′ uniformly on D, then (g − gn)′ ∈ H∞. Hence f(g − gn)′ ∈ X for

any f ∈ X. Therefore g belongs to J [X] because z ∈ J [X] and∫ z

0
f(ζ)g′(ζ)dζ =

∫ z

0
f(ζ)(g(ζ)− gn(ζ))′dζ +

∫ z

0
f(ζ)g′n(ζ)dζ.

(4) follows trivially from the following equality :∫ z

0
f(ζ)(ζg(ζ))′dζ =

∫ z

0
f(ζ)g(ζ)dζ +

∫ z

0
f(ζ)ζg′(ζ)dζ

for f ∈ X and g ∈ J [X].
(5) By the equality : Ig(f) = fg− (fg)(0)− Jg(f), if g ∈ J [X]∩H∞ and f ∈ X

then Ig(f) belongs to X because gX ⊂ X.

Proposition 3. If X is a subalgebra of H which contains constants then M [X] =
X, J [X] is also a subalgebra of X and J [X] = I[X] ∩X.

Proof. M [X] = X is clear. If both g and h are in J [X], then by Theorem 1 both
fh and fg belongs to X for any f ∈ X because X is an algebra. Hence gh belongs to
J [X] by the following equality : Jgh(f) = Jg(fh) + Jh(fg) for any f ∈ X. This implies
that J [X] is a subalgebra of X by Theorem 1. From (2) of Proposition 2 J [X] = I[X]∩X
follows.

§4. F-space

Let X be an F-space in H with an invariant metric d. For each a in D, put for
f in X

Eaf = f(a) and Daf = f ′(a).
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In this section we assume that both Ea and Da are bounded on X. Put

S(a) = sup{|Ea(f)| ; f ∈ X, d(f, 0) ≤ 1}

and
s(a) = sup{|Da(f)| ; f ∈ X, d(f, 0) ≤ 1},

then S(a) < ∞ and s(a) < ∞ if a ∈ D. Suppose v is a nonnegative function on D. For a
function f in H put

‖f‖ω = sup
z∈D

ω(z)|f ′(z)|+ |f(0)|

and
Bω = {f ∈ H ; ‖f‖ω < ∞}.

If ω is bounded, Bω contains all holomorphic functions on the closed unit disc D̄.

Proposition 4. If X is an F-space such that S(a) < ∞ and s(a) < ∞ for each
a ∈ D, then M [X], J [X] and I[X] belongs to B[X].

Proof. We will prove only that J [X] ⊂ B[X] because the other statements are
similar. By the closed graph theorem, it is enough to prove that for φ ∈ J [X] if fn → f
in X and Jφ(fn) → F then Jφ(f) = F . Since S(a) < ∞, fn(a) → f(a) (a ∈ D). Since
s(a) < ∞, fn(a)φ′(a) → F ′(a) (a ∈ D). Thus f(a)φ′(a) = F ′(a) and so Jφ(f) = F
because F (0) = 0.

Theorem 3. Let X be an F-space in H with an invariant metric d. Suppose that
sup

|a|≤1−ε
S(a) < ∞ for any ε > 0. Then J [X] ⊂ Bω0 ∩X and I[X] ⊂ H∞, where ω0 = 1/sS.

Proof. If g ∈ J [X] then by Proposition 4, for any f ∈ X d(Jgf, 0) ≤ ‖Jg‖d(f, 0).
Since Jgf ∈ X, by definition of Dz |Dz(Jgf)| ≤ s(z)d(Jgf, 0)(z ∈ D). Hence

s(z)−1|f(z)||g′(z)| ≤ ‖Jg‖d(f, 0) (z ∈ D)

and so
s−1(z)S−1(z)|g′(z)| ≤ ‖Jg‖ (z ∈ D).

By Theorem 1 g belongs to Bω0 ∩X where ω0 = 1/sS. If g ∈ I[X] then by Proposition
4, for any f ∈ X d(Igf, 0) ≤ ‖Ig‖d(f, 0). Since Igf ∈ X, by definition of Dz |Dz(Igf)| ≤
s(z)d(Igf, 0) (z ∈ D). Hence

s(z)−1|f ′(z)||g(z)| ≤ ‖Ig‖d(f, 0) (z ∈ D)

and so
|g(z)| ≤ ‖Ig‖ (z ∈ D).

Proposition 5. Let X be a subspace of H with constants which is of finite
dimension. Then J [X] = I[X] = M [X] = 6C.
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Proof. Suppose {fj}n
j=1 is a basis in X with f1 ≡ 1. We will show that J [X] = 6C.

If g ∈ J [X] then by Theorem 1 g` ∈ X for any ` ≥ 0 and so there exist {α`
j}n

1 ⊂ 6C such

that g` =
n∑

j=1

α`
jfj. Hence there exist {b`}n

`=0 ⊂ 6C such that
n∑

`=0

b`g
` = 0. This implies

that g is just constant because g is analytic. Therefore J [X] = 6C. We will show that
I[X] = 6C. Put X1 = {f ′ ; f ∈ X}. If g ∈ I[X] then by Proposition 1 g`X1 ⊂ X1 for

any ` ≥ 1 and so there exist {α`
j}n

1 ⊂ 6C such that g`f ′2 =
n∑

j=2

α`
jf

′
j. By the same argument

above gf ′2 is constant. Similary it follows that {gf ′j}n
2 are constants and so g is constant

because {f ′j}n
` is a basis in X1. Therefore I[X] = 6C.

§5. Weighted Bloch space

Let ω be a positive bounded function on D. For a function f in H put

‖f‖ω = sup
z∈D

ω(z)|f ′(z)|+ |f(0)|

and
Bω = {f ∈ H ; ‖f‖ω < ∞}.

Since ω is bounded, Bω contains all holomorphic functions on the closed unit disc D̄. Bω is
called a weighted Bloch space. A weight ω is called measurable when ω(at) is measurable
on [0,1] for each a in D. Put ε(r) = inf{ω(z) ; |z| ≤ r} and r < 1.

Lemma 2. If ε(r) > 0 for 0 ≤ r < 1 then Bω is a Banach space with norm ‖ · ‖ω.
Proof. Suppose that {fn} is a Cauchy sequence in Bω. For any ε > 0, there

exist a positive integer n0 such that ‖fn − fm‖ω < ε if n, m ≥ n0. Hence if r < 1 and
z ∈ Dr = {z ; |z| < r} then

|f ′n(z)− f ′m(z)| ≤ ε

ω(z)
≤ ε

ε(r)
.

By the normal family argument, there exists a function f ′ ∈ H(Dr) such that f ′n → f ′

uniformly on Dr. Hence as n →∞,

|f ′(z)− f ′m(z)| ≤ ε

ω(z)
≤ ε

ε(r)
(z ∈ Dr).

Since r is arbitrary, f belongs to H(D) and

ω(z)|f ′(z)− f ′m(z)| ≤ ε (z ∈ D)

if m ≥ n0. Since fm(0) → f(0), ‖f − fm‖ω → 0.
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Theorem 4. Let ω be a measurable, ε(r) > 0 for 0 ≤ r < 1 and X = Bω. Then

BωS = J [Bω] and I[Bω] ⊂ H∞

where S(z) = sup{| f(z) | ; f ∈ Bω, ‖ f ‖ω≤ 1}. Moreover ‖ Jg ‖=‖ g ‖ωS for each g
in J [Bω] with g(0) = 0.

Proof. By Theorem 1, J [Bω] ⊆ Bω. If g ∈ J [Bω] then ‖Jgf‖ω ≤ ‖Jg‖‖f‖ω (f ∈
Bω) and so ω(z) | f(z) | · | g′(z) |≤‖ Jg ‖ · ‖ f ‖ω. Hence

ω(z)S(z) | g′(z) | · | f(z) |
S(z)

≤‖ Jg ‖ · ‖ f ‖ω

and so
ω(z)S(z) | g′(z) |≤‖ Jg ‖ .

Therefore g belongs to BωS and ‖ g ‖ωS≤‖ Jg ‖ + | g(0) |. Thus J [Bω] ⊆ BωS. Note that
BωS ⊆ Bω because S(z) ≥ 1 (z ∈ D). Conversely if g ∈ BωS then

ω(z)|Jg(f)′(z)| = ω(z)S(z) | g′(z) | | f(z) |
S(z)

≤‖ g ‖ωS‖ f ‖ω

and so g belongs to J [Bω]. Thus

‖ g ‖ωS≤‖ Jg ‖ + | g(0) |≤‖ g ‖ωS + | g(0) | .

In Theorem 4, if ω is an absolute value of some analytic function and a radial
function, R.Yoneda ([8],[9]) showed those under some special technical conditions on ω.

§6. Hardy space

For 0 < p ≤ ∞, Hp− denotes
⋂
t<p

H t and H∞− is written as Hω. For 0 < p < ∞,

when W =| h |p for an outer function h in Hp, Hp(W ) denotes a weighted Hardy space
that is, the closure of H∞ in Lp(Wdθ/2π).

Lemma 3 is well known (cf. [3, Theorem 5.12]). In Proposition 6 it is known
([1],[2]) that J [Hp] = BMOA. Hence our result is weaker than that. However if J [Hp] =
BMOA then our result shows that I[Hp] = H∞.

Lemma 3. (1) For 0 < p < 1, if f is a function in Hp then
∫ z

0
f(ζ)dζ beongs to

Hp/1−p. (2) If f is a function in H1 then
∫ z

0
f(ζ)dζ belongs to H∞.

Proposition 6. For 0 < p < ∞, H∞
1 ⊂ J [Hp] ⊂ Hω and zJ [Hp] ⊂ J [Hp].

Moreover M [Hp] = H∞ and I[Hp] = J [Hp] ∩H∞.
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Proof. By Lemma 3, z ∈ J [Hp] and so by (2) of Theorem 2 H∞
1 ⊂ J [Hp].

Theorem 1 implies that J [Hp] ⊂ Hω. By (5) of Theorem 2, J [Hp] ∩ H∞ ⊂ I[Hp].
Theorem 3 implies that I[Hp] ⊂ H∞. Hence I[Hp] Hp ⊂ Hp and so (4) of Proposition
2 I[Hp] ⊂ J [Hp]. It is well known that M [Hp] = H∞. By (2) of Proposition 2 I[Hp] =
J [Hp] ∩H∞. By (4) of Theorem 2, to prove that zJ [Hp] ⊂ J [Hp] it is sufficient to show
that Jz(J [Hp]Hp) ⊂ Hp. Since J [Hp]Hp ⊂ Hp−, by Lemma 2, Jz(J [Hp]Hp) ⊂ Hp.

Theorem 5. For 0 < p < ∞,
⋂
t<1

H t ⊂ J [Hp−] ⊂ Hω and so log(1−z)−1 belongs to

J [Hp−]. Morover zJ [Hp−] ⊂ J [Hp−], M [Hp−] = H∞ and so J [Hp−]∩H∞ = I[Hp−]∩H∞.
When p = ∞, J [Hω] = I[Hω]∩Hω and J [Hω] is a subalgebra of Hω which contains H∞

1 .
Proof. By Theorem 1, J [Hp−] ⊂ Hω. We will show that

⋂
t<1

H t
1 ⊂ J [Hp−]. If

g ∈
⋂
t<1

H t
1 then g′ belongs to H1−. If f ∈ Hp− then f belongs to H t for any 0 < t < p. If

0 < s < t/(t + 1) then t/s > 1 and 1/(t/s) + 1/(t/t− s) = 1. By the Hőlder inequality,∫ 2π

0
| f(eiθ)g′(eiθ) |s dθ/2π

≤
(∫ 2π

0
| f(eiθ) |t dθ/2π

) s
t
(∫ 2π

0
| g′(eiθ) |

st
t−s dθ/2π

) s−t
t

and so fg′ belongs to
⋂

s<t/(t+1)

Hs. By Lemma 3,
∫ z

0
f(ζ)g′(ζ)dζ belongs to H

s
1−s . As s →

t/(t + 1), s/(1− s) → t and so
∫ z

0
f(ζ)g′(ζ)dζ belongs to H t−. As t → p,

∫ z

0
f(ζ)g′(ζ)dζ

belongs to Hp−. Thus Jg[H
p−] ⊆ Hp− and so

⋂
t<1

H t
1 ⊂ J [Hp−]. By (4) of Theorem

2, if we show that Jz(J [Hp−]Hp−) ⊂ Hp− then it follows that zJ [Hp−] ⊂ J [Hp−]. Since
J [Hp−]Hp− ⊂ Hp−, by Lemma 4 Jz(J [Hp−]Hp−) ⊂ Hp−. It is known that M [Hp−] = H∞.
The last statement is a result of (2) of Proposition 2.

When p = ∞, by Proposition 3 J [Hω] = I[Hω] ∩Hω and J [Hω] is a subalgebra
of Hω. Theorem 2 implies J [Hω] ⊃ H∞

1 .

Theorem 6. Let 1 ≤ p < ∞ and W =| h |p for some outer function h in Hp.

Then {g ∈ H; g(z) =
∫ z

0
h(ζ)k(ζ)dζ and k ∈ H

p
p−1} ⊂ J [Hp(W )] ⊂ Hω(W ). M [Hp(W )] =

H∞ and J [Hp(W )] ∩ H∞ = I[Hp(W )]. There exists a weight W such that z does not
belong to J [Hp(W )].

Proof. If g(z) =
∫ z

0
h(ζ)k(ζ)dζ and k ∈ H

p
p−1 , then

h(z){Jg(h
−1f)}(z) = h(z)

∫ z

0
f(ζ)k(ζ)dζ

and so hJgh
−1f belongs to Hp for all f ∈ Hp by Lemma 3 because fk ∈ H1. Therefore

{g ∈ H; g(z) =
∫ z

0
h(ζ)k(ζ)dζ and k ∈ H

p
p−1} ⊂ J [Hp(W )]. By Theorem 1, J [Hp(W )] ⊂

9



⋂
p<∞

Hp(W ). In fact, since gnh ∈ Hp for any n ≥ 1, gh1/n ∈ Hnp and so g belongs to

Hnp(W ). If φ ∈ M(Hp(W )) then φ(h−1Hp) ⊂ h−1Hp and so φHp ⊂ Hp. Hence φ ∈
M(Hp) = H∞. Therefore M(Hp(W )) = H∞ and so by (2) of Proposition 2 J [Hp(W )] ∩
H∞ = I[Hp(W )] ∩H∞. For a ∈ D it is easy to see that

sup{| f(a) | ; f ∈ Hp(W ) and ‖f‖W,p ≤ 1} = (1− | a |2)−1/p | h(a) |−p< ∞

and so by Theorem 3 I[Hp(W )] ⊂ H∞. Thus J [Hp(W )]∩H∞ = I[Hp(W )]. If Jz(H
p(W )) ⊆

Hp(W ) for any W with log W ∈ L1(dθ/2π) then Jz(N+) ⊆ N+. For by a theorem of
H.Helson [6] N+ is the union of all Hp(W ) as W ranges over the set of weights with
sumable log W . Hence there exists a weight W such that z /∈ J [Hp(W ))]. Because it is
known that Jz(N+) 6⊂ N+ [7].

§7. Privalov space

We denote by Np, for 1 ≤ p < ∞, the set of all functions f in H which satisfy

sup
0<r<1

∫ 2π

0
(log+ | f(reiθ) |)pdθ < ∞.

When p = 1, Np is just N . Then⋃
p>0

Hp ⊂
⋂
p>1

Np and
⋃
p>1

Np ⊂ N+ ⊂ N1 = N.

Proposition 7. Let X = N+ or N . Then J [X] is a subalgebra of X and
J [X] = I[X] ∩X. If (f ′)−1 is in H∞ then f does not belong to J [X].

Proof. It is known that N+ and N are subalgebras of H. Hence the first part of
this proposition is a result of Theorem 1 and Proposition 3. By [5] and [7], z /∈ J [X] and
so the second part follows from (1) of Theorem 2.

In Proposition 7, it is known ([5],[7]) that z /∈ J [X]. Hence I[X] 63 z. We don’t
know whether J [X] = 6C and I[X] = 6C.

Theorem 7. If 1 < p < ∞ then J [Np] is a subalgebra of Np which contains Np
1 ,

and J [Np] = I[Np] ∩Np.
Proof. Suppose 1 < p < ∞ and g ∈ Np

1 . If f ∈ Np then

{∫ 2π

0
(log+ |(Jgf)(reiθ)|)pdθ/2π

}1/p

=
{∫ 2π

0

(
log+

∣∣∣∣∫ r

0
f(teiθ)g′(teiθ)

∣∣∣∣ dt
)p

dθ/2π
}1/p
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≤
{∫ 2π

0

(
log+

∫ 1−

0
|f(teiθ)g′(teiθ)|dt

)p

dθ/2π

}1/p

≤
{∫ 2π

0

(
log+ sup

0≤t<1
|f(teiθ)|+ log+ sup

0≤t<1
|g′(teiθ)|

)p

dθ/2π

}1/p

≤
{∫ 2π

0

(
log+ sup

0≤t<1
|f(teiθ)|

)p

dθ/2π

}1/p

+

{∫ 2π

0

(
log+ sup

0≤t<1
|g′(teiθ)|

)p

dθ/2π

}1/p

.

Put u(r, θ) =
1

2π

∫ 2π

0
Pr(t−θ) log+ |f(eit)|dt, then u(r, θ) ≥ log+ |f(reiθ)|. Since log+ |f(eit)| ∈

Lp, by a theorem of Hardy and Littlewood (cf. [3, Proposition 1.8]), sup
o≤r<1

u(r, θ) belongs to

Lp and so log+ sup
0≤r<1

|f(reiθ)| belongs to Lp. Similarly we can prove that log+ sup
0≤r<1

|g′(reiθ)|

belongs to Lp. Thus Jgf belongs to Np. Hence Np
1 ⊂ J [Np]. It is known that Np is a sub-

algebra of H. Hence, by Proposition 3 J [Np] is a subalgebra of Np and J [Np] = I[Np]∩Np.
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