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Abstract. Consider the nonlinear wave equation with zero mass in two space dimensions.
When it comes to the associated Cauchy problem with small initial data, the known existence
results are already sharp; those require the data to decay at a rate k ≥ kc, where kc is a critical
decay rate that depends on the order of the nonlinearity. However, the known scattering results
treat only the supercritical case k > kc. In this paper, we prove the existence of the scattering
operator for the full optimal range k ≥ kc.

1. Introduction

We study the scattering problem for the nonlinear wave equation

∂2
t u−∆u = F (u) in R2 × R, (1.1)

where F (u) behaves like |u|p for some p > 1. When it comes to the associated Cauchy problem,
it is known that both the size of p and the decay rate k of the initial data play a crucial role
in the existence theory for small initial data. In fact, the condition k ≥ 2/(p − 1) is one of
the sharp conditions needed to ensure the existence of small-amplitude solutions. However, the
scattering operator for (1.1) has been constructed only in the supercritical case k > 2/(p− 1).
In this paper, we construct the scattering operator for the full optimal range k ≥ 2/(p− 1).

Let us first focus on the associated Cauchy problem and prescribe initial data

u(x, 0) = ϕ(x), ∂tu(x, 0) = ψ(x). (1.2)

A sharp existence result for (1.1) was obtained by Glassey [1] under the assumption that ϕ, ψ
are compactly supported. An extension of Glassey’s result to more general data was obtained
by Kubota [5] and independently by Tsutaya [10, 11]. In these results, one assumes that∑

|α|≤3

|∂α
x ϕ(x)|+

∑

|β|≤2

|∂β
xψ(x)| ≤ ε(1 + |x|)−k−1 (1.3)

for some k > 0 and some small ε > 0. To ensure the existence of classical solutions to the
associated Cauchy problem, it then suffices to require that

p >
3 +

√
17

2
, k ≥ 2

p− 1
. (1.4)

Recall that p denotes the order of the nonlinear term. Conditions (1.4) are also known to be
necessary for the existence of small-amplitude solutions. That is, there exist arbitrarily small
initial data satisfying (1.3) for which the solution to (1.1) blows up in finite time, if either
1 < p ≤ (3 +

√
17 )/2 or else 0 < k < 2/(p− 1) for some p > 1; see [2, 7, 11].
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When it comes to the associated scattering problem, Tsutaya [12] established the existence
of the scattering operator for small initial data under the assumptions

p >
3 +

√
17

2
, k >

2

p− 1
. (1.5)

A similar scattering result was obtained by Kubota and Mochizuki [6], however the additional
assumption k > 1/2 was imposed there. In view of the existence results stated above, the only
possible improvement of Tsutaya’s result [12] amounts to replacing his conditions (1.5) by the
conditions (1.4) which are necessary for the existence of solutions. Our goal in this paper is to
show that such an improvement is feasible for the two-dimensional problem (1.1). Namely, the
conditions which are necessary for the existence of solutions are also sufficient for the existence
of the scattering operator. It is perhaps worth mentioning that this is no longer the case for
the three-dimensional version of (1.1). In three space dimensions, that is, the sharp conditions
needed for the existence of the scattering operator are

p > 1 +
√

2, k ≥ 2

p− 1
, kp >

5

2
(1.6)

and only the first two of those conditions are necessary for the existence of solutions; see our
previous work [4] for more details. Based on the results of [4], one would expect

p >
n + 1 +

√
n2 + 10n− 7

2(n− 1)
, k ≥ 2

p− 1
, kp >

n

2
+ 1

to be the analogous sharp conditions in n space dimensions. Here, the rightmost condition is
redundant only when n = 2, as the middle condition already implies that kp ≥ k + 2 > 2. For
a list of the known results in higher dimensions, see [3] and the references cited therein.

Let us now focus on the two-dimensional scattering problem for (1.1). In what follows, we
denote by u−0 the solution to the homogeneous wave equation

∂2
t u0 −∆u0 = 0 in R2 × R (1.7)

subject to the initial data (1.2). As it is well-known, one can obtain a solution u to (1.1) by
solving the associated integral equation

u = u−0 + L F (u), (1.8)

where the Duhamel operator L is defined by the formula

[L F (u)](x, t) =
1

2π

∫ t

−∞
(t− τ)

∫

|y|<1

F (u(x + (t− τ)y, τ))√
1− |y|2 dy dτ. (1.9)

Regarding the existence of solutions to (1.8), we shall establish the following

Theorem 1 (Existence). Let u−0 be the solution to the homogeneous wave equation

∂2
t u0 −∆u0 = 0, u0(x, 0) = ϕ(x), ∂tu0(x, 0) = ψ(x).

Assume (1.3), (1.4) and take F (u) = ±|u|p or F (u) = ±|u|p−1u. If ε is sufficiently small, then
the integral equation (1.8) has a unique C2-solution.

Remark 2. The solutions we construct lie in a certain Banach space that we introduce in the
next section; see (2.4). We can similarly construct solutions for more general nonlinear terms
than the ones listed here; our precise assumptions on F appear in (2.8), (2.9).
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The proof of Theorem 1 is essentially based on the approach of [6, 12], where the existence
of solutions was shown for supercritical decay rates k > 2/(p − 1). To extend these results to
the critical decay rate, however, we need to establish a new estimate for the kernel associated
with the homogeneous wave equation in two space dimensions; see Lemmas 16 and 17. This
new estimate plays a key role in treating the logarithmic singularity that arises in the kernel,
and it also provides a crucial refinement of the estimates used in [6, 12].

As an immediate consequence of Theorem 1, we shall also establish the following

Theorem 3 (Scattering). Let the assumptions of Theorem 1 hold and define the energy norm

||w||e =

(∫

R2

|∂tw(x, t)|2 dx +

∫

R2

|∇w(x, t)|2 dx

)1/2

. (1.10)

Then the unique solution u provided by Theorem 1 satisfies

||u− u−0 ||e → 0 as t → −∞, (1.11)

and there exists a unique solution u+
0 to the homogeneous equation (1.7) which satisfies

||u− u+
0 ||e → 0 as t → +∞. (1.12)

In particular, one can define the scattering operator S : u−0 → u+
0 .

The remaining of this paper is organized as follows. In section 2, we give the well-known
weighted L∞-estimates for the homogeneous wave equation and then we establish some useful
estimates involving our weight function (2.6). In section 3, we obtain a new estimate for the
associated kernel and we also establish the basic estimate for the existence proof. Finally, the
proofs of our main results, Theorem 1 and Theorem 3, are given in section 4.

2. A priori estimates

In this section, we gather some estimates that will be needed in the proof of our existence
result, Theorem 1. Let us first focus on the homogeneous wave equation

∂2
t u0 −∆u0 = 0 in R2 × R (2.1)

and impose the conditions

u0(x, 0) = ϕ(x), ∂tu0(x, 0) = ψ(x). (2.2)

When it comes to the initial data, we shall assume that
∑

|α|≤3

|∂α
x ϕ(x)|+

∑

|α|≤2

|∂α
x ψ(x)| ≤ ε 〈x〉−k−1 , (2.3)

where 〈x〉 = 1 + |x| and the constants ε, k are both positive. To study the homogeneous wave
equation with such data, it is convenient to introduce the Banach space

X =
{
u(x, t) : ∂α

x u(x, t) ∈ C(R2 × R) for |α| ≤ 2, ||u|| < ∞}
. (2.4)

Here, the norm || · || is defined by

||u|| =
∑

|α|≤2

sup
x∈R2

t∈R

|∂α
x u(x, t)| · wk(|x|, |t|), (2.5)
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where the weight function wk is of the form

wk(|x|, |t|) = 〈|x|+ |t|〉β 〈|x| − |t|〉γ
(

1 + ln
〈|x|+ |t|〉
〈|x| − |t|〉

)−δk,1/2

(2.6)

with β = min(k, 1/2), γ = max(k − 1/2, 0) and δk,1/2 the usual Kronecker delta.
For the proof of the following lemma, we refer the reader to [5, 10].

Lemma 4. Let ϕ ∈ C3(R2) and ψ ∈ C2(R2) be subject to (2.3) for some ε > 0 and 0 < k < 1.
Then the Cauchy problem (2.1)-(2.2) admits a unique solution u−0 ∈ X, where X is defined by
(2.4). Moreover, one has ||u−0 || ≤ C0ε for some constant C0 that depends solely on k.

Remark 5. Although Lemma 4 applies for the case k ≥ 1 as well, the definition (2.6) of the
weight function needs to be slightly modified for that case. When it comes to the nonlinear
problem we wish to address, however, we need only treat the case 0 < k < 1 because the decay
rate k may be decreased without loss of generality; see (2.10).

Next, we turn to the nonlinear wave equation

∂2
t u−∆u = F (u) in R2 × R. (2.7)

When it comes to the nonlinear term F (u), we assume that

F ∈ C2(R); F (0) = F ′(0) = F ′′(0) = 0 (2.8)

and that the estimate

|F ′′(u)− F ′′(v)| ≤ A(|u|+ |v|)p−3 · |u− v| (2.9)

holds for some A > 0 and some p > 3+
√

17
2

whenever |u|, |v| ≤ 1.
Recall that we seek a solution to the integral equation (1.8), where u−0 is the solution of

Lemma 4. One of our assumptions ensures that k ≥ 2/(p− 1), where k is the decay rate of the
initial data. There is no loss of generality in decreasing the decay rate k, as long as the lower
bound is not contradicted. Since we actually have

2

p− 1
<

1

2
+

1

p
<

p

2
− 1

whenever p > 3+
√

17
2

, this means there is no loss of generality in assuming

2

p− 1
≤ k <

1

2
+

1

p
<

p

2
− 1, p >

3 +
√

17

2
. (2.10)

Now, in the definition (2.6) of our weight function, we also introduced the parameters

β = min(k, 1/2), γ = max(k − 1/2, 0). (2.11)

Under our assumption (2.10), those are easily seen to satisfy the conditions

0 ≤ γp < 1, β + γ = k < 1, βp ≥ min(k + 2, p/2) > 3/2. (2.12)

In what follows, we shall frequently need to use the following four elementary facts.
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Lemma 6. Let r, t > 0 be arbitrary. Assuming that 0 ≤ a ≤ 1/2 and 0 < k < 1, one has

r−1/2

∫ t+r

|t−r|

〈y〉a−1/2−k

(r − t + y)a
dy ≤ C(a, k) · wk(r, t)

−1,

where the weight function wk is given by (2.6).

Lemma 7. Let b ≥ 0, y ∈ R and z ≥ |y| be arbitrary. Assuming that c < −1, one has
∫ ∞

z

〈x〉c
(

1 + ln
〈x〉
〈y〉

)b

dx ≤ C(b, c) · 〈z〉c+1

(
1 + ln

〈z〉
〈y〉

)b

.

Lemma 8. Let w ≤ 0 be arbitrary. Assuming that 0 ≤ a < 1 and a + c > 1, one has
∫ w

−∞

〈y〉−c

(w − y)a
dy ≤ C(a, c) · 〈w〉1−a−c .

Lemma 9. Let w ≥ 0 be arbitrary. Assuming that 0 ≤ a < 1, b ≥ 0 and c < 1, one has

A± ≡
∫ w

0

〈y〉−c

(w ± y)a

(
1 + ln

〈w〉
〈y〉

)b

dy ≤ C(a, b, c) · w1−a 〈w〉−c .

Essentially, the proof of the first fact can be found in [10], where the case a = 0 is treated
in Lemma 3.5 and the case a = 1/2 is treated in Lemma 3.6. The proof of the second fact can
be found in [4], while the proof of the third fact appears in [3]. Finally, the fourth fact follows
easily from Lemma 3 in [4]; we only include its derivation here for the sake of completeness.

Proof of Lemma 9. Note that w ± y is equivalent to w whenever 0 ≤ y ≤ w/2, while 〈y〉 is
equivalent to 〈w〉 whenever w/2 ≤ y ≤ w. This gives

A± ≤ Cw−a

∫ w/2

0

〈y〉−c

(
1 + ln

〈w〉
〈y〉

)b

dy + C 〈w〉−c

∫ w

w/2

(w ± y)−a dy,

while the estimate ∫ w

0

〈y〉−c

(
1 + ln

〈w〉
〈y〉

)b

dy ≤ Cw 〈w〉−c

is provided by Lemma 3 in [4]. Since a < 1 by assumption, the result follows easily.

Lemma 10. Let r > 0 and t ∈ R. Assume (2.10) through (2.12) and fix some

0 < δ < min(βp− 3/2, 1/2). (2.13)

Then we have

Iδ ≡ rδ−1/2

∫ t

−∞

∫ λ+

|λ−|

λδ+1/2 wk(λ, |τ |)−p

λδ
+(λ− λ−)δ

dλ dτ ≤ Cwk(r, |t|)−1,

where λ± = t− τ ± r, wk is given by (2.6) and the constant C is independent of r, t.

Proof. Since λ+ = t− τ + r ≥ r within the region of integration, it is clear that

Iδ ≤ r−1/2

∫ t

−∞

∫ λ+

|λ−|

λδ+1/2 wk(λ, |τ |)−p

(λ− λ−)δ
dλ dτ.
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First, we treat the part in which τ ≥ 0. For this part, we have to show that

I ′δ ≡ r−1/2

∫ t

0

∫ λ+

|λ−|

λδ+1/2 wk(λ, τ)−p

(λ− λ−)δ
dλ dτ ≤ Cwk(r, t)

−1 (2.14)

whenever t > 0. Let us recall the definition (2.6) of our weight function wk and write

I ′δ = r−1/2

∫ t

0

∫ t−τ+r

|t−τ−r|

λδ+1/2 〈λ + τ〉−βp

(λ + τ + r − t)δ
〈λ− τ〉−γp

(
1 + ln

〈λ + τ〉
〈λ− τ〉

)pδk,1/2

dλ dτ.

Changing variables by x = λ− τ and y = λ + τ , we then get

I ′δ ≤ Cr−1/2

∫ t+r

|t−r|

〈y〉−βp

(r − t + y)δ

∫ y

−y

(x + y)δ+1/2 · 〈x〉−γp

(
1 + ln

〈y〉
〈x〉

)pδk,1/2

dx dy.

Since x + y ≤ 2y within the region of integration, this trivially leads to

I ′δ ≤ Cr−1/2

∫ t+r

|t−r|

〈y〉δ+1/2−βp

(r − t + y)δ

∫ y

0

〈x〉−γp

(
1 + ln

〈y〉
〈x〉

)pδk,1/2

dx dy.

Since γp < 1 by (2.12), we may now apply Lemma 9 with a = 0 to find

I ′δ ≤ Cr−1/2

∫ t+r

|t−r|

〈y〉δ+3/2−βp−γp

(r − t + y)δ
dy.

Noting that βp + γp = kp ≥ k + 2 by assumption, this also implies

I ′δ ≤ Cr−1/2

∫ t+r

|t−r|

〈y〉δ−1/2−k

(r − t + y)δ
dy ≤ Cwk(r, t)

−1

by means of Lemma 6. In particular, the proof of (2.14) is complete.
Next, we treat the part in which τ ≤ 0. For this part, we have to show that

I ′′δ ≡ r−1/2

∫ min(0,t)

−∞

∫ λ+

|λ−|

λδ+1/2 wk(λ,−τ)−p

(λ− λ−)δ
dλ dτ ≤ Cwk(r, |t|)−1 (2.15)

for any t ∈ R whatsoever. Proceeding as above, let us first write

I ′′δ = r−1/2

∫ min(0,t)

−∞

∫ λ+

|λ−|

λδ+1/2 〈λ− τ〉−βp

(λ + τ + r − t)δ
〈λ + τ〉−γp

(
1 + ln

〈λ− τ〉
〈λ + τ〉

)pδk,1/2

dλ dτ.

Since τ ≤ t within the region of integration, we have λ ≥ |λ−| ≥ t− τ − r. Since τ ≤ 0, we also
have λ ≥ |λ−| ≥ |t− r|+ τ . Changing variables by x = λ− τ and y = λ + τ , we then get

I ′′δ ≤ Cr−1/2

∫ t+r

t−r

〈y〉−γp

(r − t + y)δ

∫ ∞

z

(x + y)δ+1/2 〈x〉−βp

(
1 + ln

〈x〉
〈y〉

)pδk,1/2

dx dy,

where we have set z = max(|y|, |t− r|) for convenience. Since x + y ≤ 2x here, we find

I ′′δ ≤ Cr−1/2

∫ t+r

t−r

〈y〉−γp

(r − t + y)δ

∫ ∞

z

〈x〉δ+1/2−βp

(
1 + ln

〈x〉
〈y〉

)pδk,1/2

dx dy.
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Moreover, δ + 3/2− βp < 0 by our assumption (2.13), so Lemma 7 applies to give

I ′′δ ≤ Cr−1/2

∫ t+r

t−r

〈y〉−γp

(r − t + y)δ
· 〈z〉δ+3/2−βp

(
1 + ln

〈z〉
〈y〉

)pδk,1/2

dy (2.16)

with z = max(|y|, |t− r|) as above.
Case 1: When t > 0, we have t− r ≤ |t− r| ≤ t + r, so equation (2.16) reads

I ′′δ ≤ Cr−1/2

∫ t+r

|t−r|

〈y〉δ+3/2−kp

(r − t + y)δ
dy

+ Cr−1/2 〈t− r〉δ+3/2−βp

∫ |t−r|

t−r

〈y〉−γp

(r − t + y)δ
·
(

1 + ln
〈t− r〉
〈y〉

)pδk,1/2

dy

because z = |y| within the former integral and z = |t− r| within the latter. When it comes to
the former integral, we have kp ≥ k + 2, hence also

r−1/2

∫ t+r

|t−r|

〈y〉δ+3/2−kp

(r − t + y)δ
dy ≤ r−1/2

∫ t+r

|t−r|

〈y〉δ−1/2−k

(r − t + y)δ
dy ≤ Cwk(r, t)

−1

by Lemma 6. In particular, it suffices to treat the latter integral

I ′′′δ ≡ r−1/2 〈r − t〉δ+3/2−βp

∫ r−t

0

〈y〉−γp

(r − t± y)δ
·
(

1 + ln
〈r − t〉
〈y〉

)pδk,1/2

dy

whenever r ≥ t. Since γp < 1 by (2.12), an application of Lemma 9 gives

I ′′′δ ≤ Cr−1/2(r − t)1−δ 〈r − t〉δ+3/2−kp

≤ Cr−1/2(r − t)1−δ 〈r − t〉δ−1/2−k .

Since β + γ = k, we may thus deduce the desired (2.15) once we know that

r−1/2(r − t)1−δ 〈r − t〉δ−1/2−β ≤ C 〈r + t〉−β when r ≥ t > 0. (2.17)

If r ≥ t and r ≤ 1, then each of r ± t is bounded and we easily get the desired

r−1/2(r − t)1−δ 〈r − t〉δ−1/2−β ≤ Cr1/2−δ ≤ C

because δ < 1/2. If r ≥ max(t, 1), then r is equivalent to 〈r + t〉 and we similarly get

r−1/2(r − t)1−δ 〈r − t〉δ−1/2−β ≤ r−1/2 〈r − t〉1/2−β ≤ C 〈r + t〉−β

because β ≤ 1/2 by (2.11).
Case 2: When t ≤ 0, we have |r + t| ≤ r + |t| = r − t, so equation (2.16) reads

I ′′δ ≤ Cr−1/2 〈r − t〉δ+3/2−βp

∫ t+r

t−r

〈y〉−γp

(r − t + y)δ
·
(

1 + ln
〈r − t〉
〈y〉

)pδk,1/2

dy. (2.18)

Subcase 2a: If it happens that |t| ≤ 3r, we proceed as in the previous case to obtain

I ′′δ ≤ Cr−1/2 〈r − t〉δ+3/2−βp

∫ r−t

t−r

〈y〉−γp

(r − t + y)δ
·
(

1 + ln
〈r − t〉
〈y〉

)pδk,1/2

dy

≤ Cr−1/2(r − t)1−δ 〈r − t〉δ−1/2−k



8 PASCHALIS KARAGEORGIS AND KIMITOSHI TSUTAYA

using Lemma 9. Since r − t = r + |t| ≤ 4r for this subcase, we then get

I ′′δ ≤ Cr1/2−δ 〈r + |t|〉δ−1/2−k ≤ C 〈r + |t|〉−k

because δ < 1/2. This estimate is actually stronger than the desired (2.15).
Subcase 2b: If it happens that −t = |t| ≥ 3r, then 〈r + t〉 is equivalent to 〈r − t〉 because

|r + t| ≤ r + |t| = r − t ≤ −2(r + t)

for this subcase. Since δ < 1/2, equation (2.18) then trivially leads to

I ′′δ ≤ Cr−1/2 〈r + |t|〉δ−1/2−k

∫ t+r

t−r

(r − t + y)−δ dy

≤ Cr1/2−δ 〈r + |t|〉δ−1/2−k ≤ C 〈r + |t|〉−k .

This estimate already implies the desired (2.15), so the proof is finally complete.

Lemma 11. Under the assumptions of Lemma 10, one also has

Jθ ≡
∫ t−r

min(t−r,0)

∫ λ−

0

λwk(λ, |τ |)−p dλ dτ

λθ
+ λ

1/2−θ
− (λ− − λ)θ

≤ Cr−ν 〈t− r〉1/2−θ+ν−k ,

where 0 < θ ≤ 1/2 is arbitrary and ν = 0, θ.

Proof. If t ≤ r, then there is nothing to prove. Assume that t ≥ r and write

Jθ =

∫ t−r

0

∫ λ−

0

λwk(λ, τ)−p dλ dτ

λθ
+ λ

1/2−θ
− (λ− − λ)θ

. (2.19)

In order to estimate the integrand, we use the fact that

λ

λ−
=

λ

t− τ − r
≤ C

(
λ + τ

t− r

)
. (2.20)

This holds if 0 ≤ τ ≤ (t− r)/2, in which case t− r − τ is equivalent to t− r, but it also holds
if (t− r)/2 ≤ τ and 0 ≤ λ ≤ t− r − τ , in which case λ + τ is equivalent to t− r. Using (2.20)
and our assumption 0 < θ ≤ 1/2, one now easily finds that

λ

λθ
+ λ

1/2−θ
−

≤ λ

λ
1/2
−

≤ Cλ1/2

(
λ + τ

t− r

)1/2

.

Using (2.20) and the fact that λ+ = t− τ + r ≥ 2r, one similarly finds

λ

λθ
+ λ

1/2−θ
−

≤ Cλ1/2+θ

rθ
·
(

λ + τ

t− r

)1/2−θ

.

This proves the estimate

λ

λθ
+ λ

1/2−θ
−

≤ Cλ1/2+ν

rν
·
(

λ + τ

t− r

)1/2−ν

, ν = 0, θ. (2.21)
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Inserting this estimate in (2.19) and changing variables by x = λ− τ , y = λ + τ , we now get

Jθ ≤ Cr−ν

(t− r)1/2−ν

∫ t−r

0

y1/2−ν 〈y〉−βp

(t− r − y)θ
×

∫ y

−y

(x + y)1/2+ν · 〈x〉−γp

(
1 + ln

〈y〉
〈x〉

)pδk,1/2

dx dy.

Since γp < 1 by (2.12), we may apply Lemma 9 with a = 0 to obtain the estimate
∫ y

−y

(x + y)1/2+ν · 〈x〉−γp

(
1 + ln

〈y〉
〈x〉

)pδk,1/2

dx ≤ Cy1/2+ν 〈y〉1−γp

for the inner integral. Since βp + γp = kp ≥ k + 2 by assumption, this implies

Jθ ≤ Cr−ν

(t− r)1/2−ν

∫ t−r

0

y 〈y〉−k−1

(t− r − y)θ
dy.

Noting that y/ 〈y〉 is an increasing function for all y, we thus arrive at

Jθ ≤ Cr−ν(t− r)1/2+ν

〈t− r〉
∫ t−r

0

〈y〉−k

(t− r − y)θ
dy

≤ Cr−ν 〈t− r〉−1/2+ν

∫ t−r

0

〈y〉−k

(t− r − y)θ
dy.

Since k < 1 by (2.12), we may then apply Lemma 9 with b = 0 to get

Jθ ≤ Cr−ν 〈t− r〉−1/2+ν+(1−θ)−k .

This is precisely the desired estimate for Jθ, so the proof is finally complete.

Corollary 12. Under the assumptions of Lemma 10, one also has

J ′
θ ≡

∫ t−r

−|t−r|

∫ λ−

0

λwk(λ, |τ |)−p dλ dτ

λθ
+ λ

1/2−θ
− (λ− − λ)θ

≤ Cr−ν 〈t− r〉1/2−θ+ν−k ,

where 0 < θ ≤ 1/2 is arbitrary and ν = 0, θ.

Proof. If t ≤ r, then there is nothing to prove. Assume that t ≥ r and write

J ′
θ = Jθ +

∫ 0

r−t

∫ λ−

0

λwk(λ,−τ)−p dλ dτ

λθ
+ λ

1/2−θ
− (λ− − λ)θ

, (2.22)

where Jθ is given by the previous lemma. Since Jθ is known to satisfy the desired estimate, it
suffices to treat the remaining part J ′

θ − Jθ. Since τ ≤ 0 for this part, one clearly has

λ

λ−
=

λ

t− τ − r
≤ λ

t− r
≤ λ− τ

t− r

within the region of integration. Using this analogue of (2.20), one obtains the estimate

λ

λθ
+ λ

1/2−θ
−

≤ λ1/2+ν

rν
·
(

λ− τ

t− r

)1/2−ν

, ν = 0, θ (2.23)
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in the same way that we obtained (2.21). Once we now insert this estimate in (2.22), the change
of variables x = λ− τ , y = λ + τ leads us to

J ′
θ − Jθ ≤ Cr−ν

(t− r)1/2−ν

∫ t−r

r−t

〈y〉−γp

(t− r − y)θ
×

∫ 3(t−r)

|y|
(x + y)1/2+ν · x1/2−ν 〈x〉−βp

(
1 + ln

〈x〉
〈y〉

)pδk,1/2

dx dy. (2.24)

Let us denote the inner integral by Jin. Since x + y ≤ 2x here, we certainly have

Jin ≤ C

(
1 + ln

〈t− r〉
〈y〉

)p ∫ 3(t−r)

|y|
〈x〉1−βp dx,

and this trivially leads to the estimate

Jin ≤ C

(
1 + ln

〈t− r〉
〈y〉

)p+1 (
〈t− r〉2−βp + 〈y〉2−βp

)
.

Next, we insert this fact in (2.24). Since βp + γp = kp ≥ k + 2, we arrive at

J ′
θ − Jθ ≤ Cr−ν 〈t− r〉2−βp

(t− r)1/2−ν

∫ t−r

0

〈y〉−γp

(t− r ± y)θ

(
1 + ln

〈t− r〉
〈y〉

)p+1

dy

+
Cr−ν

(t− r)1/2−ν

∫ t−r

0

〈y〉−k

(t− r ± y)θ

(
1 + ln

〈t− r〉
〈y〉

)p+1

dy.

Recalling that γp, k < 1 by (2.12), we may then apply Lemma 9 to get

J ′
θ − Jθ ≤ Cr−ν(t− r)1/2−θ+ν · 〈t− r〉−k .

Since 1/2− θ + ν ≥ 0, this does imply the desired estimate.

Lemma 13. Under the assumptions of Lemma 10, one can always find some 0 < θ ≤ 1/2 such
that the estimate

Kθ ≡ rθ−1/2

∫ t−r

−∞

∫ λ−

0

λwk(λ, |τ |)−p dλ dτ

λθ
+ λ

1/2−θ
− (λ− − λ)θ

≤ Cwk(r, |t|)−1

holds. In fact, one can simply take θ = 1/2, except when 0 ≤ t ≤ 2r and r ≥ 1 and k > 1/2, in
which case one can simply take θ = δ with δ as in (2.13).

Proof. We divide our analysis into three cases.
Case 1: Suppose t ≤ 0 or t ≥ 2r or r ≤ 1. Then we need only show that

K1/2 =

∫ t−r

−∞

∫ λ−

0

λwk(λ, |τ |)−p dλ dτ

λ
1/2
+ (λ− − λ)1/2

≤ C 〈r − t〉−k . (2.25)

First, we employ Corollary 12 with θ = 1/2 and ν = 0 to get the estimate

J ′
1/2 =

∫ t−r

−|t−r|

∫ λ−

0

λwk(λ, |τ |)−p dλ dτ

λ
1/2
+ (λ− − λ)1/2

≤ C 〈r − t〉−k .
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Next, we treat the remaining part

K1/2 − J ′
1/2 =

∫ −|t−r|

−∞

∫ λ−

0

λwk(λ, |τ |)−p dλ dτ

λ
1/2
+ (t− r − λ− τ)1/2

.

We note that λ ≤ λ+ and λ ≤ λ − τ within the region of integration. Once we now switch to
characteristic coordinates x = λ− τ and y = λ + τ , we find

K1/2 − J ′
1/2 ≤ C

∫ t−r

−∞

〈y〉−γp

(t− r − y)1/2

∫ ∞

z

〈x〉1/2−βp

(
1 + ln

〈x〉
〈y〉

)pδk,1/2

dx dy

with z = max(|y|, |t− r|). Since βp > 3/2 by (2.12), an application of Lemma 7 gives

K1/2 − J ′
1/2 ≤ C

∫ t−r

−∞

〈y〉−γp

(t− r − y)1/2
· 〈z〉3/2−βp

(
1 + ln

〈z〉
〈y〉

)pδk,1/2

dy.

Recalling that βp + γp = kp ≥ k + 2, we then get

K1/2 − J ′
1/2 ≤ C

∫ −|t−r|

−∞

〈y〉−k−1/2

(t− r − y)1/2
dy

+ C 〈t− r〉3/2−βp

∫ t−r

−|t−r|

〈y〉−γp

(t− r − y)1/2

(
1 + ln

〈t− r〉
〈y〉

)p

dy

because z = |y| within the former integral and z = |t − r| within the latter. Using Lemma 8
for the former integral and Lemma 9 for the latter, we deduce the desired (2.25).
Case 2: Suppose 0 ≤ t ≤ 2r and r ≥ 1 and 0 < k ≤ 1/2. Then we need only show that

K1/2 ≤ Cwk(r, t)
−1 + Cr−1/2 〈t− r〉1/2−k . (2.26)

Namely, r is equivalent to 〈t + r〉 for this case, so one also has

r−1/2 〈t− r〉1/2−k ≤ C 〈t + r〉−β 〈t− r〉−γ ≤ Cwk(r, t)
−1 (2.27)

because β + γ = k by (2.12) and β ≤ 1/2 by (2.11).
To establish (2.26), we first use Corollary 12 with θ = ν = 1/2 to get the estimate

J ′
1/2 =

∫ t−r

−|t−r|

∫ λ−

0

λwk(λ, |τ |)−p dλ dτ

λ
1/2
+ (λ− − λ)1/2

≤ Cr−1/2 〈t− r〉1/2−k .

Next, we focus on the remaining part

K1/2 − J ′
1/2 =

∫ −|t−r|

−∞

∫ λ−

0

λwk(λ, |τ |)−p dλ dτ

λ
1/2
+ (t− r − λ− τ)1/2

.

Note that 2λ+ ≥ λ + λ+ = t + r + λ− τ within the region of integration. Once we now switch
to characteristic coordinates x = λ− τ and y = λ + τ , we find

K1/2 − J ′
1/2 ≤ C

∫ t−r

−∞

〈y〉−γp

(t− r − y)1/2

∫ ∞

z

〈x〉1−βp

(t + r + x)1/2

(
1 + ln

〈x〉
〈y〉

)p

dx dy

with z = max(|y|, |t− r|). Since we are assuming that 0 < k ≤ 1/2 for this case, we have

βp = min(k, 1/2) · p = kp ≥ k + 2 > 2
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and then an application of Lemma 7 leads us to

K1/2 − J ′
1/2 ≤ C

∫ t−r

−∞

〈y〉−γp 〈z〉2−βp

(t− r − y)1/2 (t + r + |y|)1/2

(
1 + ln

〈z〉
〈y〉

)p

dy.

Since we also have t + r ≥ r ≥ 1 for this case, we trivially get

K1/2 − J ′
1/2 ≤ C

∫ −t−r

−∞

〈y〉−k−1/2

(t− r − y)1/2
dy + Cr−1/2

∫ −|t−r|

−t−r

〈y〉−k

(t− r − y)1/2
dy

+ Cr−1/2 〈t− r〉2−βp

∫ t−r

−|t−r|

〈y〉−γp

(t− r − y)1/2

(
1 + ln

〈t− r〉
〈y〉

)p

dy,

as z = |y| within the first two integrals and z = |t − r| within the third one. Using Lemma 8
for the first integral, Lemma 6 for the second and Lemma 9 for the third, we then find

K1/2 − J ′
1/2 ≤ C 〈t + r〉−k + Cwk(r, t)

−1 + Cr−1/2 〈t− r〉1/2−k .

Moreover, β + γ = k by (2.12) and γ ≥ 0 by (2.11), so we also have

〈t + r〉−k ≤ 〈t + r〉−β 〈t− r〉−γ ≤ wk(r, t)
−1.

Combining the last two equations, we may thus deduce the desired estimate (2.26).
Case 3: Suppose 0 ≤ t ≤ 2r and r ≥ 1 and k > 1/2. Since (2.27) remains valid for this case as
well, it suffices to establish the estimate

Kδ ≤ Cr−1/2 〈t− r〉1/2−k , (2.28)

where 0 < δ < 1/2 is given by (2.13). Once again, we divide Kδ into two parts to be treated
separately. To treat the first part

K′δ ≡ rδ−1/2

∫ t−r

−|t−r|

∫ λ−

0

λwk(λ, |τ |)−p dλ dτ

λδ
+ λ

1/2−δ
− (λ− − λ)δ

,

we need only apply Corollary 12 with θ = ν = δ to get the desired

K′δ = rδ−1/2 · J ′
δ ≤ Cr−1/2 〈t− r〉1/2−k .

Let us now worry about the remaining part

Kδ −K′δ = rδ−1/2

∫ −|t−r|

−∞

∫ λ−

0

λwk(λ, |τ |)−p dλ dτ

λδ
+ λ

1/2−δ
− (λ− − λ)δ

.

Since λ+ = t− τ + r ≥ 2r and λ ≤ λ− within the region of integration, we easily find

Kδ −K′δ ≤ Cr−1/2

∫ −|t−r|

−∞

∫ λ−

0

λ1/2+δ wk(λ, |τ |)−p dλ dτ

(t− r − λ− τ)δ
.

Switching to characteristic coordinates x = λ− τ and y = λ + τ , we thus find

Kδ −K′δ ≤ Cr−1/2

∫ t−r

−∞

〈y〉−γp

(t− r − y)δ

∫ ∞

z

〈x〉1/2+δ−βp

(
1 + ln

〈x〉
〈y〉

)p

dx dy
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with z = max(|y|, |t− r|). Since δ < βp− 3/2 by (2.13), we may apply Lemma 7 to get

Kδ −K′δ ≤ Cr−1/2

∫ −|t−r|

−∞

〈y〉3/2+δ−kp dy

(t− r − y)δ

+ Cr−1/2 〈t− r〉3/2+δ−βp

∫ t−r

−|t−r|

〈y〉−γp

(t− r − y)δ

(
1 + ln

〈t− r〉
〈y〉

)p

dy.

As kp ≥ k + 2 by assumption and γp < 1 by (2.12), this actually implies

Kδ −K′δ ≤ Cr−1/2

∫ −|t−r|

−∞

〈y〉−1/2+δ−k dy

(t− r − y)δ
+ Cr−1/2 〈t− r〉1/2−k

in view of Lemma 9. Since we also have k > 1/2 for this case, we may then apply Lemma 8 to
deduce the desired estimate (2.28). This finally completes the proof.

3. Basic Estimate for the Existence Proof

In this section, we turn our attention to the Duhamel operator

[L F (u)](x, t) =
1

2π

∫ t

−∞
(t− τ)

∫

|y|<1

F (u(x + (t− τ)y, τ))√
1− |y|2 dy dτ (3.1)

and prove the following basic estimate for the existence proof.

Lemma 14. Suppose that F satisfies (2.8), (2.9) and assume that (2.10), (2.12) hold. Given
an element u ∈ X of the Banach space (2.4) such that ||u|| ≤ 1, one then has the estimate

||L F (u)|| ≤ C1||u||p
for some constant C1 which is independent of u.

To prove this lemma, we first use a direct differentiation to write

∂α
x [L F (u)](x, t) =

1

2π

∫ t

−∞

1

t− τ

∫

|z−x|<t−τ

∂α
z F (u(z, τ)) dz dτ

for each multi-index α. When it comes to the integrand, we have the estimate

|∂α
z F (u(z, τ))| ≤ C||u||p · wk(|z|, |τ |)−p, |α| ≤ 2.

One can easily obtain this estimate using our assumptions (2.8), (2.9) on F and the definition
of our norm (2.5), so we omit its derivation. Combining the last two equations, we now get

|∂α
x L F (u)| ≤ C||u||p

∫ t

−∞
(t− τ)

∫

|y|<1

wk(|x + (t− τ)y|, |τ |)−p

√
1− |y|2 dy dτ.

Switching to polar coordinates y = ρξ with |ξ| = 1, we thus get

|∂α
x L F (u)| ≤ C||u||p

∫ t

−∞
(t− τ)

∫ 1

0

∫

|ξ|=1

wk(|x + (t− τ)ρξ|, |τ |)−p

√
1− ρ2

ρ dSξ dρ dτ

= C||u||p
∫ t

−∞

∫ t−τ

0

σ√
(t− τ)2 − σ2

∫

|ξ|=1

wk(|x + σξ|, |τ |)−p dSξ dσ dτ.

In order to proceed, we need to invoke the following elementary lemma from [5].
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Lemma 15. Let σ > 0 and x ∈ R2. Given a continuous function g : R→ R, one has∫

|ξ|=1

g(|x + σξ|) dSξ =

∫ σ+r

|σ−r|

4λ g(λ)

H(λ, r, σ)
dλ,

where r = |x| and we have also set

H(λ, r, σ) =
√

σ2 − (λ− r)2
√

(λ + r)2 − σ2. (3.2)

Applying this lemma, we now arrive at

|∂α
x L F (u)| ≤ C||u||p

∫ t

−∞

∫ t−τ

0

∫ σ+r

|σ−r|

λwk(λ, |τ |)−p

√
(t− τ)2 − σ2

· σ

H(λ, r, σ)
dλ dσ dτ.

Switching the order of integration in the two innermost integrals, we then get

|∂α
x L F (u)| ≤ C||u||p

∫ t

−∞

∫ λ+

|λ−|

∫ t−τ

|λ−r|

λwk(λ, |τ |)−p

√
(t− τ)2 − σ2

· σ

H(λ, r, σ)
dσ dλ dτ

+ C||u||p
∫ t

−∞

∫ max(λ−,0)

0

∫ λ+r

|λ−r|

λwk(λ, |τ |)−p

√
(t− τ)2 − σ2

· σ

H(λ, r, σ)
dσ dλ dτ,

where we have set λ± = t− τ ± r for convenience. Write this equation as

|∂α
x L F (u)| ≤ C||u||p

∫ t

−∞

∫ λ+

|λ−|
λwk(λ, |τ |)−p ·K(λ, r, t− τ) dλ dτ

+ C||u||p
∫ t−r

−∞

∫ λ−

0

λwk(λ, |τ |)−p ·K(λ, r, t− τ) dλ dτ, (3.3)

where the kernel K(λ, r, t) is defined by

K(λ, r, t) =

∫ min(λ+r,t)

|λ−r|

σ√
t2 − σ2

·H(λ, r, σ)−1 dσ. (3.4)

To estimate this kernel, we shall use the following elementary fact.

Lemma 16. Let r, t > 0 and suppose that max(0, r− t) ≤ λ ≤ r + t. Using the notation above,
one can then write the kernel (3.4) in the form

K(λ, r, t) = (8rλ)−1/2 · J(µ(λ, r, t)), (3.5)

where µ(λ, r, t) denotes the rational function

µ(λ, r, t) =
λ2 + r2 − t2

2rλ
(3.6)

and we have also set

J(µ) =

∫ 1

max(−1,µ)

(s− µ)−1/2 (1− s2)−1/2 ds

for convenience. Here, the function J(µ) is well-defined for each µ ≤ 1 and satisfies

J(µ) ≤ C ln
(
1 + |µ + 1|−1/2

)
near µ = −1 (3.7)

as well as

J(µ) = O(|µ|−1/2) as µ → −∞. (3.8)
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Proof. We shall merely establish the identity (3.5), as the proof of our remaining assertions
can be found in section 8.2 of [8].

Suppose first that |t− r| ≤ λ ≤ t + r, in which case our definition (3.4) reads

K(λ, r, t) =

∫ t

|λ−r|

σ√
t2 − σ2

·H(λ, r, σ)−1 dσ. (3.9)

We note that µ(λ, r, |λ± r|) = ∓ 1 and ∂σµ(λ, r, σ) = −σ/(rλ). Moreover, we have

t2 − σ2 = 2rλ ·
(
µ(λ, r, σ)− µ(λ, r, t)

)
,

while the equations

µ(λ, r, σ)± 1 =
(λ± r + σ)(λ± r − σ)

2rλ
(3.10)

combine to give

1− µ(λ, r, σ)2 =
H(λ, r, σ)2

4r2λ2

with H(λ, r, σ) as in (3.2). Using the substitution s = µ(λ, r, σ) in (3.9), we now find

K(λ, r, t) = (8rλ)−1/2

∫ 1

µ(λ,r,t)

(
s− µ(λ, r, t)

)−1/2
(1− s2)−1/2 ds.

This is precisely our assertion (3.5), since |µ(λ, r, t)| ≤ 1 whenever |t− r| ≤ λ ≤ t + r.
Suppose now that 0 ≤ λ ≤ t− r. Arguing as above, one finds that

K(λ, r, t) = (8rλ)−1/2

∫ 1

−1

(
s− µ(λ, r, t)

)−1/2
(1− s2)−1/2 ds.

This is precisely our assertion (3.5), since µ(λ, r, t) ≤ −1 whenever 0 ≤ λ ≤ t− r.

Lemma 17. Suppose that 0 < δ and 0 < θ ≤ 1/2. Using the notation above, one then has

J(µ(λ, r, t)) ≤ C

(
r

t + r

)δ (
λ

λ + r − t

)δ

(3.11)

whenever |t− r| ≤ λ ≤ t + r; and also

J(µ(λ, r, t)) ≤ C

(
r

t + r

)θ
λ1/2(t− r)θ−1/2

(t− r − λ)θ
(3.12)

whenever 0 ≤ λ ≤ t− r. In either case, the constant C is independent of λ, r and t.

Proof. Suppose first that |t− r| ≤ λ ≤ t + r, in which case |µ(λ, r, t)| ≤ 1. Then (3.7) gives

J(µ(λ, r, t)) ≤ C|1 + µ(λ, r, t)|−δ = C

(
r

t + r + λ

)δ (
λ

λ + r − t

)δ

in view of (3.10). Since t + r + λ is equivalent to t + r here, our assertion (3.11) follows.
Suppose now that 0 ≤ λ ≤ t − r. Using the fact that t ≥ r here, one can easily check that

the rational function (3.6) is increasing in λ with

lim
λ→0+

µ(λ, r, t) = −∞, µ(t− r, r, t) = −1.
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Thus, we shall need to use the asymptotic expansions of J(µ) at each of these points. To obtain
the desired estimate (3.12), we divide our analysis into several cases.
Case 1: Suppose that 0 ≤ λ ≤ (t− r)/2. Then we need only establish the estimate

J(µ(λ, r, t)) ≤ C

(
r

t + r

)θ (
λ

t− r − λ

)1/2

(3.13)

because t− r is equivalent to t− r − λ. For the values of λ we are considering here,

µ(λ, r, t) ≤ µ

(
t− r

2
, r, t

)
= −5r + 3t

4r
≤ −2

because t ≥ r by above. Thus, the asymptotic expansion (3.8) ensures that

J(µ(λ, r, t)) ≤ C|1 + µ(λ, r, t)|−1/2 = C

(
r

t + r + λ

)1/2 (
λ

t− r − λ

)1/2

in view of (3.10). Since t + r + λ is equivalent to t + r here and since θ ≤ 1/2 by assumption,
this does imply the desired (3.13).
Case 2: When (t− r)/2 ≤ λ ≤ t− r and r ≤ t ≤ 2r, it suffices to show that

J(µ(λ, r, t)) ≤ C

(
λ

t− r − λ

)θ

. (3.14)

For the values of λ we are considering here, however, one has

µ(λ, r, t) ≥ µ

(
t− r

2
, r, t

)
= −5r + 3t

4r
≥ −11

4

because t ≤ 2r for this case. Recalling (3.7), one then easily obtains the estimate

J(µ(λ, r, t)) ≤ C|1 + µ(λ, r, t)|−θ ≤ C

(
r

t + r

)θ (
λ

t− r − λ

)θ

,

which trivially implies the desired (3.14).
Case 3: When (t− r)/2 ≤ λ ≤ t− r and t ≥ 2r and λ ≥ t− 3r/2, it suffices to show that

J(µ(λ, r, t)) ≤ C

(
r

t + r

)θ (
λ

t− r − λ

)θ

. (3.15)

Note that λ is equivalent to t± r for this case. For the values of λ we are considering here,

µ(λ, r, t) ≥ µ

(
t− 3r

2
, r, t

)
= −12t− 13r

8t− 12r
≥ −11

4

because t ≥ 2r for this case. Recalling (3.7), one then easily obtains the desired

J(µ(λ, r, t)) ≤ C|1 + µ(λ, r, t)|−θ ≤ C

(
r

t + r

)θ (
λ

t− r − λ

)θ

.

Case 4: When (t− r)/2 ≤ λ ≤ t− r and t ≥ 2r and λ ≤ t− 3r/2, it still suffices to show that
(3.15) holds. For the values of λ we are considering here, however, one has

µ(λ, r, t) ≤ µ

(
t− 3r

2
, r, t

)
= −12t− 13r

8t− 12r
≤ −3

2
.
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Thus, the asymptotic expansion (3.8) is now applicable and we get

J(µ(λ, r, t)) ≤ C

(
r

t + r

)1/2 (
λ

t− r − λ

)1/2

= C

(
r

t + r

)θ (
r

t + r

)1/2−θ (
λ

t− r − λ

)1/2

.

Since λ is equivalent to t± r and since r/2 ≤ t− r − λ for this case, we thus get

J(µ(λ, r, t)) ≤ C

(
r

t + r

)θ (
t− r − λ

λ

)1/2−θ (
λ

t− r − λ

)1/2

because θ ≤ 1/2 by assumption. This is precisely the desired estimate (3.15).

Let us now return to the proof of Lemma 14. As we already know from (3.3), we have

|∂α
x L F (u)| ≤ C||u||p

∫ t

−∞

∫ λ+

|λ−|
λwk(λ, |τ |)−p ·K(λ, r, t− τ) dλ dτ

+ C||u||p
∫ t−r

−∞

∫ λ−

0

λwk(λ, |τ |)−p ·K(λ, r, t− τ) dλ dτ,

where λ± = t− τ ± r and the kernel K(λ, r, t) is given by (3.4). Using (3.5) and the estimates
of Lemma 17, we then find

|∂α
x L F (u)| ≤ C||u||p · rδ−1/2

∫ t

−∞

∫ λ+

|λ−|

λδ+1/2 wk(λ, |τ |)−p

λδ
+(λ− λ−)δ

dλ dτ

+ C||u||p · rθ−1/2

∫ t−r

−∞

∫ λ−

0

λwk(λ, |τ |)−p

λθ
+ λ

1/2−θ
− (λ− − λ)θ

dλ dτ,

where 0 < δ and 0 < θ ≤ 1/2 are arbitrary, while C is independent of r, t. Note that the last
equation can also be written in the form

|∂α
x L F (u)| ≤ C||u||p · (Iδ +Kθ),

where Iδ and Kθ are the integrals treated in Lemmas 10 and 13, respectively. Once we now fix
the parameters δ, θ in accordance with these lemmas, we get

|∂α
x L F (u)| ≤ C||u||p · wk(r, |t|)−1.

In view of the definition (2.5) of our norm, this actually implies

||L F (u)|| ≤ C||u||p

and also completes the proof of Lemma 14.

4. Existence of the scattering operator

In this section, we turn to the proofs of our main results, Theorem 1 and Theorem 3.

Proof of Theorem 1. Our iteration argument is almost identical with that of [12], so we only
give a sketch of the proof. As we have already mentioned earlier, one may decrease the decay
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rate k of the initial data to ensure that (2.10) and (2.12) hold without loss of generality. We
let u0 = u−0 be the solution given by Lemma 4 and then recursively define

ui+1 = u−0 + L F (ui), i ≥ 0. (4.1)

According to Lemma 4, we then have u0 ∈ X with X as in (2.4), and we also have

||u0|| ≤ C0ε.

In order to proceed, we shall assume that ε is so small that

2C0ε ≤ 1, 2C1(2C0ε)
p−1 ≤ 1

when C1 is the constant appearing in Lemma 14. Then we have

2||u0|| ≤ 1, 2C1(2||u0||)p−1 ≤ 1.

Using Lemma 14 and induction, we now find that ||ui|| ≤ 2||u0|| for all i. In particular, the
whole sequence {ui} lies in X. Using Lemma 14 and a contraction argument, as in [12], we
deduce the existence of a unique solution u ∈ X to the integral equation (1.8).

Proof of Theorem 3. Our first step is to establish (1.11), which asserts that

||u− u−0 ||e → 0 as t → −∞.

To prove this fact, as it is well-known, it suffices to obtain an estimate of the form

∫ t

−∞
||F (u)||L2(R2) dτ ≤ C 〈t〉−ε , t ≤ 0 (4.2)

for some ε > 0; see [9] for more details. In particular, we need only show that

G(τ) ≡
∫

R2

F (u(x, τ))2 dx ≤ C 〈τ〉−2ε−2 , τ ≤ 0 (4.3)

for some ε > 0. Now, using our assumptions (2.8), (2.9) on F and the definition (2.5) of our
norm, one easily finds that

F (u(x, τ))2 ≤ C|u(x, τ)|2p ≤ C||u||2p · wk(|x|, |τ |)−2p

because u ∈ X by Theorem 1. Recall that the weight function (2.6) is given by

wk(|x|, |τ |) = 〈|τ |+ |x|〉β 〈|τ | − |x|〉γ
(

1 + ln
〈|τ |+ |x|〉
〈|τ | − |x|〉

)−δk,1/2

,

where β = min(k, 1/2), γ = k − β and δk,1/2 is the usual Kronecker delta. Inserting the last
two equations in our definition (4.3), we now switch to polar coordinates to find that

G(τ) ≤ C

∫ ∞

0

〈|τ |+ r〉1−2βp 〈|τ | − r〉−2γp

(
1 + ln

〈|τ |+ r〉
〈|τ | − r〉

)2p δk,1/2

dr. (4.4)
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Note that each of 〈|τ | ± r〉 is equivalent to 〈r〉 whenever r ≥ 2|τ |, while each of 〈|τ | ± r〉 is
equivalent to 〈τ〉 whenever |τ | ≥ 2r. Thus, the last equation also implies

G(τ) ≤ C

∫ ∞

2|τ |
〈r〉1−2(β+γ)p dr + C 〈τ〉1−2(β+γ)p

∫ |τ |/2

0

dr

+ C

∫ 2|τ |

|τ |/2

〈|τ |+ r〉1−2βp 〈|τ | − r〉−2γp

(
1 + ln

〈|τ |+ r〉
〈|τ | − r〉

)2p

dr.

Here, β + γ = k by definition (2.11), so we actually have

2− 2(β + γ)p = 2− 2kp ≤ −2k − 2 < −2

because 2kp ≥ 2k + 4 by (2.10). Combining the last two equations, we then get

G(τ) ≤ C 〈τ〉2−2kp + C 〈τ〉1−2βp+ε

∫ 2|τ |

|τ |/2

〈|τ | − r〉−2γp dr

for any ε > 0 whatsoever. Note that this trivially implies

G(τ) ≤ C 〈τ〉2−2kp + C 〈τ〉1−2βp+ε + C 〈τ〉2−2(β+γ)p+2ε

≤ C 〈τ〉2−2kp+2ε + C 〈τ〉1−2βp+2ε (4.5)

because β + γ = k by above. In addition, (2.10) and (2.12) ensure that

ε =
1

2
· min(kp− 2, βp− 3/2)

is positive. Invoking (4.5) for this choice of ε, it is now easy to deduce the desired (4.3).
This finally completes the proof of (4.2), which also implies our first assertion (1.11). To

prove the remaining assertions of the theorem, we set

u+
0 (x, t) = u(x, t)− 1

2π

∫ ∞

t

(τ − t)

∫

|y|<1

F (u(x + (τ − t)y, τ))√
1− |y|2 dy dτ.

As one can readily check, u+
0 is then a C2-solution to the homogeneous wave equation (1.7).

Besides, the expression u−u+
0 bears a close resemblance to the Duhamel operator (1.9), so one

may establish the convergence

||u− u+
0 ||e → 0 as t → +∞

in the exact same way that we obtained (1.11). Given some other C2-solution with the same
properties as u+

0 , the difference w of the two must satisfy the homogeneous equation (1.7) and
its energy norm ||w||e must tend to zero as t → +∞. Since this implies that w ≡ 0, the
uniqueness assertion of the theorem follows as well.
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