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Abstract

We consider the motion of four vortex points on sphere, which defines
a Hamiltonian dynamical system. When the moment of vorticity vector,
which is a conserved quantity, is zero at the initial moment, the motion of
the four vortex points is integrable. The present paper gives a description
of the integrable system by reducing it to a three-vortex problem. At the
same time, we discuss if the vortex points collide self-similarly in finite
time.
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1 Introduction

Let (θm, φm) denote the position of the mth vortex point in the spherical coordi-
nates. The motion of the N -vortex points with the strength Γm on a sphere with
unit radius is governed by

θ̇m = − 1

4π

N∑
j �=m

Γj sin θj sin(φm − φj)

1 − cos γmj
, (1)

φ̇m = − 1

4π sin θm

N∑
j �=m

Γj [cos θm sin θj cos(φm − φj) − sin θm cos θj ]

1 − cos γmj
, (2)
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in which γmj represents the central angle between the mth and the jth vor-
tex points, and cos γmj = cos Θm cos Θj + sin Θm sin Θj cos(Ψm − Ψj). With the
Hamiltonian

H = − 1

4π

N∑
m<j

ΓmΓj log(1 − cos γmj), (3)

we rewrite the equations (1) and (2) in the following form[6, 8]:

d cos θm

dt
= {cos θm, H},

dφm

dt
= {φm, H},

in which the Poisson bracket between two functions f and g is defined by

{f, g} =
N∑

m=1

1

Γm

(
∂f

∂φm

∂g

∂ cos θm
− ∂g

∂φm

∂f

∂ cos θm

)
. (4)

Let us introduce the total vorticity Γ and the moment of vorticity vector M =
(Q, P, S) by

Γ =

N∑
m=1

Γm,

Q =
N∑

m=1

Γm sin θm cos φm,

P =
N∑

m=1

Γm sin θm sin φm,

S =

N∑
m=1

Γm cos θm.

Each component of M is an invariant quantity due to {H, Q} = {H, P} =
{H, S} = 0. Since the invariants P 2 + Q2 and S satisfy {H, P 2 + Q2} =
{P 2 + Q2, S} = 0, the motion of three vortex points is integrable and it has
been investigated[4, 5, 11]. Moreover, we have {Q, P} = S, {P, S} = Q and
{S, Q} = P , and thus they are in involution with each other when Q = P = S = 0
holds at the initial moment. This indicates that the four-vortex problem on the
sphere is also integrable, if the moment of vorticity is zero.

The four-vortex motion in an unbounded plane is integrable when the total
vorticity and the total impulse are zero[3, 8]. Aref and Stremeler[2] have given
the complete description of the integrable system with the reduction method
developed by Rott[10]. The purpose of the article is to give a description of the
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integrable four-vortex motion on the sphere with the reduction method. We must
note that it is unnecessary to assume that the total vorticity is zero to obtain the
integrability for the spherical case, which is a big difference from the planar case.

The article consists of six sections. In §2, we reduce the four vortex problem
to a three vortex problem with the Rott’s reduction method. After discussing
the existence of the self-similar collapse in §3, we give a complete description of
the four-vortex problem for Γ(Γ − 2Γ4) �= 0 in §4, and for Γ(Γ − 2Γ4) = 0 in §5.
We summarize the results in the last section.

2 Reduction to a three vortex problem

The reduction method is based on the relative configuration of the four vortex
points. Suppose that we define the distance lij between two vortex points (θi, φi)
and (θj , φj) by l2ij = 2(1 − cos γij). Then the equations (1) and (2) conserve the
Hamiltonian H

H = Γ1Γ2 log l212 + Γ2Γ3 log l223 + Γ3Γ1 log l231
+Γ1Γ4 log l214 + Γ2Γ4 log l224 + Γ3Γ4 log l234, (5)

and the invariant C

C = Γ2 − (P 2 + Q2 + R2)

= Γ1Γ2l
2
12 + Γ2Γ3l

2
23 + Γ3Γ1l

2
31 + Γ1Γ4l

2
14 + Γ2Γ4l

2
24 + Γ3Γ4l

2
34. (6)

Note that C = Γ2, since the moment of vorticity vector is always zero.
Now, we introduce the other invariants as follows. Owing to Q = P = S = 0,

separating the terms for the vortex 1 and for the vortex triple 234, we have

Γ2
1 sin2 θ1 cos2 φ1 = (Γ2 sin θ2 cos φ2 + Γ3 sin θ3 cos φ3 + Γ4 sin θ4 cos φ4)

2, (7)

Γ2
1 sin2 θ1 sin2 φ1 = (Γ2 sin θ2 sin φ2 + Γ3 sin θ3 sin φ3 + Γ4 sin θ4 sin φ4)

2, (8)

Γ2
1 cos2 θ1 = (Γ2 cos θ2 + Γ3 cos θ3 + Γ4 cos θ4)

2. (9)

Adding both sides of (7), (8) and (9), we define the invariant L1 by

L1 ≡ Γ2Γ3l
2
23 + Γ2Γ4l

2
24 + Γ3Γ4l

2
34 = (Γ2 + Γ3 + Γ4)

2 − Γ2
1. (10)

Applying the similar algebraic steps to the vortex triples 134, 124 and 123 yields
the other invariants L2, L3 and L4:

L2 ≡ Γ3Γ1l
2
31 + Γ1Γ4l

2
14 + Γ3Γ4l

2
34 = (Γ1 + Γ3 + Γ4)

2 − Γ2
2, (11)

L3 ≡ Γ1Γ2l
2
12 + Γ1Γ4l

2
14 + Γ2Γ4l

2
24 = (Γ1 + Γ2 + Γ4)

2 − Γ2
3, (12)

L4 ≡ Γ1Γ2l
2
12 + Γ2Γ3l

2
23 + Γ3Γ1l

2
31 = (Γ1 + Γ2 + Γ3)

2 − Γ2
4. (13)
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Then, we obtain

L1 − L2 − L3 + L4 = 2Γ2Γ3l
2
23 − 2Γ1Γ4l

2
14 = 2Γ(−Γ1 + Γ2 + Γ3 − Γ4), (14)

L1 − L2 + L3 − L4 = 2Γ2Γ4l
2
24 − 2Γ3Γ1l

2
31 = 2Γ(−Γ1 + Γ2 − Γ3 + Γ4), (15)

L1 + L2 − L3 − L4 = 2Γ3Γ4l
2
34 − 2Γ1Γ2l

2
12 = 2Γ(−Γ1 − Γ2 + Γ3 + Γ4). (16)

Hence, the distances l214, l224 and l234 are derived from the relative distances of the
vortex triple 123 by

Γ1Γ4l
2
14 = Γ2Γ3l

2
23 + Γ(Γ1 − Γ2 − Γ3 + Γ4), (17)

Γ2Γ4l
2
24 = Γ3Γ1l

2
31 + Γ(−Γ1 + Γ2 − Γ3 + Γ4), (18)

Γ3Γ4l
2
34 = Γ1Γ2l

2
12 + Γ(−Γ1 − Γ2 + Γ3 + Γ4). (19)

3 Self-similar collapsing solution

3.1 Non existence of the four vortex self-similar collapse

In the planar vortex problem, it is known that the four vortex points collapse
self-similarly in finite time[7]. As for the three-vortex problem on the sphere, the
self-similar collapsing solution has been found[5]. Here, we consider whether or
not the self-similar collapse of the four vortex points exists when the moment of
vorticity is zero.

Suppose that the four vortex points converge on a point in finite time, i.e.
l212 = l223 = l231 = l214 = l224 = l234 = 0. Then we have C = Γ2 = 0 at the critical
time, which yields Γ = 0. Moreover, we assume the self-similarity for the vortex
triple 123,

l212 = λ1l
2
31, l223 = λ2l

2
31, λ1, λ2 ∈ R. (20)

Then, it follows from (17), (18) and (19) with Γ = 0 that we have

l214 =
Γ2Γ3

Γ1Γ4
λ2l

2
31, l224 =

Γ3Γ1

Γ2Γ4
l231, l234 =

Γ1Γ2

Γ3Γ4
λ1l

2
31. (21)

Substitution of (20) and (21) into (5) leads to

H = log
(
l231

)Γ1Γ2+Γ2Γ3+Γ3Γ1+Γ1Γ4+Γ2Γ4+Γ3Γ4 .

Since the Hamiltonian must remain finite as l231 tends to zero, the necessary
conditions for the existence of the self-similar collapse are given by

Γ = 0, Γ1Γ2 + Γ2Γ3 + Γ3Γ1 + Γ1Γ4 + Γ2Γ4 + Γ3Γ4 = 0. (22)

As a matter of fact, the conditions never hold simultaneously. This is because

0 = Γ1Γ2 + Γ2Γ3 + Γ3Γ1 + Γ1Γ4 + Γ2Γ4 + Γ3Γ4

= Γ1Γ2 + Γ2Γ3 + Γ3Γ1 − (Γ1 + Γ2 + Γ3)
2

= −1

2
(Γ1 + Γ2)

2 − 1

2
(Γ2 + Γ3)

2 − 1

2
(Γ3 + Γ1)

2.
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This leads to Γ1 = Γ2 = Γ3 = 0, which contradicts Γi �= 0. Accordingly, there
exists no self-similar collapse of the four vortex points.

3.2 On the partial self-similar collapse

We discuss the necessary conditions for the existence of the partial collapse.
There are two possibilities where not all but part of the vortex points collapse
self-similarly in finite time: The first case is that the three vortex points collide
at a point, while the other stays at another position. The second case is that the
pairs of two vortex points collide at different positions.

First suppose that the vortex triple 123 converges on a point at a certain time,
i.e. l212 = l223 = l231 = 0, whereas the fourth vortex point is still located at another
position, i.e. l214 �= 0, l224 �= 0 and l234 �= 0. Then we obtain Γ �= 0, otherwise
it follows from (17) with l223 = 0 that Γ1Γ4l

2
14 = 0 at the collapsing time, which

gives a contradiction to l214 �= 0. On the other hand, substituting (17), (18) and
(19) into (6) leads to

C = 2Γ1Γ2l
2
12 + 2Γ2Γ3l

2
23 + 2Γ3Γ1l

2
31 + Γ(4Γ4 − Γ). (23)

Hence, we have C = Γ(4Γ4 − Γ) = Γ2 at the singular time. Due to Γ �= 0, we
obtain a necessary condition for the existence of the partial self-similar collapse,
which is Γ1 + Γ2 + Γ3 = Γ4. Then the relations (17), (18) and (19) become

l214 =
Γ2Γ3

Γ1Γ4

l223 + 4, l224 =
Γ3Γ1

Γ2Γ4

l231 + 4, l234 =
Γ1Γ2

Γ3Γ4

l212 + 4. (24)

They indicate that if the vortex triple 123 collapses, the fourth vortex point is
located at the opposite pole-position of the collapsing point. On the other hand,
since we assume the self-similar collapse, i.e. l212 = λ1l

2
31 and l223 = λ2l

2
31 with the

constant ratio λ1, λ2 ∈ R, the Hamiltonian is equivalent to

log
(
l231

)Γ1Γ2+Γ2Γ3+Γ3Γ1

(
Γ2Γ3

Γ1Γ4
λ2l

2
31 + 4

) (
Γ3Γ1

Γ2Γ4
l231 + 4

) (
Γ1Γ2

Γ3Γ4
λ1l

2
12 + 4

)
. (25)

The Hamiltonian must remain finite as l231 → 0, so we have another necessary
condition, Γ1Γ2 +Γ2Γ3 +Γ3Γ1 = 0. In the similar manner, considering the partial
collapse of the vortex triple 124, 134 and 234, we have the necessary conditions
as follows:

Γ1 + Γ2 + Γ3 = Γ4, Γ1Γ2 + Γ2Γ3 + Γ3Γ1 = 0, (26)

Γ1 + Γ2 + Γ4 = Γ3, Γ1Γ2 + Γ1Γ4 + Γ2Γ4 = 0, (27)

Γ1 + Γ3 + Γ4 = Γ2, Γ1Γ3 + Γ1Γ4 + Γ3Γ4 = 0, (28)

Γ2 + Γ3 + Γ4 = Γ1, Γ2Γ3 + Γ2Γ4 + Γ3Γ4 = 0. (29)

Next we deal with the case when pairs of two vortex points collide at some
different positions self-similarly in finite time; suppose that the pair of vortices
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1 and 2 converges on a point, and the vortex 3 collides with the vortex 4 at a
different point at the same time. Then since l212 = l234 = 0 at the critical time, the
relation (19) becomes Γ(−Γ1 −Γ2 + Γ3 +Γ4) = 0. Hence we have either Γ = 0 or
Γ1 + Γ2 = Γ3 + Γ4. As a matter of fact, we can show that Γ is not zero. If Γ = 0,
the relations (17), (18) and (6) at the collapsing time are represented by

Γ1Γ4l
2
14 = Γ2Γ3l

2
23, (30)

Γ2Γ4l
2
24 = Γ3Γ1l

2
31, (31)

Γ2Γ3l
2
23 + Γ3Γ1l

2
31 + Γ2Γ4l

2
24 + Γ1Γ4l

2
14 = 0. (32)

We note that all the vortex strengths cannot be of the same sign due to Γ = 0.
If one of the vortex strength, say Γ4 for instance, is negative and the others
have the positive sign, the both sides of (30) have the opposite signs and thus
(30) is invalid. On the other hand, it follows from (30), (31) and (32) that we
have Γ3l

2
23 + Γ4l

2
24 = 0, which never holds when both Γ3 and Γ4 are negative.

Consequently, we have Γ �= 0, and thus a necessary condition for the pairing
collapse is given by Γ1 + Γ2 = Γ3 + Γ4. Furthermore, we can see from the self-
similarity assumption, l212 = λl234, (λ ∈ R), that the Hamiltonian remains finite
even at the singular time, that is to say

log
(
l212

)Γ1Γ4+Γ2Γ3 < ∞,

as l212 → 0. Hence, we have another necessary condition Γ1Γ4 + Γ2Γ3 = 0 for
the partial collapse. With the similar argument, we have the other necessary
conditions for the existence of the pairing self-similar collapse:

Γ1 + Γ2 = Γ3 + Γ4 Γ1Γ2 + Γ3Γ4 = 0, (33)

Γ1 + Γ3 = Γ2 + Γ4 Γ1Γ3 + Γ2Γ4 = 0, (34)

Γ1 + Γ4 = Γ2 + Γ3 Γ1Γ4 + Γ2Γ3 = 0. (35)

For the time being, we are unable to rule out the possibility of the partial self-
similar collapse. It is generally difficult to show the existence of the collapsing
solution mathematically. Hence we will verify it numerically in the following
sections.

4 Four-vortex motion for non-degenerate case

4.1 Trilinear representation and physical region

We deal with the dynamics of the four vortex points when L4 = (Γ1 +Γ2 +Γ3)
2−

Γ2
4 = Γ(Γ − 2Γ4) �= 0. Let us introduce the variables

b1 =
3Γ2Γ3l

2
23

Γ(Γ − 2Γ4)
, b2 =

3Γ3Γ1l
2
31

Γ(Γ − 2Γ4)
, b3 =

3Γ1Γ2l
2
12

Γ(Γ − 2Γ4)
. (36)
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b1

b2

b3

Figure 1: Trilinear coordinates representation for the non-degenerate case.

Then the definition of L4 with these variables yields b1 + b2 + b3 = 3, which
indicates that the relative configuration of the vortex triple 123 corresponds to
a point in the phase plane as is shown in Figure 1. Each component of the
trilinear coordinates (b1, b2, b3) represents the distance from one of the sides of
the equilateral triangle with height 3, which is called the trilinear triangle. The
trilinear representation is a standard tool to describe the integrable three-vortex
motion[1, 2, 4, 11].

In the four-vortex problem, we need to consider the distances between the
vortex triple 123 and the fourth vortex point. Thus we define the other variables
B1, B2 and B3 from (17), (18) and (19) as follows:

B1 =
3Γ1Γ4l

2
14

Γ(Γ − 2Γ4)
= b1 +

3

Γ − 2Γ4
(Γ − 2Γ2 − 2Γ3), (37)

B2 =
3Γ2Γ4l

2
24

Γ(Γ − 2Γ4)
= b2 +

3

Γ − 2Γ4
(Γ − 2Γ3 − 2Γ1), (38)

B3 =
3Γ3Γ4l

2
34

Γ(Γ − 2Γ4)
= b3 +

3

Γ − 2Γ4
(Γ − 2Γ1 − 2Γ2). (39)

Then we note that

B1 + B2 + B3 = b1 + b2 + b3 +
3

Γ − 2Γ4

(3Γ − 4Γ1 − 4Γ2 − 4Γ3) =
6Γ4

Γ − 2Γ4

,

which indicates that the triple (B1, B2, B3) also defines another trilinear coordi-
nates; each component Bi represents the distance from one of the sides of the
equilateral triangle with height 6Γ4

Γ−2Γ4
. As in the integrable planar four-vortex

problem[2], the triangle is called the physical triangle.
Since the vortex triple 123 forms a triangle on the sphere, the values of

(b1, b2, b3) are restricted by the triangle inequalities, which is equivalent to the
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following inequality[4],

2l212l
2
23 + 2l223l

2
31 + 2l231l

2
12 − l412 − l423 − l431 ≥ l212l

2
23l

2
31. (40)

In terms of the trilinear representation, the condition is equivalent to

3Vp − Γ(Γ − 2Γ4)b1b2b3 ≥ 0, (41)

where

Vp = 2Γ2Γ3b2b3 + 2Γ3Γ1b3b1 + 2Γ1Γ2b1b2 − (Γ1b1)
2 − (Γ2b2)

2 − (Γ3b3)
2.

The region in which the condition (41) is satisfied is called the physical region,
where the motion of the reduced three vortex points is restricted. Any point at
the boundary of the physical region corresponds to the collinear configuration,
for which the three vortex points line on a great circle of the sphere.

Now, we consider the singular points at the boundary of the physical region.
They are obtained by solving the following equations,

b1 + b2 + b3 = 3, 3Vp − Γ(Γ − 2Γ4)b1b2b3 = 0, (42)

with bi = 0. Then we have

(b1, b2, b3) =

(
0,

3Γ3

Γ2 + Γ3
,

3Γ2

Γ2 + Γ3

)
, (43)

(b1, b2, b3) =

(
3Γ3

Γ1 + Γ3

, 0,
3Γ1

Γ1 + Γ3

)
, (44)

(b1, b2, b3) =

(
3Γ2

Γ1 + Γ2
,

3Γ1

Γ1 + Γ2
, 0

)
. (45)

They correspond to the singular configurations coinciding the vortices 2 and 3, 3
and 1, and 1 and 2, respectively. Since the boundary of the physical region is a
conic section, the points are tangent to the sides of the trilinear triangle. Thus
we refer to the points as the points of tangency.

Finally, we obtain the points tangent to the sides of the physical triangle.
Solving the equations (42) with B1 = 0, i.e.

b1 =
3

Γ − 2Γ4
(2Γ2 + 2Γ3 − Γ),

we have

(b1, b2, b3) =

(
3(2Γ2 + 2Γ3 − Γ)

Γ − 2Γ4
,

3Γ1(2Γ2 − Γ)

(Γ − 2Γ4)(Γ2 + Γ3 − Γ)
,

3Γ1(2Γ3 − Γ)

(Γ − 2Γ4)(Γ2 + Γ3 − Γ)

)
.

(46)
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Regarding B2 = 0 and B3 = 0, we have the points of tangency in the similar
manner:

(b1, b2, b3) =

(
3Γ2(2Γ1 − Γ)

(Γ − 2Γ4)(Γ3 + Γ1 − Γ)
,
3(2Γ3 + 2Γ1 − Γ)

Γ − 2Γ4

,
3Γ2(2Γ3 − Γ)

(Γ − 2Γ4)(Γ3 + Γ1 − Γ)

)
,

(47)

(b1, b2, b3) =

(
3Γ3(2Γ1 − Γ)

(Γ − 2Γ4)(Γ1 + Γ2 − Γ)
,

3Γ3(2Γ2 − Γ)

(Γ − 2Γ4)(Γ1 + Γ2 − Γ)
,
3(2Γ1 + 2Γ2 − Γ)

Γ − 2Γ4

)
.

(48)
These three points (46) – (48) represent the singular configurations where the
vortices 1 and 4, 2 and 4, and 3 and 4 coincide together.

As the four vortex points evolve, the corresponding point in the trilinear phase
space follows a contour curve of the Hamiltonian,

H = Γ2Γ3 log |b1| + Γ3Γ1 log |b2| + Γ1Γ2 log |b3|
+Γ1Γ4 log |B1| + Γ2Γ4 log |B2| + Γ3Γ4 log |B3|. (49)

Therefore, in order to observe the four-vortex motion, we plot the contour curves
of the Hamiltonian inside the physical region (41) with the points of tangency at
the boundary.

4.2 Restriction on the vortex strengths

In the planar four-vortex problem[2], the zero total vorticity condition is required
to guarantee the integrability. On the contrary, we have no such condition on
the vortex strengths for the spherical case. Nevertheless, as a matter of fact, we
need to restrict the vortex strengths so that the invariants L1, L2, L3 and L4 are
bounded, since the distances between any two vortex points on the sphere are
bounded by

0 ≤ l212, l
2
23, l

2
31, l

2
14, l

2
24, l

2
34 ≤ 4. (50)

Without loss of generality, we may assume that Γ1 ≥ Γ2 ≥ Γ3 ≥ Γ4. Besides,
noting that the equations (1) and (2) are symmetric with respect to the discrete
transformation Γi → −Γi and t → −t, it is sufficient to deal with the following
three cases:

Γ1 ≥ Γ2 ≥ Γ3 ≥ Γ4 > 0, Γ1 ≥ Γ2 ≥ Γ3 > 0 > Γ4, Γ1 ≥ Γ2 > 0 > Γ3 ≥ Γ4.

For each case, we discuss the existence region of Γ3 and Γ4 when Γ1 and Γ2 are
specified, which is called the possible region.

In the meantime, we consider the singular cases when the points of tangency
(43) – (48) take the same position. They play an important role in the description
of the four-vortex motion, since the change of the distribution of the points results
in the change of the topological structure of the contour lines of the Hamiltonian.
For B1 = b1 = 0, which corresponds to the point when the vortices 1 and 4,
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Γ 1
+

Γ 2
Γ 1

-Γ
2

Γ1+Γ2Γ2Γ1-Γ2

Γ 4

Γ3

(a) Γ1-Γ2 < Γ2

I

II

Γ4=Γ3+Γ1+Γ2
Γ4=-Γ3+Γ1+Γ2

Γ4=Γ3+Γ1-Γ2
Γ4=-Γ3+Γ1-Γ2
Γ4=Γ3-Γ1+Γ2
Γ4=Γ3-Γ1-Γ2

Γ4=Γ3
Γ3=Γ2

Γ 1
+

Γ 2
Γ 1

-Γ
2

Γ1+Γ2Γ2 Γ1-Γ2

Γ 4

Γ3

(b) 2Γ2 > Γ1-Γ2 > Γ2

I

Γ4=Γ3+Γ1+Γ2
Γ4=-Γ3+Γ1+Γ2

Γ4=Γ3+Γ1-Γ2
Γ4=-Γ3+Γ1-Γ2
Γ4=Γ3-Γ1+Γ2
Γ4=Γ3-Γ1-Γ2

Γ4=Γ3
Γ3=Γ2

Figure 2: The possible regions for Γ1 ≥ Γ2 ≥ Γ3 ≥ Γ4 > 0.

and 2 and 3 collide simultaneously, we have Γ1 + Γ4 = Γ2 + Γ3. It follows from
B1 = b2 = 0 and B1 = b3 = 0, for which the vortex triples 134 and 124 collide,
that we have Γ2 = Γ1 + Γ3 + Γ4 and Γ3 = Γ1 + Γ2 + Γ4. In the same way, solving
B2 = bi = 0 and B3 = bi = 0, we obtain the following six singular cases:

Γ3 = Γ1 + Γ2 + Γ4, Γ2 = Γ1 + Γ3 + Γ4, Γ1 = Γ2 + Γ3 + Γ4, (51)

Γ1 + Γ2 = Γ3 + Γ4, Γ1 + Γ3 = Γ2 + Γ4, Γ1 + Γ4 = Γ2 + Γ3. (52)

We must note that they are part of the necessary conditions (27) – (29) and (33)
– (35) for the existence of the partial self-similar collapses given in §3.

4.3 Case I : Γ1 ≥ Γ2 ≥ Γ3 ≥ Γ4 > 0

We derive the conditions of the vortex strengths so that the invariants Li are
well-defined. Since min Li = 0 due to Γi > 0, the necessary conditions are given
by

L1 = (Γ2 + Γ3 + Γ4)
2 − Γ1 > 0, L2 = (Γ1 + Γ3 + Γ4)

2 − Γ2 > 0, (53)

L3 = (Γ1 + Γ2 + Γ4)
2 − Γ3 > 0, L4 = (Γ1 + Γ2 + Γ3)

2 − Γ4 > 0. (54)

Owing to Γ1 ≥ Γ2 ≥ Γ3 ≥ Γ4 > 0, they are reduced to

Γ1 < Γ2 + Γ3 + Γ4, 0 < Γ4 ≤ Γ3 ≤ Γ2. (55)

Strictly speaking, it is necessary to show that the condition (55) assures Li <
max Li, namely

L1 < 4Γ2Γ3 + 4Γ2Γ4 + 4Γ3Γ4, L2 < 4Γ1Γ3 + 4Γ1Γ4 + 4Γ3Γ4, (56)

L3 < 4Γ1Γ2 + 4Γ1Γ4 + 4Γ2Γ4, L4 < 4Γ1Γ2 + 4Γ2Γ3 + 4Γ3Γ1. (57)

The proof of the upper bound is important but lengthy, so we give it in the
appendix. Figure 2 shows the possible regions for Γ1 − Γ2 ≤ Γ2 and for Γ2 <

10



2-3

2-4
3-4

Figure 3: The physical region and the contour lines of the Hamiltonian for Γ1 =
5, Γ2 = 3, Γ3 = 2 and Γ4 = 1.

1-4

2-43-4

Figure 4: The physical region and the contour lines of the Hamiltonian for Γ1 =
5, Γ2 = 3, Γ3 = 5

2
and Γ1 = 1

4
.

Γ1 − Γ2 ≤ 2Γ2. No possible region exists for Γ1 − Γ2 > 2Γ2. The singular
conditions (51) and (52) divide the possible region into two regions I and II for
Γ1 − Γ2 ≤ Γ2. The possible region consists of just one region for Γ1 − Γ2 > Γ2,
which is still denoted by the region I, since the distribution of the points of
tangency is the same as that for Γ1 − Γ2 ≤ Γ2. We give examples of the contour
lines of the Hamiltonian, when we choose the vortex strengths Γ3 and Γ4 from
the regions I and II for Γ1 = 5 and Γ2 = 3.

Figure 3 shows the contour lines for Γ1 = 5, Γ2 = 3, Γ3 = 2 and Γ4 = 1 in
the region I. The trilinear triangle and the physical triangle are plotted by the
solid line and the dotted line respectively. Since the physical region, which is
contained in the physical triangle, is too small to discern, we magnify it to the
right side of the figure. The points of tangency at the boundary of the physical
region are designated by 2 − 3, 2 − 4 and 3 − 4, which correspond to b1 = 0,
B2 = 0 and B3 = 0 respectively. The topological structure of the contour curves
around the singular points is elliptic. There is an elliptic center inside the physical
region, which corresponds to a relative fixed configuration. There exist points at
the boundary where two level curves meet, which indicates the existence of the
hyperbolic collinear fixed points.

Figure 4 shows the contour lines of the Hamiltonian for Γ1 = 5, Γ2 = 3,

11
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Γ 4

(a) Γ1-Γ2 < Γ2

Γ3

I

II

III

IV

Γ4=-Γ3+Γ1-Γ2
Γ4=Γ3-Γ1+Γ2

Γ4=-Γ3-Γ1+Γ2
Γ4=-Γ3-Γ1-Γ2
Γ4=Γ3-Γ1-Γ2

Γ3=Γ2

-Γ
1-

Γ 2
Γ 2

-Γ
1

Γ1+Γ2Γ2 Γ1-Γ2

Γ 4

(b) Γ1-Γ2 > Γ2

Γ3

II

III

IV

Γ4=-Γ3+Γ1-Γ2
Γ4=Γ3-Γ1+Γ2

Γ4=-Γ3-Γ1+Γ2
Γ4=-Γ3-Γ1-Γ2
Γ4=Γ3-Γ1-Γ2

Γ3=Γ2

Figure 5: The possible regions for Γ1 ≥ Γ2 ≥ Γ3 > 0 > Γ4.

Γ3 = 5
2

and Γ4 = 1
4

in the region II. We just show the magnified physical region
with the physical triangle, since the trilinear triangle is too large to show in the
figure. When we compare the level curves with those in Figure 3, the point of
tangency 2−3 at the boundary is replaced by 1−4, but the topological structure
of the contour curves is the same.

We discuss the existence of the partial collapse. The possible region in Figure 2
indicates that the partial collapse possibly occurs when the vortex strengths Γ3

and Γ4 are on the singular boundary, Γ1 + Γ4 = Γ2 + Γ3. This is part of the
necessary conditions of the pairing collapse (35). However, the other necessary
condition Γ1Γ4 +Γ2Γ3 = 0 never holds, since all the vortex strengths are positive.
Hence, no partial collapse is possible.

4.4 Case II : Γ1 ≥ Γ2 ≥ Γ3 > 0 > Γ4

Since ΓiΓ4 for i = 1, 2, 3 are negative due to Γ4 < 0, we have min L1 = 4Γ3Γ4 +
Γ2Γ4, min L2 = 4Γ1Γ4 + Γ3Γ4, min L3 = 4Γ1Γ4 + Γ2Γ4 and min L4 = 0. Hence
the vortex strengths should satisfy

4Γ3Γ4 + 4Γ2Γ4 < (Γ2 + Γ3 + Γ4)
2 − Γ2

1, 4Γ1Γ4 + 4Γ3Γ4 < (Γ1 + Γ3 + Γ4)
2 − Γ2

2,

4Γ1Γ4 + 4Γ2Γ4 < (Γ1 + Γ2 + Γ4)
2 − Γ2

3, 0 < (Γ1 + Γ2 + Γ3)
2 − Γ2

4. (58)

Owing to Γ1 ≥ Γ2 ≥ Γ3 > 0 > Γ4, they are reduced to

Γ1 < Γ2 + Γ3 − Γ4, −Γ4 < Γ1 + Γ2 + Γ3, Γ4 < 0 < Γ3 ≤ Γ2. (59)

The possible region is shown in Figure 5. The proof of the sufficiency for (59) is
provided in the appendix. The possible region is divided into four regions by the
singular lines (51) and (52) for Γ1 −Γ2 ≤ Γ2, and three regions for Γ1 − Γ2 > Γ2.
The divided regions are referred to as the regions I to IV .

Figure 6 shows the physical region and the contour lines of the Hamiltonian
for Γ1 = 5, Γ2 = 3, Γ3 = 9

4
and Γ4 = −1

4
in the region I. There are three points of

12



1-4

3-42-4

Figure 6: The physical region and the contour lines of the Hamiltonian for Γ1 =
5, Γ2 = 3, Γ3 = 9

4
and Γ4 = −1

4
.

1-4

2-3

Figure 7: The physical region and the contour lines for Γ1 = 5, Γ2 = 3, Γ3 = 2
and Γ4 = −2.

tangency 1− 4, 2− 4 and 3− 4 at the boundary of the physical region, which are
elliptic singular points. There is an elliptic center inside the physical region. The
topological structure of the contour curves is similar to that we have observed in
§4.3.

Figure 7 shows the contour lines of the Hamiltonian for Γ1 = 5, Γ2 = 3, Γ3 = 2
and Γ4 = −2 in the region II. As the vortex strengths Γ3 and Γ4 pass across the
singular boundary Γ2 + Γ3 + Γ4 = Γ1 between the region I and II, the points of
tangency 2 − 4 and 3 − 4 are united, and then the new point of tangency 2 − 3
emerges. The topological structure of the contour is simple; there is no fixed
configuration.

For Γ1 = 5, Γ2 = 3, Γ3 = 2 and Γ4 = −5 in the region III, the contour
lines are given in Figure 8. On crossing the singular boundary Γ1 + Γ3 + Γ4 = Γ2

between the region II and III, the point of tangency 1−4 observed in the region
II is split into two elliptic points of tangency 1−3 and 3−4. There is a hyperbolic
fixed point inside the physical region, which is connected by homoclinic orbits.
The topological structure of the contour curves suggest that there exists another
elliptic fixed point at the boundary near the side B1 = 0 of the physical triangle.

13
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3-4

2-3

Figure 8: The physical region and the contour lines for Γ1 = 5, Γ2 = 3, Γ3 = 2
and Γ4 = −5.

1-4

1-2

2-4

2-3

3-4

1-3

Figure 9: The physical region and the contour lines for Γ1 = 5, Γ2 = 3, Γ3 = 2
and Γ4 = −8.
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2-3-4
b1=0

1-4

2-3-4

Figure 10: The physical region and the contour lines for Γ1 = 6, Γ2 = 5, Γ3 =
1
2
(1 +

√
21) and Γ4 = 1

2
(1 −√

21).

The contour lines for Γ1 = 5, Γ2 = 3, Γ3 = 2 and Γ4 = −8 in the region IV
is shown in Figure 9. The boundary of the physical region touches the side of
the trilinear triangle b3 = 0, and the three points of tangency 1 − 2, 2 − 4 and
1 − 4 emerge. There are two hyperbolic fixed points inside the physical region
with homoclinic connections.

The self-similar partial collapse is possible when the vortex strengths are at
the singular boundaries within the possible region:

Γ2 + Γ3 + Γ4 = Γ1, Γ1 + Γ2 + Γ4 = Γ3, Γ1 + Γ3 + Γ4 = Γ2.

The corresponding necessary conditions for the existence of the self-similar col-
lapsing solutions are given in (27) – (29); we examine each of them separately.
First, we note that the singular boundary Γ2 + Γ3 + Γ4 = Γ1 is included in the
possible region only when Γ1 − Γ2 ≤ Γ2. Then substituting Γ1 = Γ2 + Γ3 + Γ4

into Γ2Γ3 + Γ2Γ4 + Γ3Γ4 = 0 in (29) leads to the equation of Γ3,

Γ2
3 + Γ3(Γ2 − Γ1) + Γ2(Γ2 − Γ1) = 0.

For instance, Γ1 = 6, Γ2 = 5, Γ3 = 1
2
(1 +

√
21) and Γ4 = 1

2
(1 − √

21) satisfy
(29). We plot the physical triangle and the contour curves of the Hamiltonian for
this case in Figure 10. One of the corner of the physical triangle touches the line
b1 = 0, at which there is the point of tangency 2−3−4. If there exists a contour
line connecting the point of tangency, it implies the existence of the self-similar
collapsing solution. However, the contour curves in the neighborhood of the point
2−3−4, which is shown in the left side of the figure, shrink to the point 2−3−4
as the value of the Hamiltonian tends to that at the point of tangency. Therefore,

15
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Γ 4
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I

II

III

IV

Γ4=p-Γ1+Γ2
Γ4 = -p-Γ1+Γ2

Γ4 = p-Γ1-Γ2
Γ4=-p-Γ1-Γ2

Γ4=-p

Figure 11: The possible region for Γ1 ≥ Γ2 > 0 > Γ3 ≥ Γ4.

we hardly make sure the existence of the self-similar collapse. Second, it follows
from Γ1 + Γ2 + Γ4 = Γ3 and Γ1Γ2 + Γ1Γ4 + Γ2Γ4 = 0 that we obtain

Γ3 =
Γ2

1 + Γ1Γ2 + Γ2
2

Γ1 + Γ2
.

However, since Γ2 − Γ3 = − Γ2
1

Γ1+Γ2
< 0, it contradicts the assumption Γ2 ≥

Γ3. Hence, the necessary conditions (27) never hold together. Last, solving the
equations Γ2 = Γ1 + Γ3 + Γ4 and Γ1Γ3 + Γ1Γ4 + Γ3Γ4 = 0, we have the equation
of the vortex strength Γ3,

Γ2
3 + Γ3(Γ1 − Γ2) + Γ1(Γ1 − Γ2) = 0.

Since the determinant of the quadratic equation is (3Γ1 +Γ2)(Γ2 −Γ1) < 0, there
is no real solution of the equation and thus no self-similar partial collapse.

4.5 Case III: Γ1 ≥ Γ2 > 0 > Γ3 ≥ Γ4

Since min L1 = 4Γ2Γ3 +4Γ2Γ4, min L2 = 4Γ1Γ3 +4Γ1Γ4, min L3 = 4Γ1Γ4 +4Γ2Γ4

and min L4 = 4Γ1Γ3 + 4Γ2Γ3, the vortex strengths should satisfy the following
conditions,

min L1 < (Γ2 + Γ3 + Γ4)
2 − Γ2

1, min L2 < (Γ1 + Γ3 + Γ4)
2 − Γ2

2,

min L3 < (Γ1 + Γ2 + Γ4)
2 − Γ2

3, min L4 < (Γ1 + Γ2 + Γ3)
2 − Γ2

4. (60)

Hence, the possible region is described by

Γ3 + Γ4 − Γ2 + Γ1 < 0, Γ1 + Γ2 − Γ3 + Γ4 > 0, Γ4 ≤ Γ3 < 0. (61)

Defining p = −Γ3 > 0 for the sake of convenience, we draw the possible region of
(p, Γ4) in Figure 11. It consists of the four subregions I, II, III and IV , separated
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3-4

1-4

1-3

Figure 12: The physical region and the contour lines of the Hamiltonian for
Γ1 = 5, Γ2 = 3, Γ3 = −1 and Γ4 = −2.

3-4
2-3

1-3

Figure 13: The physical region and the contour lines of the Hamiltonian for
Γ1 = 5, Γ2 = 3, Γ3 = −1 and Γ4 = −5.

by the singular boundaries Γ1 + Γ4 = Γ2 + Γ3 and Γ4 = −Γ3 − Γ1 − Γ2. We now
give the contour curves of the Hamiltonian for each region in what follows.

When Γ1 = 5, Γ2 = 3, Γ3 = −1 and Γ4 = −2 in the region I, the physical
region is located outside of the trilinear triangle and the physical triangle as we
observe in Figure 12. There are three elliptic points of tangency 1− 3, 1− 4 and
3 − 4. We can observe an elliptic fixed point at the boundary and a hyperbolic
fixed point with homoclinic connections inside the physical region.

Figure 13 shows the contour lines of the Hamiltonian for Γ1 = 5, Γ2 = 3,
Γ3 = −1 and Γ4 = −5 in the region II. The points of tangency 1 − 3, 3 − 4 and
2−3 are on the boundary of the physical region. The topological structure is the
same as that in the region I.

When we choose the vortex strengths in the possible region III and IV , the
physical region is located on the left side of the trilinear triangle. Figure 14 and
15 show the contour lines of the Hamiltonian for Γ1 = 5, Γ2 = 3, Γ3 = −4
and Γ4 = −5, and for Γ1 = 5, Γ2 = 3, Γ3 = −2 and Γ4 = −8 respectively. The
topological structures of the contour curves are the same except for the the points
of tangency 2 − 3 and 1 − 4 at the boundary of the physical region.
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2-3 1-2

Figure 14: The physical region and the contour lines of the Hamiltonian for
Γ1 = 5, Γ2 = 3, Γ3 = −4 and Γ4 = −5.

2-4

1-4
1-2

Figure 15: The physical region and the contour lines of the Hamiltonian for
Γ1 = 5, Γ2 = 3, Γ3 = −2 and Γ4 = −8.

The singular boundaries in the possible region are represented by

Γ4 = p − Γ1 − Γ2, Γ4 = −p − Γ1 + Γ2.

It is unnecessary to deal with the first case, since Γ = 0 is excluded from the
non-degenerate case. As for Γ4 = −p − Γ1 + Γ2, the other necessary condition
of the partial collapse (35) is Γ1Γ4 + Γ2Γ3 = 0. However, since both terms are
negative due to Γ1 ≥ Γ2 > 0 > Γ3 ≥ Γ4, the conditions (35) are never satisfied
at the same time. Consequently, the self-similar partial collapse never occurs for
this case.

5 Four-vortex motion for degenerate case

5.1 Trilinear coordinates and the physical region

We deal with the four-vortex motion for the degenerate case L4 = 0, i.e. (Γ1+Γ2+
Γ3)

2−Γ2
4 = Γ(Γ−2Γ4) = 0. The trilinear coordinates b1, b2 and b3 are introduced

by b1 = Γ2Γ3l
2
23, b2 = Γ3Γ1l

2
31 and b3 = Γ1Γ2l

2
12. They satisfy b1 + b2 + b3 = 0

owing to L4 = 0. The trilinear representation (b1, b2, b3) defines a point in the
planar phase space as shown in Figure 16. Combining these variables with (40)
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b1
b2

b3

Figure 16: Trilinear coordinates representation for the degenerate case.

gives the physical region

2Γ1Γ2b1b2 + 2Γ2Γ3b2b3 + 2Γ3Γ1b3b1 − (Γ1b1)
2 − (Γ2b2)

2 − (Γ3b3)
2 ≥ b1b2b3. (62)

The variables B1, B2 and B3 are also defined by

B1 ≡ Γ1Γ4l
2
14 = b1 + Γ(Γ1 − Γ2 − Γ3 + Γ4), (63)

B2 ≡ Γ2Γ4l
2
24 = b2 + Γ(−Γ1 + Γ2 − Γ3 + Γ4), (64)

B3 ≡ Γ3Γ4l
2
34 = b3 + Γ(−Γ1 − Γ2 + Γ3 + Γ4). (65)

We show the contour lines of the Hamiltonian in the physical region for Γ = 0
and Γ = 2Γ4 separately in the following subsections.

5.2 Case I: Γ = 0

For Γ = 0, we have bi = Bi due to (63), (64) and (65). The point of tangency at
the boundary is only bi = Bi = 0, which corresponds to the origin in degenerate
the trilinear phase space. Since l214, l224 and l234 defined by (63), (64) and (65) are
bounded, the condition of the vortex strengths is derived from

0 <
Γ2Γ3

Γ1Γ4

l223,
Γ3Γ1

Γ2Γ4

l224,
Γ1Γ2

Γ3Γ4

l212 ≤ 4. (66)

Since the strength Γ4 is automatically given by Γ4 = −Γ1 − Γ2 − Γ3, we consider
the condition of the three vortex strengths for the following three cases: (1)
Γ1 ≥ Γ2 ≥ Γ3 > 0, (2) Γ1 ≥ Γ2 > 0 > Γ3 and (3) Γ1 > 0 > Γ2 ≥ Γ3. For
the first case, since Γ2Γ3

Γ1Γ4
l223 < 0 due to Γ4 < 0 and l223 ≥ 0, the condition (66) is

never satisfied. For the second case, Γ4 must be negative, otherwise Γ2Γ3

Γ1Γ4
l223 < 0.

For the similar reason, Γ4 is positive for the third case. Remembering that the
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1-2-3-4

Figure 17: The physical region and the contour lines of the Hamiltonian for
Γ1 = 4, Γ2 = 2, Γ3 = −3 and Γ4 = −3.

equations (1) and (2) have the symmetry with respect to the the sign changing
of the vortex strengths and the time reversal, we have only to treat just one case,
Γ1 ≥ Γ2 > 0 > Γ3 and Γ4 < 0, i.e. Γ3 > −Γ1 − Γ2.

Figure 17 shows the contour lines of the Hamiltonian for Γ1 = 4, Γ2 = 2,
Γ3 = −3 and Γ4 = −3. The origin of the degenerate trilinear phase space, which
corresponds to the four-vortex collision, is the point of tangency at the boundary
of the physical region. The topological structure of the contour is simple; there
is an elliptic fixed point at the boundary.

5.3 Case II: Γ = 2Γ4

Due to (63), (64) and (65), l214, l224 and l234 are equal to

l214 =
Γ2Γ3

Γ1Γ4
l223 + 4, l224 =

Γ3Γ1

Γ2Γ4
l231 + 4, l234 =

Γ1Γ2

Γ3Γ4
l212 + 4. (67)

Hence, the conditions for the existence of the fourth vortex point on the sphere
are derived from

−4 ≤ Γ2Γ3

Γ1Γ4
l223,

Γ3Γ1

Γ2Γ4
l231,

Γ1Γ2

Γ3Γ4
l212 ≤ 0. (68)

With the same argument as we have in the previous subsection, we have only to
deal with the case when Γ1 ≥ Γ2 > 0 > Γ3 and Γ4 = Γ1 + Γ2 + Γ3 > 0.

The points of tangency for Bi = 0 are given as follows. Taking B1 = 0 in
(63), we have b1 = −4Γ1Γ4. By solving the equations,

b1 + b2 + b3 = 0,

2Γ1Γ2b1b2 + 2Γ2Γ3b2b3 + 2Γ3Γ1b3b1 − (Γ1b1)
2 − (Γ2b2)

2 − (Γ3b3)
2 − b1b2b3 = 0,

with it, we have the point of tangency in the degenerate trilinear coordinates,

(b1, b2, b3) =

(
−4Γ1Γ4,

4Γ1Γ4(Γ3 + Γ1)

2Γ1 + Γ2 + Γ3
,
4Γ1Γ4(Γ2 + Γ1)

2Γ1 + Γ2 + Γ3

)
. (69)
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1-2-3

Figure 18: The physical region and the contour lines of the Hamiltonian for
Γ1 = 4, Γ2 = 2, Γ3 = −1 and Γ4 = 5.

1-4

1-2-3

Figure 19: The physical region and the contour lines of the Hamiltonian for
Γ1 = 4, Γ2 = 2, Γ3 = −3 and Γ4 = 3.

As for B2 = 0 and B3 = 0, the points of tangency are represented by

(b1, b2, b3) =

(
4Γ2Γ4(Γ3 + Γ2)

Γ1 + 2Γ2 + Γ3
,−4Γ2Γ4,

4Γ2Γ4(Γ1 + Γ2)

Γ1 + 2Γ2 + Γ3

)
, (70)

(b1, b2, b3) =

(
4Γ3Γ4(Γ2 + Γ3)

Γ1 + Γ2 + 2Γ3

,
4Γ3Γ4(Γ1 + Γ3)

Γ1 + Γ2 + 2Γ3

,−4Γ3Γ4

)
. (71)

The points of tangency B1 = 0 and B3 = 0 coincide with the trilinear axis
b2 = 0 when Γ3 + Γ1 = 0, and the points B1 = 0 and B2 = 0 agree with
b3 = 0 when Γ3 + Γ2 = 0. Therefore, the distribution of the points of tangency
changes at Γ3 = −Γ1 and Γ3 = −Γ2. Thus we show the contour plots of the
Hamiltonian for the following three cases: 0 > Γ3 > −Γ2, −Γ2 > Γ3 > −Γ1 and
−Γ2 > Γ3 > −Γ1 − Γ2.

Figure 18 shows the contour lines for Γ1 = 4, Γ2 = 2, Γ3 = −1 and Γ4 = 5.
The point of tangency 3−4 is elliptic and the structure of the contours is simple.
Second, we show the contour plot of the Hamiltonian in Figure 19 for Γ1 = 4,
Γ2 = 2, Γ3 = −3 and Γ4 = 3, which gives the similar topological structure as the
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Figure 20: The physical region and the contour lines of the Hamiltonian for
Γ1 = 4, Γ2 = 2, Γ3 = −5 and Γ4 = 1.

3-4

1-2-3

1-2-3

Figure 21: The physical region and the contour lines of the Hamiltonian for
Γ1 = 4, Γ2 = 2, Γ3 = −4

3
and Γ4 = 14

3
.
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first case except for the points of tangency 1− 4. Third, the contour lines of the
Hamiltonian for Γ1 = 4, Γ2 = 2, Γ3 = −5 and Γ4 = 1 in Figure 20 indicate that
there are elliptic points of tangency 1 − 4, 2 − 4 and 3 − 4 and one hyperbolic
fixed point with homoclinic connections in the physical region.

In the very last part of the subsection, we consider the special case that allows
the partial self-similar collapse of the vortex triple 123 considered in §3. The
necessary conditions for the existence of the self-similar collision (26) give Γ3 =
− Γ1Γ2

Γ1+Γ2
. As an example, Figure 21 shows the contour lines of the Hamiltonian

for Γ1 = 4, Γ2 = 2, Γ3 = −4
3

and Γ4 = 14
3
. There is the elliptic point of tangency

3 − 4. The contour lines shrink to the origin. In order to see the contour lines
in the neighborhood of the origin, the close-up picture is shown in the left of the
figure. The contour curves shrink to the origin as the value of the Hamiltonian
tends to that at the origin, which suggests no existence of the self-similar collapse
of the three vortex points.

6 Summary

We have investigated the integrable motion of the four vortex points on the
sphere, when the moment of vorticity is zero. The article completes the study of
the integrable vortex-problem on the sphere together with the integrable three-
vortex problem[4, 5, 11]. As in the four-vortex problem in the unbounded plane[2],
we have successfully applied the reduction method to a three-vortex problem
proposed by Rott[10]. The evolution is observed by plotting the level curves of
the Hamiltonian in the reduced trilinear coordinates.

In the meantime, the zero total vorticity condition is unnecessary to guarantee
the integrability. However, the vortex strengths are strongly restricted by the fact
that the distance between two vortex points is bounded.

We have considered whether or not the self-similar collapse is possible. No
existence of the four-vortex collapse has been proved mathematically. On the
other hand, we found no numerical evidence showing the partial collapse of three
vortex points and of the pairs of two vortex points occur.
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A Deduction of the upper bound for Li.

The possible regions for the vortex strengths are derived from the lower bounds
min Li < Li. So we need to show that they are the sufficient conditions that
ensure the upper bounds Li < max Li. In this appendix, we give a detailed proof
of this fact.

A.1 Case I: Γ1 ≥ Γ2 ≥ Γ3 ≥ Γ4 > 0

The possible region for Γ1 −Γ2 ≤ Γ2 in Figure 2 is expressed in the following two
ways:

0 < Γ4 ≤ 1

2
(Γ1 − Γ2), Γ1 − Γ2 − Γ4 < Γ3 ≤ Γ2, (72)

1

2
(Γ1 − Γ2) < Γ4 ≤ Γ2, Γ4 ≤ Γ3 ≤ Γ2, (73)

or

1

2
(Γ1 − Γ2) < Γ3 ≤ Γ1 − Γ2, Γ1 − Γ2 − Γ3 < Γ4 ≤ Γ3, (74)

Γ1 − Γ2 < Γ3 ≤ Γ2, 0 < Γ4 ≤ Γ3. (75)

Then we need to show that if the vortex strengths are in the possible region, the
invariants Li satisfy the following upper bounds:

L1 = (Γ2 + Γ3 + Γ4)
2 − Γ2

1 < max L1 = 4Γ2Γ3 + 4Γ2Γ4 + 4Γ3Γ4, (76)

L2 = (Γ1 + Γ3 + Γ4)
2 − Γ2

2 < max L2 = 4Γ1Γ3 + 4Γ1Γ4 + 4Γ3Γ4, (77)

L3 = (Γ1 + Γ2 + Γ4)
2 − Γ2

3 < max L3 = 4Γ1Γ2 + 4Γ1Γ4 + 4Γ2Γ4, (78)

L4 = (Γ1 + Γ2 + Γ3)
2 − Γ2

4 < max L4 = 4Γ1Γ2 + 4Γ2Γ3 + 4Γ3Γ1. (79)

First we show that (72) implies (76). Comparing 4Γ2Γ4 + Γ2
1 with the square of

2Γ2 + 2Γ4 − Γ1, we have

(4Γ2Γ4 + Γ2
1) − (2Γ2 + 2Γ4 − Γ1)

2 = 4Γ4(Γ1 − Γ2 − Γ4) + 4Γ2(Γ1 − Γ2) ≥ 0,

since Γ1 ≥ Γ2 and Γ1 − Γ2 − Γ4 ≥ 1
2
(Γ1 − Γ2) ≥ 0 due to (72). Hence, it follows

from Γ2
1 + 4Γ2Γ4 > 0 and 2Γ2 + 2Γ4 − Γ1 ≥ 2Γ2 − Γ1 > 0 that

√
Γ2

1 + 4Γ2Γ4 ≥ 2Γ2 + 2Γ4 − Γ1 > 0.

Thus we have

Γ2 + Γ4 −
√

Γ2
1 + 4Γ2Γ4 ≤ Γ1 − Γ2 − Γ4 < Γ3,
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due to (72), which results in

√
Γ2

1 + 4Γ2Γ4 > Γ2 − Γ3 + Γ4 > 0. (80)

On the other hand, when the vortex strengths satisfy (73), since

4Γ2Γ4 + Γ2
1 − Γ2

2 > 2Γ2(Γ1 − Γ2) + Γ2
1 − Γ2

2 = (Γ1 + 3Γ2)(Γ1 − Γ2) ≥ 0,

we have

Γ2 + Γ4 −
√

4Γ2Γ4 + Γ2
1 < Γ4 ≤ Γ3.

Hence, we have (80) again. When both sides of (80) are squared, we obtain

(Γ2 + Γ3 + Γ4)
2 − Γ2

1 < 4Γ2Γ3 + 4Γ2Γ4 + 4Γ3Γ4.

Second, we have the following the comparisons

4Γ1Γ4 + Γ2
2 − (2Γ4 + Γ2)

2 = 4Γ4(Γ1 − Γ2 − Γ4) ≥ 0,

for (72) and

4Γ1Γ4 + Γ2
2 − Γ2

1 > 2Γ1(Γ1 − Γ2) + Γ2
2 − Γ2

1 = (Γ1 − Γ2)
2 ≥ 0,

for (73). Each of the comparisons leads to

Γ4 + Γ1 −
√

4Γ1Γ4 + Γ2
2 ≤ Γ1 − Γ2 − Γ4 < Γ3,

and

Γ1 + Γ4 −
√

4Γ1Γ4 + Γ2
2 < Γ4 ≤ Γ3.

Hence, we have √
4Γ1Γ4 + Γ2

2 > Γ1 − Γ3 + Γ4 > 0.

Taking square of both sides, we have (77).
Third, we use the expressions (74) and (75) to prove (78). Since (74) implies

4Γ1Γ2 + Γ2
3 − (2Γ2 + Γ3)

2 = 4Γ2(Γ1 − Γ2 − Γ3) ≥ 0,

and (75) shows

4Γ1Γ2 + Γ2
3 − (Γ1 + Γ2)

2 = (Γ3 − Γ1 + Γ2)(Γ3 + Γ1 − Γ2) > 0,

we have

Γ1 + Γ2 −
√

4Γ1Γ2 + Γ2
3 ≤ Γ1 − Γ2 − Γ3 < Γ4,

for (74) and

Γ1 + Γ2 −
√

Γ2
3 + 4Γ1Γ2 < 0 < Γ4,
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for (75). Hence, we acquire
√

4Γ1Γ2 + Γ2
3 > Γ1 + Γ2 − Γ4 > 0, from which the

upper bound of L3 is obtained.
Finally, regarding (79), we have

4Γ1Γ2 + Γ2
4 − (Γ4 + 2Γ2)

2 = 4Γ2(Γ1 − Γ2 − Γ4) ≥ 0,

due to (72) and

4Γ1Γ2 + Γ2
4 − (Γ1 + Γ2 − Γ4)

2 = 2Γ1Γ2 + 2Γ1Γ4 + 2Γ2Γ4 − Γ2
1 − Γ2

2

> 2Γ1Γ2 + (Γ1 + Γ2)(Γ1 − Γ2) − Γ2
1 − Γ2

2

= 2Γ2(Γ1 − Γ2) ≥ 0,

due to (73), from which we obtain

Γ1 + Γ2 −
√

Γ2
4 + 4Γ1Γ2 ≤ Γ1 − Γ2 − Γ4 < Γ3,

for (72) and

Γ1 + Γ2 −
√

Γ2
4 + 4Γ1Γ2 < Γ4 ≤ Γ3,

for (73). Therefore, we have the inequality 0 < Γ1 + Γ2 − Γ3 <
√

Γ2
4 + 4Γ1Γ2,

which gives (79).
As for the possible region for Γ2 < Γ1 − Γ2 ≤ 2Γ2, it is represented by

0 < Γ1 − 2Γ2 ≤ Γ4 ≤ 1

2
(Γ1 − Γ2), Γ1 − Γ2 − Γ4 < Γ3 ≤ Γ2, (81)

1

2
(Γ1 − Γ2) < Γ4 ≤ Γ2 Γ4 ≤ Γ3 ≤ Γ2, (82)

or
1

2
(Γ1 − Γ2) < Γ3 ≤ Γ2 ≤ Γ1 − Γ2, Γ1 − Γ2 − Γ3 < Γ4 ≤ Γ3. (83)

Since they are equivalent to (72), (73) and (74) respectively, the proof is the
same.

A.2 Case II : Γ1 ≥ Γ2 ≥ Γ3 > 0 > Γ4

The possible region for Γ1 − Γ2 ≤ Γ2 in Figure 5 is described by

0 < Γ3 ≤ Γ1 − Γ2, −Γ3 − Γ1 − Γ2 < Γ4 < Γ3 − Γ1 + Γ2, (84)

Γ1 − Γ2 < Γ3 ≤ Γ2, −Γ3 − Γ1 − Γ2 < Γ4 < 0, (85)

or

−Γ1 + Γ2 ≤ Γ4 < 0, Γ1 − Γ2 + Γ4 < Γ3 ≤ Γ2, (86)

−Γ1 − Γ2 ≤ Γ4 < −Γ1 + Γ2, 0 < Γ3 ≤ Γ2, (87)

−Γ1 − 2Γ2 < Γ4 < −Γ1 − Γ2, −Γ1 − Γ2 − Γ4 < Γ3 ≤ Γ2, (88)
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from which we show the following upper bounds for Li:

L1 = (Γ2 + Γ3 + Γ4)
2 − Γ2

1 < 4Γ2Γ3, (89)

L2 = (Γ1 + Γ3 + Γ4)
2 − Γ2

2 < 4Γ1Γ3, (90)

L3 = (Γ1 + Γ2 + Γ4)
2 − Γ2

3 < 4Γ1Γ2, (91)

L4 = (Γ1 + Γ2 + Γ3)
2 − Γ2

4 < 4Γ1Γ2 + 4Γ2Γ3 + 4Γ3Γ1. (92)

Since −Γ3 − Γ1 − Γ2 < Γ4 holds for both (84) and (85), we have

−Γ2 − Γ3 −
√

Γ2
1 + 4Γ2Γ3 < −Γ1 − Γ2 − Γ3 < Γ4,

and thus −√
Γ2

1 + 4Γ2Γ3 < Γ2 + Γ3 + Γ4. On the other hand, the comparison

Γ2
1 + 4Γ2Γ3 − (Γ2 + Γ3)

2 = (Γ1 − Γ2 + Γ3)(Γ1 + Γ2 − Γ3) > 0,

and Γ4 < 0 reveal that

√
Γ2

1 + 4Γ2Γ3 > Γ2 + Γ3 > Γ2 + Γ3 + Γ4.

Therefore, we obtain

−
√

Γ2
1 + 4Γ2Γ3 < Γ2 + Γ3 + Γ4 <

√
Γ2

1 + 4Γ2Γ3,

which is followed by (89).
In order to prove (90), we have to show

−
√

Γ2
2 + 4Γ1Γ3 < Γ1 + Γ3 + Γ4 <

√
Γ2

2 + 4Γ1Γ3.

The upper bound is derived as follows. Due to (84), the comparison

(Γ2
2 + 4Γ1Γ3) − (2Γ3 + Γ2)

2 = 4Γ3(Γ1 − Γ2 − Γ3) ≥ 0,

implies

Γ1 + Γ3 −
√

Γ2
2 + 4Γ1Γ3 ≤ Γ1 − Γ2 − Γ3 < −Γ4.

As for (85), we see from

(Γ2
2 + 4Γ1Γ3) − (Γ1 + Γ3)

2 = (Γ2 − Γ1 + Γ3)(Γ2 + Γ1 − Γ3) > 0.

that Γ1 + Γ3 −
√

Γ2
2 + 4Γ1Γ3 < 0 < −Γ4. Hence we have the upper bound. The

lower bound is simply obtained by

−Γ1 − Γ3 −
√

Γ2
2 + 4Γ1Γ3 < −Γ1 − Γ3 − Γ2 < Γ4,
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for both (84) and (85).
With the similar step, (91) is derived by showing

−
√

Γ2
3 + 4Γ1Γ3 < Γ1 + Γ2 + Γ4 <

√
Γ2

3 + 4Γ1Γ2.

The upper bound comes from

(Γ2
3 + 4Γ1Γ2) − (Γ3 + 2Γ2)

2 = 4Γ2(Γ1 − Γ2 − Γ3) ≥ 0,

for (84) and

(Γ2
3 + 4Γ1Γ2) − (Γ1 + Γ2)

2 = (Γ3 − Γ1 + Γ2)(Γ3 + Γ1 − Γ2) > 0,

for (85). The lower bound is acquired due to

−Γ1 − Γ2 −
√

Γ2
3 + 4Γ1Γ2 < −Γ1 − Γ2 − Γ3 < Γ4.

The proof of (92) is accomplished by showing the inequality,

0 < Γ1 + Γ2 − Γ3 <
√

Γ2
4 + 4Γ1Γ2,

from (86), (87) and (88). When (86) is satisfied, the comparison

(Γ2
4 + 4Γ1Γ2) − (2Γ2 − Γ4)

2 = 4Γ2(Γ1 − Γ2 + Γ4) ≥ 0,

leads to

Γ1 + Γ2 −
√

Γ2
4 + 4Γ1Γ2 ≤ Γ1 − Γ2 + Γ4 < Γ3.

For (87), since

(Γ1 + Γ2)
2 − (Γ2

4 + 4Γ1Γ2) = (Γ1 − Γ2 + Γ4)(Γ1 − Γ2 − Γ4) < 0,

holds, we also have

Γ1 + Γ2 −
√

Γ2
4 + 4Γ1Γ2 < 0 < Γ3.

In terms of (88), it follows from

Γ2
4 + 4Γ1Γ2 − (2Γ1 + 2Γ2 + Γ4)

2 = −4Γ1Γ2 − 4Γ2
1 − 4Γ2

2 − 4Γ1Γ4 − 4Γ2Γ4

≥ −4Γ1Γ2 − 4Γ2
1 − 4Γ2

2 + 4(Γ1 + Γ2)
2 = 4Γ1Γ2 > 0,

that we acquire

Γ1 + Γ2 −
√

Γ2
4 + 4Γ1Γ2 < −Γ1 − Γ2 − Γ4 < Γ3.

Hence, we have proved (92). With the similar algebraic procedures, we also show
the same upper bounds for Γ2 < Γ1 − Γ2 ≤ 2Γ2.
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A.3 Case III : Γ1 ≥ Γ2 > 0 > Γ3 ≥ Γ4

As in §4.5, we use the notation p = −Γ3 > 0. The possible region in Figure 11 is
expressed by

0 < p ≤ 1

2
(Γ1 − Γ2), −p − Γ1 − Γ2 < Γ4 < p − Γ1 + Γ2, (93)

1

2
(Γ1 − Γ2) < p, −p − Γ1 − Γ2 < Γ4 ≤ −p, (94)

or equivalently

1

2
(−Γ1 + Γ2) > Γ4 ≥ −Γ1 + Γ2, Γ4 + Γ1 − Γ2 < p ≤ −Γ4, (95)

−Γ1 + Γ2 > Γ4 ≥ −Γ1 − Γ2, 0 < p ≤ −Γ4, (96)

−Γ1 − Γ2 > Γ4, −Γ1 − Γ2 − Γ4 < p ≤ −Γ4. (97)

The upper bounds for the invariants Li are given as follows.

L1 = (Γ2 − p + Γ4)
2 − Γ2

1 < −4pΓ4, (98)

L2 = (Γ1 − p + Γ4)
2 − Γ2

2 < −4pΓ4, (99)

L3 = (Γ1 + Γ2 + Γ4)
2 − p2 < 4Γ1Γ2, (100)

L4 = (Γ1 + Γ2 − p)2 − Γ2
4 < 4Γ1Γ2. (101)

First, it is easy to see from

−p − Γ2 +
√

Γ2
1 + 4pΓ2 > −p − Γ2 + Γ1 ≥ −p ≥ Γ4,

and

−p − Γ2 −
√

Γ2
1 + 4pΓ2 ≤ −p − Γ2 − Γ1 < Γ4,

for both (93) and (94) that we have the inequality

−
√

Γ2
1 + 4pΓ2 ≤ p + Γ2 + Γ4 ≤

√
Γ2

1 + 4pΓ2,

Therefore, the upper bound (98) is derived.
Second, the comparison

Γ2
2 + 4pΓ1 − (2p + Γ2)

2 = 4p(Γ1 − Γ2 − p) ≥ 0,

is satisfied due to (93). Hence, we have the inequality

−p − Γ1 +
√

Γ2
2 + 4pΓ1 ≥ p + Γ2 − Γ1 > Γ4,

and thus the upper bound,

Γ1 + p + Γ4 <
√

Γ2
2 + 4pΓ1. (102)
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It follows from (94) and

Γ2
2 + 4pΓ1 − Γ2

1 > Γ2
2 + 2(Γ1 − Γ2)Γ1 − Γ2

1 = (Γ1 − Γ2)
2 ≥ 0,

that we have

−p − Γ1 +
√

Γ2
2 + 4pΓ1 > −p ≥ Γ4,

which also yields (102). The lower bound Γ1 + p + Γ4 ≥ −√
Γ2

2 + 4pΓ1 is derived
from

−p − Γ1 −
√

Γ2
2 + 4pΓ1 < −p − Γ1 − Γ2 < Γ4.

for both (93) and (94). Hence, we prove (Γ1 + p + Γ4)
2 < Γ2

2 + 4pΓ1, and thus
(99).

To show the bound (100), we check the inequality

−
√

p2 + 4Γ1Γ2 < Γ1 + Γ2 + Γ4 <
√

p2 + 4Γ1Γ2.

The lower bound is easy to see from

−Γ1 − Γ2 −
√

p2 + 4Γ1Γ2 < −Γ1 − Γ2 − p < Γ4.

On the other hand, the upper bound for (93)

−Γ1 − Γ2 +
√

p2 + 4Γ1Γ2 ≥ p + Γ2 − Γ1 > Γ4,

comes from the comparison

(p2 + 4Γ1Γ2) − (p + 2Γ2)
2 = 4Γ2(Γ1 − p − Γ2) ≥ 2Γ2(Γ1 − Γ2) ≥ 0.

Regarding the upper bound for (94), we treat the two cases, Γ1 + Γ2 ≥ p >
1
2
(Γ1 − Γ2) and p > Γ1 + Γ2, separately. For the former case, since

p2 + 4Γ1Γ2 − (Γ1 + Γ2 − p)2 = 2p(Γ1 + Γ2) − (Γ1 − Γ2)
2

> (Γ1 − Γ2)(Γ1 + Γ2) − (Γ1 − Γ2)
2 = 2Γ2(Γ1 − Γ2) ≥ 0,

we obtain −Γ1 − Γ2 +
√

p2 + 4Γ1Γ2 > −p ≥ Γ4 and thus

Γ1 + Γ2 + Γ4 <
√

p2 + 4Γ1Γ2. (103)

For the latter case p > Γ1 + Γ2, since

p2 + 4Γ1Γ2 − (Γ1 + Γ2)
2 = (p − Γ1 + Γ2)(p + Γ1 − Γ2) > 0,

we have
−Γ1 − Γ2 +

√
p2 + 4Γ1Γ2 > 0 > Γ4,

and thus (103).
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Finally, we make use of (95), (96) and (97) to obtain (101). When the vortex
strengths satisfy (95), if follows from

Γ2
4 + 4Γ1Γ2 − (2Γ2 − Γ4)

2 = 4Γ2(Γ1 − Γ2 + Γ4) ≥ 0,

that we have

Γ1 + Γ2 −
√

Γ2
4 + 4Γ1Γ2 ≤ Γ4 + Γ1 − Γ2 < p,

and therefore

Γ1 + Γ2 − p <
√

Γ2
4 + 4Γ1Γ2.

As for (96) and (97), the comparison

Γ2
4 + 4Γ1Γ2 − (Γ1 + Γ2)

2 = (Γ1 − Γ2 − Γ4)(−Γ1 + Γ2 − Γ4) > 0,

reveals

Γ1 + Γ2 −
√

Γ2
4 + 4Γ1Γ2 ≤ 0 < p,

Moreover, the inequality

Γ1 + Γ2 +
√

Γ2
4 + 4Γ1Γ2 ≥ Γ1 + Γ2 +

√
p2 + 4Γ1Γ2 > p,

holds due to Γ4 ≤ −p < 0, from which we obtain the lower bound, Γ1 + Γ2 − p >
−

√
Γ2

4 + 4Γ1Γ2. Thus the proof of (101) is finished.
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