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1. Introduction

In this paper we shall consider the diffusion convection equation

(Au) ∂tω − ∆ω + (u,∇)ω = 0, t > 0, x ∈ R
n.

Here, ω = ω(t, x) is an unknown scalar valued function and u(t, x) =
(u1(t, x), · · · , un(t, x)) is a given continuous function satisfying

(C)

{

∇ · u = 0 , t > 0, in the sense of distributions,

supt>0 t
1
2 ||u(t, ·)||∞ = M < ∞,

where ||u(t, ·)||∞ := supx∈Rn |u(t, x)|. As usual, we set ∂tω = ∂ω
∂t

, ∆ω =
∑n

i=1
∂2ω
∂x2

i

, (u,∇)ω =
∑n

i=1 ui ∂ω
∂xi

, and ∇ · u =
∑n

i=1
∂ui

∂xi
.

The equation (Au) has many applications to problems arising from
fluid mechanics. Especially, it can be regarded as the linearized equation
of the two dimensional vorticity equation for the incompressible viscous
fluid. In this case, u is the velocity field of the fluid. The condition on the
norm of u in (C) reflects the rescaling invariant property of the equation.
Indeed, let us consider the following rescaling

ωk(t, x) := knω(k2t, kx),

uk(t, x) := ku(k2t, kx).

If ω satisfies the equation (Au), then ωk satisfies (Auk
). Remark that

uk satisfies the condition (C) with the same constant M . Such rescaling
invariant property is important and often appears when one considers the
time global solutions of the nonlinear equations. However, this condition
sometimes causes difficulties for the uniqueness and long time behaviors
of the solutions, since it gives the critical case whether the convection
term (u,∇)ω can be regarded as the perturbation term or not at time
zero or at time infinity. To overcome these difficulties, we shall consider
the fundamental solutions of (Au) which are defined as follows.

Definition 1.1. Let s ≥ 0, f ∈ L1(Rn). Let u satisfy the condition (C).
We say that the function ω ∈ C((s,∞); L1(Rn))∩ L∞((s,∞); L1(Rn)) is
a mild solution of the Cauchy problem:
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(Es)

{

∂tω − ∆ω + (u,∇)ω = 0, t > s, x ∈ R
n,

ω(s, x) = f(x), x ∈ R
n

if and only if ω satisfies the follwing integral equation

(1) ω(t) = e(t−s)∆f −

∫ t

s

∇ · e(t−τ)∆u(τ)ω(τ)dτ, t > s.

Here, et∆ is the heat semigroup represented as

(2) et∆f =

∫

Rn

Gt(x − y)f(y)dy,

where

Gt(x) =
1

(4πt)
n
2

exp(−
|x|2

4t
).

Remark 1.1. We do not assume the continuity of mild solutions at
initial time in the sense of L1(Rn). Especially, our results in this paper
can be easily extended to the case of finite measures as initial data.

Definition 1.2. Let s0 ≥ 0 and Hs0 := {(t, s, x, y); x, y ∈ R
n, t > s ≥

s0}. We say that the function Γu(t, x; s, y) is a fundamental solution of
(Au) on Hs0 if and only if Γu is a function defined on Hs0 and satisfies
that

(i)

∫

Rn

|Γu(t, x; s, y)|dx,

∫

Rn

|Γu(t, x; s, y)|dy < ∞.

(ii)ω(t, x) :=

∫

Rn

Γu(t, x; s, y)f(y)dy is a mild solution of (Es).

Remark 1.2. If u ≡ 0, then obviously

Γu(t, x; s, y) = Gt−s(x − y)

is a fundamental solution of (A0) on H0.

The pointwise estimates of fundamental solutions are very useful to
study the behaviors of solutions. We already have the upper bound for
the fundamental solutions of (Au) on Hs0 such as
(3)

Γu(t, x; s, y) ≤
C1

(t − s)
n
2

exp(−C2
|x − y|2

t − s
), t > s ≥ s0 > 0, x, y ∈ R

n,

where C1, C2 are positive constants depending only on n, M . This
estimate was established by E. A. Carlen and M. Loss [3]. S. Matsui and
S. Tokuno [10] also obtained the above estimate when n = 2. Remark
that these constants does not depend on s0 > 0. In this paper, we
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shall establish the lower bound for fundamental soutions of Hs0 by the
Gaussian-like function. Our main result is as follows.

Theorem 1.1. Let s0 > 0. Assume that u satisfies (C). Let Γu be the
fundamental solution of (Au) on Hs0. Then, there exist positive constants
C3, C4 depending only on n and M (not depending on s0 > 0) such that
for all x, y ∈ R

2, t > s ≥ s0,

(4) Γu(t, x; s, y) ≥
C3

(t − s)
n
2

exp(−C4
|x − y|2

t − s
)

holds.

The upper and lower pointwise estimates for fundamental solutions by
the Gaussian-like functions are called the Aronson estimates. Since the
above constants Ci, 1 ≤ i ≤ 4 are independent of time variables, these
estimates are called the global Aronson estimates. The (global) Aronson
estimates were firstly obtained by D. G. Aronson [1] (see also [2]) for the
second order parabolic equations of the divergence form:

(5) ∂tω −
∑

1≤i,j≤n

∂iaij(t, x)∂jω = 0.

E. B. Fabes and D. W. Stroock [4] also obtained the global Aronson
estimates for fundamental solutions of (5) with different approach using
the idea of J. Nash [11]. H. Osada [12] delt with more general type of
the divergence form:

(6) ∂tω −
∑

1≤i,j≤n

∂iaij(t, x)∂jω +

n
∑

i=1

bi(t, x)∂iω = 0,

where b(t, x) = (b1(t, x), · · · , bn(t, x)) satisfies
{

∇ · b = 0, t > 0, in the sense of distributions,

bi(t, x) =
∑n

j=1 ∂jcij(t, x), for some cij ∈ L∞((0,∞) × R
n).

In [12], H. Osada showed the existence, the Hölder continuity, and the
Aronson estimates of fundamental solutions of (6) with the same methods
as in [1] and [2]. These results play important roles in the study of the
two dimensional vorticity equations (see [9], [5], and [6]).

As a corollary of our main result, we can prove the well-posedness of
mild solutions of (E0), which seems to be new under the condition (C)
on u. To see this, note that, as proved in [4] and [11], we can derive
the Hölder continuity of fundamental solutions from the upper and lower
bounds such as (3) and (4).

Corollary 1.1. Let s0, d > 0. Assume that u satisfies (C). Let Γu be a
fundamental solution of (Au) on Hs0. Then, there exists positive constant
C5 = C5(n, M, d) and α = α(n, M) ∈ (0, 1) such that
(7)
|Γu(t, x; s, y)−Γu(t

′, x′; s′, y′)| ≤ C5(|x−x′|α+|y−y′|α+|t−t′|
α
2 +|s−s′|

α
2 ),
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for all x, x′, y, y′ ∈ R
n and t > s ≥ s0, t′ > s′ ≥ s0 with |t− s|, |t′ − s′| ≥

d > 0. Especially, the constants C5 and α do not depend on s0.

The proof of this corollary will be omitted in this paper, since it is
obtianed by the same argument of [11]; see section 3.

Under the condition (C) on u, the existence and uniqueness of mild
solutions of (Es) are easily obtained by the iteration argument if s > 0.
Similarly, the existence and uniqueness of fundamental solutions also
hold if s0 > 0. Indeed, the existence of a fundamental solution follows
by solving the integral equation
(8)

Γu(t, x; s, y) = Gt−s(x−y)−

∫ t

s

∫

Rn

∇x·Gt−τ (x−ξ)u(τ, ξ))Γu(τ, ξ; s, y)dξdτ,

and the uniqueness follows from the uniqueness of the mild solution of
(Es). But when s = 0 (or s0 = 0), it seems to be hard to obtain the well-
posedness of mild solutions of (E0) (or funmamental solutions of (Au) on
H0, respectively) by the perturbation argument except for the case M is
sufficiently small. However, combining the well-posedness for s > 0 with
the above regularity results for fundamental solutions, we can show the
well-posedness for s = 0. That is, we shall prove

Theorem 1.2. Assume that u satisfies (C). Then, there exists a unique
fundamental solution of (Au) on H0. Moreover, for any initial data f ∈
L1(Rn), the mild solution of (E0) uniquely exists.

Now let us state the outline of the proof for Theorem 1.1. By using
the integral equation (8) and the upper estimate (3), we first prove the
estimate (4) for t > s ≥ κt with the constant κ ∈ (0, 1) depending
only on n and M . Then, from the semiproup property and the mass
conservation law

∫

Rn Γu(t, x; s, y)dx = 1 for fundamental solutions, we
obtain the estimate (4) for any t > s ≥ s0; see section 2. In section 3, we
give the proof of Theorem 1.2 with some comments for Corollary 1.1. The
ingredients of the proof of Theorem 1.2 are the well-posedness of (Es)
for s > 0, the Hölder continuity and the upper bound of fundamental
solutions, and the fact that any mild solution of (E0) converges to initial
data in the sense of measure.

Acknowledgments. The author is grateful to Professor Yoshikazu
Giga and Professor Shin’ya Matsui for critical and useful advices.

2. A lower bound of fundamental solutions

Let s0 > 0. We consider a fundamental solution of (Au) on Hs0. In
this case, by solving the integral equation (8), we have the existence
and uniqueness of fundamental solutions. Moreover, we see the following
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translation and rescaling properties.

Γu(t, x; s, y) = Γu◦τy
(t, x − y; s, 0),(9)

knΓu(k
2t, kx; k2s, ky) = Γuk

(t, x; s, y), k > 0,(10)

where

u ◦ τy(t, x) := u(t, x − y),

uk(t, x) := ku(k2t, kx).

Remark that if u satisfies (C), then u ◦ τy and uk also satisfy (C) with
the same constant M . Now let t > s ≥ s0 > 0. Taking k as k2 = s, we
have

(11) Γu(t, x; s, y) = Γu(t, x; k2, y) =
1

kn
Γuk

(
t

k2
,
x

k
; 1,

y

k
).

We set t
k2 = 1 + θ, θ > 0, x′ := x

k
, y′ := y

k
. Then it is sufficient to

show that there exist positive constants C3, C4 depending only on n and
M such that for all x′, y′ ∈ R

n and θ > 0,

(12) Γuk
(1 + θ, x′; 1, y′) ≥

C3

θ
n
2

e−C4
|x′−y′|2

θ .

Since the rescaled function uk satisfies the same condition as u, we write
u instead of uk. The following proposition is essential in this paper.

Proposition 2.1. There exists κ ∈ (0, 1) depending only on n and M

such that for any κθ ≤ s < t ≤ θ and x, y ∈ R
n with |x − y| ≤ (t − s)

1
2 ,

the estimate

(13) Γu(1 + t, x; 1 + s, y) ≥
C0

(t − s)
n
2

holds. Here we can take C0 as C0 = 1

2(4π)
n
2
e−

1
4 .

Proof: We consider the integral equation which Γu(1 + t, x; 1 + s, y)
satisfies.

Γu(1 + t, x; 1 + s, y)

= Gt−s(x − y)

−

∫ 1+t

1+s

∫

Rn

∇x · G1+t−τ (x − ξ)u(τ, ξ)Γu(τ, ξ; 1 + s, y)dξdτ.(14)
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We estimate the second term of (14). From the estimate (3), we have

|

∫ 1+t

1+s

∫

Rn

∇x · G1+t−τ (x − ξ)u(τ, ξ)Γu(τ, ξ; 1 + s, y)dξdτ |

≤

∫ 1+t

1+s

∫

Rn

C
|x − ξ|

(1 + t − τ)
n
2
+1

e
− |x−ξ|2

4(1+t−τ) |u(τ, ξ)|Γu(τ, ξ; 1 + s, y)dξdτ

≤ CC1M

∫ 1+t

1+s

1

(1 + t − τ)
n+1

2 (τ − 1 − s)
n
2 τ

1
2

∫

Rn

e
− |x−ξ|2

8(1+t−τ) e−C2
|y−ξ|2

τ−1−s dξdτ

≤
C̃

(t − s)
n
2

∫ 1+t

1+s

1

(1 + t − τ)
1
2 τ

1
2

dτ

≤
C̃

(1 + s)
1
2 (t − s)

n−1
2

,

where C̃ is a positive constant depending only on n and M .
Hence, if |x − y| ≤ (t − s)

1
2 , then we have

Γu(1 + t, x; 1 + s, y)

≥
e
− |x−y|2

4(t−s)

{4π(t − s)}
n
2

−
C̃

(1 + s)
1
2 (t − s)

n−1
2

≥
e−

1
4

{4π(t − s)}
n
2

−
C̃

(1 + s)
1
2 (t − s)

n−1
2

.

Set K := 4(4π)nC̃2e
1
2 and κ = K

1+K
. By elementary calculation, if

κθ ≤ s < t ≤ θ, then we have

e−
1
4

2{4π(t − s)}
n
2

≥
C̃

(1 + s)
1
2 (t − s)

n−1
2

.

Thus, for |x − y| ≤ (t − s)
1
2 , the estimate

(15) Γu(1 + t, x; 1 + s, y) ≥
e−

1
4

2{4π(t − s)}
n
2

,

holds, which is the desired estimate.

Remark 2.1. In the above proof, we essentially use the upper bound for
fundamental solutions (3), which was obtained by E. A. Carlen and M.
Loss [3], and S. Matsui and S. Tokuno [10]. In fact, [10] studies the
two dimensional case under the further regularity condition on u(t, ·) ∈
C1(Rn) for each t ∈ (0,∞). But there seems to be a small flaw in the
argument in [10]. They consider the operator Fu(t, s) : L2(R2) → L∞(R2)
defined as

Fu(t, s)f := e−α·x
∫

R2

Γu(t, x; t − s, y)eα·ydy, α ∈ R
2.
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In their proof, the fundamental solution which defines the adjoint operator
(Fu(t, s))

∗ : L1(R2) → L2(R2) is set as Γ−u(s, y; 0, x) [10, p.537]. How-
ever, in fact, this fundamental solution must be Γu◦τt

(s, y; 0, x), where
u ◦ τt(s, x) := u(t − s, x). One of the keys in their argument is that
(Fu(t, s))

∗ has the same estimates as those of Fu(t). But, one cannot ap-
ply the estimate for Fu(t) directly to get the estimate for (Fu(t, s))

∗ since

the condition for v(s, x) := u◦τt(s, x) is sup0<s<t(t−s)
1
2 ||v(s, ·)||L∞ < ∞

instead of (C). Fortunately, by arguing the same way as for Fu(t, s), one
can check that (Fu(t, s))

∗ has the same type estimate of the operator norm
as Fu(t, s) has, so their estimate for Γu is correct.

In [3], E. A. Carlen and M. Loss deal with more general type of the
convection term. Especially, they consider the equation of the type

(16) ∂tω(t, x) − ∆ω(t, x) + ∇ · (f(x, ω)ω(t, x)) = 0,

where f satisfies ∇·f(·, ω(·, t)) = 0 and ||f(·, ω(·, t))||∞ ≤ B(t) for some
B(t) ∈ L1(0, T ), ∀T > 0. They obtained the estimate such as

(17) G(t, x; 0, y) ≤ (4πt)−
n
2 exp[−

|x − y|2

4t
(1 −

1

|x − y|

∫ t

0

B(τ)dτ)2
+],

where G(t, x; 0, y) is a fundamental solution of (16) (if it exists), and
(·)+ = max(·, 0);see [3, Theorem 3].

Once we obtain the estimate (13), we can prove the lower Aronson
estimate of Γu(1 + t, x; 1 + s, y) at least for κθ ≤ s < t ≤ θ by using the
argument in [1] (see also [4]).

Proposition 2.2. For any κθ ≤ s < t ≤ θ and x, y ∈ R
n, we have

(18) Γu(1 + t, x; 1 + s, y) ≥
C

(t − s)
n
2

e−C′ |x−y|2

t−s , x, y ∈ R
n,

where C, C ′ are numerical constants (not depending even on M).

Proof: The following argument for the above proposition is by D.
G. Aronson [1]. From (9), we may assume that y = 0 without loss of

generality. Let |x| > (t−s)
1
2 and let m be the smallest integer dominating

4|x|2
t−s

and set S =
∏m−1

l=1 B( l
m

x; 1
4

√

t−s
m

), where B(y; r) := {ξ ∈ R
n; |ξ −

y| < r}. Then we can easily check that for (ξ1, . . . , ξm−1) ∈ S, we have

|ξ1| <

√

t − s

m
, max

1<l<m
|ξl − ξl−1| ≤

√

t − s

m
, |x − ξm−1| <

√

t − s

m
.
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Then we have from (13) and the semigroup property of the fundamental
solution,

Γu(1 + t, x; 1 + s, 0)

=

∫

. . .

∫

Γu(1 + t, x; 1 + t −
t − s

m
, ξ1)

. . .Γu(1 + t −
l(t − s)

m
, ξl; 1 + t −

(l + 1)(t − s)

m
, ξl+1) . . .

. . .Γu(1 + t −
(k − 1)(t − s)

m
, ξm−1; 1 + s, 0)dξm−1 . . . dξ1

≥

∫

. . .

∫

S

Γu(1 + t, x; 1 + t −
t − s

m
, ξ1)

. . .Γu(1 + t −
l(t − s)

m
, ξl; 1 + t −

(l + 1)(t − s)

m
, ξl+1) . . .

. . .Γu(1 + t −
(m − 1)(t − s)

m
, ξm−1; 1 + s, 0)dξm−1 . . . dξ1

≥
( C0m

(t − s)
n
2

)m
|S|

=
( C0m

(t − s)
n
2

)m(

π
t − s

16m

)m−1

=
C0m

(t − s)
n
2

(C0π

16

)m−1

≥
C0

(t − s)
n
2

e−η(m−1) ≥
C0

(t − s)
n
2

e−4η
|x|2

t−s ,

where 1 > C0π
16

=: e−η. So (18) holds.

Finally, we extend the estimate (18) to s = 0. To see this, note that
the mass conservation law

(19)

∫

Rn

Γu(t, x; s, y)dx = 1

holds. This is directly established from the integral equation (8), since
we have

∫

Rn

∫ t

s

∫

Rn

∇x · Gt−τ (x − ξ)u(τ, ξ))Γu(τ, ξ; s, y)dξdτdx

=

∫ t

s

∫

Rn

∫

Rn

∇x · Gt−τ (x − ξ)u(τ, ξ))Γu(τ, ξ; s, y)dxdξdτ

= 0,

and
∫

Rn

Gt−s(x − y)dx = 1.
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Proof of the estimate (12):
Again we may assume that y = 0. From the estimate (18), we have

Γu(1 + θ, x; 1, 0)

=

∫

Rn

Γu(1 + θ, x; 1 + κθ, ξ)Γu(1 + κθ, ξ; 1, 0)dξ

≥

∫

Rn

C

{(1 − κ)θ}
n
2

e
−C′ |x−ξ|2

(1−κ)θ Γu(1 + κθ, ξ; 1, 0)dξ,

and since |x − ξ|2 ≤ 2(|x|2 + |ξ|2), we have

≥
C

{(1 − κ)θ}
n
2

e
−2C′ |x|2

(1−κ)θ

∫

Rn

e
−2C2

|ξ|2

(1−κ)θ Γu(1 + κθ, ξ; 1, 0)dξ

≥
C

{(1 − κ)θ}
n
2

e
−2C′ |x|2

(1−κ)θ

∫

|ξ|≤R
√

θ

e
−2C′ |ξ|2

(1−κ)θ Γu(1 + κθ, ξ; 1, 0)dξ

≥
C

{(1 − κ)θ}
n
2

e−
2C′R2

1−κ e
−2C′ |x|2

(1−κ)θ

∫

|ξ|≤R
√

θ

Γu(1 + κθ, ξ; 1, 0)dξ,

where R is an any positive number. So from (19) and the upper estimate
(3),

Γu(1 + θ, x; 1, 0)

≥
C

{(1 − κ)θ}
n
2

e−
2C′R2

1−κ e
−2C′ |x|2

(1−κ)θ (1 −

∫

|ξ|≥R
√

θ

Γu(1 + κθ, ξ; 1, 0)dξ)

≥
C

{(1 − κ)θ}
n
2

e−
2C′R2

1−κ e
−2C′ |x|2

(1−κ)θ (1 −

∫

|ξ|≥R
√

θ

C1

(κθ)
n
2

e−C2
|ξ|2

κθ dξ)

=
C

{(1 − κ)θ}
n
2

e−
2C′R2

1−κ e
−2C′ |x|2

(1−κ)θ (1 −

∫

|z|≥R

C1

κ
n
2

e−C2
|z|2

κ dz)

≥
C

2{(1 − κ)θ}
n
2

e−
2C′R2

1−κ e
−2C′ |x|2

(1−κ)θ ,

if R is sufficiently large. Remark that the choice of R does not depend on
θ and x. This proves the estimate (12). Hence, by rescaling, we obtain
the estimate (4), which proves the main thorem.

3. Well-posedness of the Cauchy problem (E0)

In this section, we consider the existence and uniqueness of mild so-
lutions of (E0). Before giving the proof for Theorem 1.2, we note that
Corollary 1.1 follows by arguing the same way as in J. Nash [11]. Al-
though the equations studied in [11] are of divergence form (5) (so there
is no lower order term), the tools used there in order to obtain the Hölder
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continuity of the fundamental solution are just as follows.

(i)semigroup property of the fundamental solution,

(ii)

∫

Rn

S(t, x; s, y)dx =

∫

Rn

S(t, x; s, y)dy = 1,

(iii)C(t − s)
1
2 ≤

∫

Rn

|x − y|S(t, x; s, y)dx ≤ C ′(t − s)
1
2 ,

(iv)for some K > 0,
∫

Rn

min{S(t, x; s, y1)), S(t, x; s, y2)}dx ≥ φ(
|y1 − y2|

(t − s)
1
2

), if
|y1 − y2|

(t − s)
1
2

≤ K ,

where S is the fundamental solution of (5), C, C ′ are positive constants
independent of t, s, x, y, and φ is a positive and decreasing function.
Once we obtain the above properties for the fundamental solution Γu,
we can apply the argument of [11, p.943-948], from which we obtain the
Hölder continuity of Γu. It is not difficult to see the properties (i)− (iii)
hold if t > s ≥ s0 > 0. The property (iv) is also obtained by the same
argument as in [11, p.943-944]. However, we give the proof here for
convenience to reader. First, from the lower bound (4), we have

∫

Rn

Gt−s(x − y) log{(t − s)
n
2 Γu(t, x; s, y)}dx ≥ −C,(20)

where C is a positive constant depending only on n, M . This implies
the estimate

∫

Rn

max
i

[Gt−s(x − yi)] max
i

[log{(t − s)
n
2 Γu(t, x; s, yi)}]dx

+

∫

Rn

min
i

[Gt−s(x − yi)] min
i

[log{(t − s)
n
2 Γu(t, x; s, yi)}]dx

≥ −2C, yi ∈ R
n, i = 1, 2.

Using the inequality log x ≤ x − 1 and (ii), we have

∫

Rn

max
i

[Gt−s(x − yi)] max
i

[log{(t − s)
n
2 Γu(t, x; s, yi)}]dx

≤

∫

Rn

max
i

[Gt−s(x − yi)] max
i

[{(t − s)
n
2 Γu(t, x; s, yi)}]dx

≤

∫

Rn

Γu(t, x; s, y1) + Γu(t, x; s, y2)dx

= 2,
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and
∫

Rn

min
i

[Gt−s(x − yi)] min
i

[log{(t − s)
n
2 Γu(t, x; s, yi)}]dx

≤

∫

Rn

min
i

[Gt−s(x − yi)] min
i

[log{(t − s)
n
2 (Γu(t, x; s, yi)} + δ]dx

≤ w log δ +

∫

Rn

min
i

[Gt−s(x − yi)] min
i

[log(1 + δ−1{(t − s)
n
2 Γu(t, x; s, yi)})]dx

≤ w log δ + δ−1

∫

Rn

min
i

[Γu(t, x; s, yi)]dx,

for any δ > 0. Here, w :=
∫

Rn mini[Gt−s(x − yi)]dx, which is a function

of |y1−y2|
(t−s)

1
2
. Thus, we have

∫

Rn

min
i

[Γu(t, x; s, yi)]dx

≥ δ(−2 − 2C − w log δ) =: φ(
|y1 − y2|

(t − s)
1
2

).

Remark that the function w is positive and bounded away from zero if
|y1−y2|
(t−s)

1
2

is not large. So the above φ is positive and decreasing if we choose

δ sufficiently small. This shows (iv) holds and we have Corollary 1.1.
Let t > s > 0 and let Γu(t, x; s, y) be a (unique) fundamental solution.

For each fixed t, x, y, from the Hölder coninuity with respect to s, we
can uniquely extend Γu up to s = 0. That is, we define the function
Γu(t, x; 0, y) by

(21) Γu(t, x; 0, y) := lim
s→0

Γu(t, x; s, y).

It is easy to see that Γu(t, x; 0, y) satisfies the integral equation (8) with
s = 0 and this shows that Γu(t, x; 0, y) is a unique fundamental solution
of (Au) on H0. Remark that Γu(t, x; 0, y) satisfies that

Γu(t, x; 0, y) =

∫

Rn

Γu(t, x; s, ξ)Γu(s, ξ; 0, y)dξ, s > 0,(22)

C3

t
n
2

e−C4
|x−y|2

t ≤ Γu(t, x; 0, y) ≤
C1

t
n
2

e−C2
|x−y|2

t .(23)

The existence of the fundamental solution on H0 implies the existence
of a mild solution of (E0). Thus it suffices to prove the uniqueness of
mild solutions of (E0). First, we claim the following assertion.

Proposition 3.1. Let ω be any mild solution of (E0) with initial data
f ∈ L1(Rn). Then, ω(t, ·) converges to f as t goes to zero in the sense
of measure.

The above proposition easily follows from the integral equation (1).
We omit the details.
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Proof of the uniqueness of the mild solution of (E0).
Let ω be any mild solution of (E0) with intial data f ∈ L1(Rn) and let

ω̃ be the function defined as

ω̃(t, x) :=

∫

Rn

Γu(t, x; 0, y)f(y)dy.

It suffices to prove that ω(t, x) = ω̃(t, x). Since the uniqueness of the
mild solution of (Es) holds for any s > 0, ω(t, ·) can be regarded as the
unique mild solution of (Es) with initial data ω(s, ·) for any t > s > 0.
In other words, ω(t, x) can be represented as

ω(t, x) =

∫

Rn

Γu(t, x; s, y)ω(s, y)dy.

Fix t and x. Let ϕR(r) be a smooth function on [0,∞) such that 0 ≤
ϕR(r) ≤ 1 and

ϕR(r) =

{

1, if r < R,

0, if r > 2R.

We set a
(t,x)
R (y) := ϕR( |x−y|2

t
) and b

(t,x)
R (y) = 1−a

(t,x)
R (y). From the Hölder

continuity of the fundamental solution, we have

|ω(t, x) − ω̃(t, x)|

= |

∫

Rn

Γu(t, x; s, y)ω(s, y)dy −

∫

Rn

Γu(t, x; 0, y)f(y)dy|

≤ |

∫

Rn

(Γu(t, x; s, y) − Γu(t, x; 0, y))ω(s, y)dy|+ |

∫

Rn

Γu(t, x; 0, y)(ω(s, y)− f(y))dy|

≤ Cs
α
2 sup

t>0
||ω(t, ·)||L1 + |

∫

Rn

a
(t,x)
R (y)Γu(t, x; 0, y)(ω(s, y)− f(y))dy|

+|

∫

Rn

b
(t,x)
R (y)Γu(t, x; 0, y)(ω(s, y)− f(y))dy|

≤ Cs
α
2 sup

t>0
||ω(t, ·)||L1 + |

∫

Rn

a
(t,x)
R (y)Γu(t, x; 0, y)(ω(s, y)− f(y))dy|

+

∫

|x−y|2

t
≥R

b
(t,x)
R (y)Γu(t, x; 0, y)(|ω(s, y)|+ |f(y)|)dy.

By the upper estimate (3), if |x−y|2
t

≥ R, then

Γu(t, x; 0, y) ≤
C1

t
n
2

e−C2R.

Since ω(s, ·) converges to f as s goes to zero in the sense of measure, we
have

|ω(t, x) − ω̃(t, x)| ≤
C1

t
n
2

e−C2R(sup
t>0

||ω(t, ·)||L1 + ||f ||L1)

→ 0 as R → ∞.
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This completes the proof of Theorem 1.2.

Remark 3.1. From the proof above, we see that the uniqueness of the
mild solution also follows for finite measures as initial data.
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