
ON THE SEMI-RELATIVISTIC HARTREE TYPE EQUATION

YONGGEUN CHO AND TOHRU OZAWA

Abstract. We study the global Cauchy problem and scattering problem for
the semi-relativistic equation in Rn, n ≥ 1 with nonlocal nonlinearity F (u) =
λ(|x|−γ ∗ |u|2)u, 0 < γ < n. We prove the existence and uniqueness of global

solutions for 0 < γ < 2n
n+1

, n ≥ 2 or γ > 2, n ≥ 3 and the non-existence of

asymptotically free solutions for 0 < γ ≤ 1, n ≥ 3. We also specify asymptotic
behavior of solutions as the mass tends to zero and infinity.

1. Introduction

In this paper we consider the following Cauchy problem:
{

i∂tu =
√

m2 −∆u + F (u), in Rn × R, n ≥ 1
u(x, 0) = ϕ(x) in Rn,

(1.1)

where m > 0 denotes the mass of bosons in units ~ = c = 1, F (u) is nonlinear
functional of Hartree type such that F (u) = (Vγ ∗ |u|2)u, where ∗ denotes the
convolution in Rn, Vγ(x) = λ|x|−γ for some fixed constant λ ∈ R, and 0 < γ < n.

The equation (1.1) is called a semi-relativistic Hartree equation which was used
to describe Boson stars. See [7, 8, 17] and the references therein.

The purpose of this paper is to establish the local and global existence theory to
the equation (1.1) and the scattering theory of the global solutions. In this paper
we study the Cauchy problem (1.1) in the form of the integral equation:

u(t) = U(t)ϕ− i

∫ t

0

U(t− t′)F (u)(t′)dt′, (1.2)

where

U(t)ϕ(x) = (e−it
√

m2−∆ϕ)(x) =
1

(2π)n

∫

Rn

ei(x·ξ−t
√

m2+|ξ|2)ϕ̂(ξ) dξ.

Here ϕ̂ denotes the Fourier transform of ϕ such that ϕ̂(ξ) =
∫
Rn e−ix·ξϕ(x) dx.

One of the key tools for the existence and scattering is the conservation law. If
the solution u of (1.1) has sufficient decay at infinity and smoothness, it satisfies
two conservation laws:

‖u(t)‖L2 = ‖ϕ‖L2 ,

E(u) ≡ Km(u) + V (u) = E(ϕ),
(1.3)
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where Km(u) = 1
2 〈
√

m2 −∆ u, u〉, V (u) = 1
4 〈F (u), u〉 and 〈, 〉 is the complex inner

product in L2. For actual proof of (1.3) a regularizing method is simply applicable
as in [18] in the case of 0 < γ ≤ 1. For local solutions constructed by a contraction
argument based on the Strichartz estimate stated below, the case of 1 < γ ≤ 2
is treated by exactly the same method as in [26] without using approximate or
regularizing approach.

In Section 2, a local existence is shown for 0 < γ < n and ϕ ∈ Hs with s ≥ γ
2

by the Plancheral theorem and the standard contraction mapping theorem without
resort to a Strichartz estimate. Then we use the conservation laws to obtain the
global existence for s ≥ γ

2 , 0 < γ ≤ 1, n ≥ 2 and 0 < γ < 1, n = 1. This result is an
extension of the work of Lenzmann [18] in which global well-posedness is considered
for a Coulomb type potential in 3 space dimensions. From the energy conservation,
we get uniform bound on the mass m on any finite time interval, if m is bounded
from above, and then get a strong convergence of solutions of (1.1) to a solution of
the equation without mass. However if m is large, then the kinetic energy Km(u)
is not bounded globally in time any more. Instead, we can get a uniform bound of
local solutions in Hs, provided s ≥ γ

2 . Then after a phase modulation, we prove the
modulated solution is closely approximated by a solution of a Schrödinger equation
of Hartree type if m is sufficiently large. This phenomenon can be interpreted
as a kind of non-relativistic limit and eventually as a semi-classical or vanishing
dispersion limit. See Proposition 2.5 below.

The second tool is the Strichartz estimate. We consider the following Strichartz
estimate for the unitary group U(t) (see [19, 20]):

‖U(t)ϕ‖
L

q0
T H

s−σ0
r0

. ‖ϕ‖Hs0 ,
∥∥∥∥
∫ t

0

U(t− t′)f(t′) dt′
∥∥∥∥

L
q1
T H

s1−σ1
r1

. ‖f‖L1
T Hs1 ,

(1.4)

where (qi, ri), i = 0, 1, satisf that for any θ ∈ [0, 1]

2
q i

= (n− 1 + θ)
(

1
2
− 1

r i

)
, 2σi = (n + 1 + θ)

(
1
2
− 1

r i

)
,

2 ≤ qi, ri ≤ ∞, (qi, ri) 6= (2,∞).
(1.5)

We call the pair (q, r, σ) satisfying (1.5) admissible pair. If θ = 0, it is called wave
admissible and if θ = 1, then Schrödinger admissible. Here Hs

r = (1 − ∆)−s/2Lr

is the usual Sobolev space and Hs = Hs
2 . Hereafter, we denote the space Lq

T (B)
by Lq(0, T ; B) and its norm by ‖ · ‖Lq

T B for some Banach space B, and also Lq(B)
with norm ‖ · ‖LqB by Lq(0,∞;B), 1 ≤ q ≤ ∞.

In Section 3, we consider the global existence and scattering in case where 0 <

γ < n. We first show the local existence for 0 < γ < n, n ≥ 1 and s slightly less
than γ

2 by the Strichartz estimate of non-endpoint wave admissible pairs. Then
we extend the local solution to the global one for 0 < γ < 2n

n+1 by the energy
conservation and continuation procedure. The gain of upper bound 2n

n+1 follows
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from the fact that the Sobolev exponent s can be made smaller than γ
2 , which

enables us to use the continuation procedure. Secondly, we get a small data global
existence results and scattering for the case 2 < γ < n and n ≥ 3 by using the
endpoint Strichartz estimate for Schrödinger admissible pair.

In the last section, as the usual case of nonlinearity with long range potential,
non-existence of nontrivial asymptotically free solutions is shown for the case 0 <

γ ≤ 1, n ≥ 3 and 0 < γ < n
2 , n = 1, 2 by a similar method applied to a large class

of dispersive equations. See [2, 5, 11, 12, 21, 32].
Until now, it remains open to show the global existence for 2n

n+1 ≤ γ ≤ 2 as well
as the scattering for 1 < γ ≤ 2.

There is a large literature on partial differential equations with Hartree type
nonlinearity. We refer the reader to [4, 9, 10, 13, 14, 15, 25, 23, 24] for Schrödinger
related equations, to [1, 22, 27, 28, 31, 30, 33] for Klein-Gordon related equations
in both massive and massless cases.

If not specified, throughout this paper, the notation A . B and A & B denote
A ≤ CB and A ≥ C−1B, respectively. Different positive constants possibly de-
pending on n, m, λ and γ might be denoted by the same letter C. A ∼ B means
that both A . B and A & B hold.

Acknowledgments. The authors would like to thank Professor Kenji Nakanishi
for enlightening discussions.

2. Global existence I

In this section, we study the global existence and the limiting problem as m → 0
or as m →∞ with 0 < γ ≤ 1.

Let us first introduce the following local existence result.

Proposition 2.1. Let 0 < γ < n and n ≥ 1. Suppose ϕ ∈ Hs(Rn) with s ≥ γ
2 .

Then there exists a positive time T independent of m such that (1.2) has a unique
solution u ∈ C([0, T ];Hs) with ‖u‖L∞T Hs ≤ C‖ϕ‖Hs , where C does not depend on
m.

Proof. Let (Xs
T,ρ, d) be a complete metric space with metric d defined by

Xs
T,ρ = {u ∈ L∞T (Hs(Rn)) : ‖u‖L∞T Hs ≤ ρ}, d(u, v) = ‖u− v‖L∞T L2 .

Now we define a mapping N : u 7→ N(u) on Xs
T,ρ by

N(u)(t) = U(t)ϕ− i

∫ t

0

U(t− t′)F (u)(t′) dt′. (2.1)

Our strategy is to use the standard contraction mapping argument. To do so, let
us introduce a generalized Leibniz rule (see Lemma A1 ∼ Lemma A4 in Appendix
of [16]).
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Lemma 2.2. For any s ≥ 0 we have

‖Ds(uv)‖Lr . ‖Dsu‖Lr1‖v‖Lq2 + ‖u‖Lq1 ‖Dsv‖Lr2 ,

where Ds = (−∆)s/2

and
1
r

=
1
r1

+
1
q2

=
1
q1

+
1
r2

, ri ∈ (1,∞), qi ∈ (1,∞], i = 1, 2.

Then for all u ∈ X(T, ρ) we have

‖N(u)‖L∞T Hs ≤ ‖ϕ‖Hs + T‖F (u)‖L∞T Hs

. ‖ϕ‖Hs + T
(‖In−γ(|u|2)‖L∞T L∞‖u‖L∞T Hs

+‖In−γ(|u|2)‖L∞T Hs
2n
γ

‖u‖
L∞T L

2n
n−γ

)

. ‖ϕ‖Hs + T

(
‖u‖2

L∞T H
γ
2
‖u‖L∞T Hs + ‖u‖2

L∞T L
2n

n−γ
‖u‖L∞T Hs

)

. ‖ϕ‖Hs + T‖u‖2
L∞t H

γ
2
‖u‖L∞t Hs . ‖ϕ‖Hs + Tρ3,

(2.2)

where Iα is the fractional integral operator given by Iα(v)(x) =
∫
Rn |x−y|α−nv(y) dy.

It is well-known that Iα satisfies the inequality (see [29] for instance)

‖Iα(ψ)‖Lq . ‖ψ‖Lp ,
1
q

=
1
p
− α

n
, 1 < p < q < ∞.

For the third inequality we used the fractional integral inequality, generalized Leib-
niz rule (Lemma 2.2) and the fact that

sup
x∈Rn

∣∣∣∣
∫

Rn

|u(x− y)|2
|y|γ dy

∣∣∣∣ . ‖u‖2
Ḣ

γ
2
. (2.3)

For the last one, we used the Sobolev embedding H
γ
2 ↪→ L

2n
n−γ .

If we choose ρ and T such as ‖ϕ‖Hs ≤ ρ/2 and CTρ3 ≤ ρ/2, then N maps Xs
T,ρ

to itself.
Now we have only to show that N is a Lipschitz map for sufficiently small T .

Let u, v ∈ Xs
T,ρ. Then we have

d(N(u), N(v))

. T
∥∥In−γ(|u|2)u− In−γ(|v|2)v∥∥

L∞T L2

. T
(∥∥In−γ(|u|2)(u− v)

∥∥
L∞T L2 +

∥∥In−γ(|u|2 − |v|2)v∥∥
L∞T L2

)

. T

(
‖u‖2

L∞T H
γ
2
d(u, v) + ‖In−γ(|u|2 − |v|2)‖

L∞T L
2n
γ
‖v‖

L∞T L
2n

n−γ

)

. T (ρ2d(u, v) + ρ‖|u|2 − |v|2‖
L∞T L

2n
2n−γ

)

. T (ρ2 + ρ(‖u‖
L∞T L

2n
n−γ

+ ‖v‖
L∞T L

2n
n−γ

))d(u, v)

. Tρ2d(u, v).

The above estimate implies that the mapping N is a contraction, if T is sufficiently
small.
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The uniqueness and time continuity follows easily from the equation (1.2) and
contraction argument. This completes the proof of proposition. ¤

From the conservation laws (1.3), we get the following global well-posedness.

Theorem 2.3. Let 0 < γ ≤ 1 for n ≥ 2, 0 < γ < 1 for n = 1 and s ≥ 1
2 .

Let T ∗ be the maximal existence time of the solution u as in Theorem 2.1. Then
if λ ≥ 0, or if λ < 0 and ‖ϕ‖L2 is sufficiently small, then T ∗ = ∞. Moreover
‖u(t)‖Hs ≤ C‖ϕ‖HseC(E(ϕ)+‖ϕ‖L2 )t, where C does not depend on m.

Proof. From the estimate (2.3) and L2 conservation, we have

|V (u)| . ‖u‖2
Ḣ

γ
2
‖u‖L2 . ‖u‖2γ

Ḣ
1
2
‖ϕ‖3−2γ

L2 .

Hence if λ ≥ 0 or if λ < 0 and ‖ϕ‖L2 is sufficiently small, then for some θ > 0

‖u(t)‖2
Ḣ

γ
2
≤ C(E(u) + ‖ϕ‖θ

L2) = C(E(ϕ) + ‖ϕ‖θ
L2). (2.4)

From (2.4) and a similar estimate to (2.2), we have

‖u(t)‖Hs . ‖ϕ‖Hs +
∫ t

0

‖u‖2
H

γ
2
‖u‖Hs dt′

. ‖ϕ‖Hs + (E(ϕ) + ‖ϕ‖θ
L2)

∫ t

0

‖u‖Hs dt′.

Gronwall’s inequality shows that

‖u(t)‖Hs ≤ C‖ϕ‖Hs exp(C(E(ϕ) + ‖ϕ‖θ
L2)t).

This completes the proof. ¤

If m is bounded above, then the energy E(ϕ) is also bounded and hence the Hs

norm of solution u is bounded in a finite time interval uniformly on small m. This
enables us to treat a limit problem as m → 0. We have the following. See [1] for
related second order equations.

Proposition 2.4. If um ∈ (C ∩ L∞)(Hs) be the solution of (1.2) as in Theorem
2.3, then for any finite time T , um → u0 in L∞T (Hs) with s ≥ 1

2 as m → 0, where
u0 is the global solution to the Cauchy problem

i∂tu0 =
√
−∆u0 + F (u0), u0(x, 0) = ϕ(x). (2.5)

Proof. One can easily show the global existence of (2.5) by the same argument as
in the proof of Theorem 2.3. The solution u0 can be written as

u0(t) = U0(t)ϕ− i

∫ t

0

U0(t− t′)F (u0)(t′) dt′,

where U0(t) = e−it
√−∆.
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For any T > 0 there exists M such that sup0<m≤1(‖um‖L∞T Hs +‖u0‖L∞T Hs) ≤ M .
Then we first observe that for any t ∈ [0, T ]
‖um(t)− u0(t)‖Hs

≤ ‖(U(t)− U0(t))ϕ‖Hs

+
∫ t

0

(‖F (um)− F (u0)‖Hs + ‖(U(t− t′)− U0(t− t′))F (u0)‖Hs) dt′

. Tm‖ϕ‖Hs +
∫ t

0

‖In−γ(|um|2 − |u0|2)um‖Hs dt′

+
∫ t

0

‖In−γ(|u0|2)(um − u0)‖Hs) dt′ + mT

∫ t

0

‖F (u0)‖Hs dt′.

(2.6)

From Lemma 2.2, fractional integration and the estimate (2.3), it follows that

‖In−γ(|um|2 − |u0|2)um‖Hs

. ‖In−γ(|um|2 − |u0|2)‖L∞‖um‖Hs + ‖In−γ(|um|2 − |u0|2)‖Hs
2n
γ

‖um‖
L

2n
n−γ

. ‖um − u0‖H
γ
2
(‖um‖H

γ
2

+ ‖u0‖H
γ
2
)‖um‖Hs

+ ‖|um|2 − |u0|2‖
L

2n
2n−γ

‖um‖H
γ
2

. M2‖um − u0‖Hs

and similarly that

‖In−γ(|u0|2)(um − u0)‖Hs

. ‖u0‖2
H

γ
2
‖um − u0‖Hs + ‖In−γ(|u0|2)‖Hs

2n
γ

‖um − u0‖
L

2n
n−γ

. M2‖um − u0‖Hs .

Substituting these into (2.6), we have for any t ∈ [0, T ] that

‖um(t)− u0(t)‖Hs . MTm + M3mT 2 + M2

∫ t

0

‖um(t′)− u0(t′)‖Hs dt′.

Then Gronwall’s inequality implies the strong convergence um → u0 in L∞T (Hs).
¤

In the case of large mass, the situation is different. Since E(u) = E(ϕ) =
1
2 〈
√

m2 −∆ϕ,ϕ〉 + V (ϕ) diverges as m → ∞, it is difficult to obtain the uniform
bound for ‖u‖

H
1
2

from the energy conservation law. However, from the Proposition
2.1 we see that the local existence time T and the constant C can be chosen indepen-
dently of the mass m, if s ≥ γ

2 . To be more specific, we have ‖um(t)‖Hs ≤ C‖ϕ‖Hs ,
where um is the solution of the equation with mass m. Now using the phase mod-
ulation vm = eimtum, the function vm satisfies the equation

i∂tvm = (
√

m2 −∆−m)vm + F (vm), vm(0) = ϕ,

and equivalently

vm(t) = Um(t)ϕ− i

∫ t

0

Um(t− t′)F (vm)(t′) dt′, (2.7)
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where Um(t) = e−it(
√

m2−∆−m). Let Ũm be the unitary group e−it 1
2m ∆. As was

first observed by Segal [28] at a formal level, we expect that the linear solutions
Umϕ and Ũmϕ become very close in L∞T (Hs) norm, if T is finite and ϕ ∈ Hs. That
observation is in fact justified by

‖(Um(t)− Ũm(t))ϕ‖2L∞T Hs

≤ sup
0<t<T

∫

|ξ|≤√m

∣∣∣∣1− e−it(
√

m2+|ξ|2−m− |ξ|22m )

∣∣∣∣
2

(1 + |ξ|)2s|ϕ̂|2 dξ

+ 2
∫

|ξ|≥√m

(1 + |ξ|)2s|ϕ̂|2 dξ

≤ T

∫ ∣∣∣2m/(
√

m2 + |ξ|2 + m)− 1
∣∣∣
2

(1 + |ξ|)2s|ϕ̂|2 dξ

+ 2
∫

|ξ|≥√m

(1 + |ξ|)2s|ϕ̂|2 dξ

→ 0 as m →∞.

Hence we can expect that vm is very close to a function wm in L∞T (Hs), where wm

is a solution of the nonlinear Schrödinger equation:

i∂twm =
1

2m
∆wm + F (wm), wm(0) = ϕ. (2.8)

Of course, by the same argument as the proof of Proposition 2.1, we find T and C

independent of m and a unique solution wm ∈ C([0, T ];Hs) of the equation (2.8)
for s ≥ γ

2 such that ‖wm‖L∞T Hs ≤ C‖ϕ‖Hs .
Now let T ∗vm

and T ∗wm
be the maximal existence time of the solutions um and

wm, respectively. Then from the local existence result (Proposition 2.1) we deduce
that T ∗ ≡ infm>1 min(T ∗vm

, T ∗wm
) is strictly positive and have the following.

Proposition 2.5. If s ≥ γ
2 and T < T ∗, then vm−wm → 0 in L∞T (Hs) as m →∞.

Proof. First we consider the integral equation

u∞ = ϕ− i

∫ t

0

F (u∞) dt′,

which is equivalent to the ordinary differential equation i∂tu∞ = F (u∞), u∞(x, 0) =
ϕ. This equation has an exact solution u∞(x, t) = ϕ(x)e−iλt(|·|−γ∗|ϕ|2)(x) for any
t ≥ 0. If s ≥ γ

2 , then the uniqueness of u∞ is guaranteed.
To prove vm −wm → 0 in L∞T (Hs), we have only to prove that vm − u∞ → 0 in

L∞T (Hs) and wm − u∞ → 0 in L∞T (Hs). At first we have

‖vm(t)− u∞(t)‖Hs

≤ ‖ (Um(t)− 1)ϕ‖Hs +
∫ t

0

‖(Um(t− t′)− 1)F (u∞)‖Hs dt′

+
∫ t

0

‖F (vm)− F (u∞)‖L∞ dt′.
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and

‖ (Um(t)− 1) ϕ‖2Hs

=
∫ ∣∣∣e−it(

√
m2+|ξ|2−m) − 1

∣∣∣
2

|ϕ̂(ξ)|2 dξ

=
∫

|ξ|≤m
1
4

+
∫

|ξ|>m
1
4

≤
∫

|ξ|≤m
1
4

t2|ξ|4
(
√

m2 + |ξ|2 + m)2
(1 + |ξ|)2s|ϕ̂(ξ)|2 dξ + 4

∫

|ξ|>m
1
4

(1 + |ξ|)2s|ϕ̂(ξ)|2 dξ

=
T 2

4m
‖ϕ‖2Hs + 4

∫

|ξ|>m
1
4

(1 + |ξ|)2s|ϕ̂(ξ)|2 dξ

→ 0 as m →∞.

We take M = M(T ) such that supm≥1(‖vm‖L∞T Hs +‖wm‖L∞T Hs +‖u∞‖L∞T Hs) ≤ M .
Then since F (u∞) ∈ L∞T (Hs), we have

∫ T

0

‖(Um(t− t′)− 1)F (u∞)‖Hs dt′ → 0 as m →∞.

We also have
‖F (vm)− F (u∞)‖Hs ≤ CM2‖vm − u∞‖Hs .

Thus

‖vm(t)− u∞(t)‖Hs ≤ o(1) + CM2

∫ t

0

‖vm − u∞‖Hs dt′ (2.9)

and as for wm by the same argument as that of vm

‖wm(t)− u∞(t)‖Hs ≤ o(1) + CM2

∫ t

0

‖wm − u∞‖Hs dt′. (2.10)

Therefore Gronwall’s inequality yields the claim. ¤

3. Global existence II

In this section, we reexamine the existence result and get a slightly low regularity
by using Strichartz estimate. The first result is the following local existence for
0 < γ < n.

Proposition 3.1. Let 0 < γ < n and n ≥ 2. Then there is a number α with
0 < α < min(γ, 2n

n−1 ) satisfying that given s > γ
2 − (n−1)α

4n and ϕ ∈ Hs there exists a
positive time T such that (1.2) has a unique solution u ∈ C([0, T ]; Hs)∩Lq

T (Hs−σ
r ),

where q = 4n
(n−1)α , r = 2n

n−α and σ = (n+1)α
4n .

Proof. Given n and γ, choose a number α with 0 < α < min(γ, 2n
n−1 ) and fix

s > γ
2 − (n−1)α

4n . Then for some positive number T to be chosen later, let us define
a complete metric space (Y s

T,ρ, dT ) with metric dT by

Y s
T,ρ =

{
v ∈ L∞T (Hs) ∩ Lq

T (Hs−σ
r ) : ‖v‖L∞T Hs + ‖v‖Lq

T Hs−σ
r

≤ ρ
}

,

dT (u, v) = ‖u− v‖L∞T Hs∩Lq
T Hs−σ

r
,
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where q, r, σ are the same indices as in Proposition 3.1.
From now on, we will prove that the nonlinear mapping N defined as (2.1) is

a contraction on Y s
T,ρ, provided T is sufficiently small. We will use the following

lemma instead of (2.3), which follows by estimating the (fractional) integral inside
and outside of the ball with radius R > 0 separately by Hölder’s inequality and by
minimizing the resulting estimates with respect to R.

Lemma 3.2. Let 0 < γ < n. Then for any 0 < ε < n− γ we have
∥∥In−γ(|u|2)

∥∥
L∞ . ‖u‖

L
2n

n−γ−ε
‖u‖

L
2n

n−γ+ε
.

If we take θ = 0 in the Strichartz estimate (1.4), then the pair (q, r, σ) =(
(n−1)α

4n , 2n
n−α , (n+1)α

4n

)
becomes an admissible one. Hence the Strichartz estimate

together with Plancheral theorem, Lemma 3.2 and generalized Leibniz rules (Lemma
2.2), enables us to deduce that for sufficiently small ε

‖N(u)‖L∞T Hs∩Lq
T Hs−σ

r

. ‖ϕ‖Hs + ‖F (u)‖L1
T Hs

. ‖ϕ‖Hs + ‖In−γ(|u|2)‖L1
T L∞‖u‖L∞T Hs

+
∫ T

0

‖In−γ(|u|2)‖Hs
2n

γ+ε

‖u‖
L

2n
n−(γ+ε)

dt

. ‖ϕ‖Hs + ‖u‖
L2

T L
2n

n−(γ+ε)
‖u‖

L2
T L

2n
n−(γ−ε)

‖u‖L∞T Hs

+
∫ T

0

‖|u|2‖Hs
2n

2n−(γ−ε)

‖u‖
L

2n
n−(γ+ε)

dt

. ‖ϕ‖Hs + ‖u‖
L2

T L
2n

n−(γ+ε)
‖u‖

L2
T L

2n
n−(γ−ε)

‖u‖L∞T Hs .

(3.1)

Using Hölder’s inequality for time integral, we have

‖N(u)‖L∞T Hs∩Lq
T Hs−σ

r

. ‖ϕ‖Hs + T 1− 2
q ‖u‖

Lq
T L

2n
n−(γ+ε)

‖u‖
Lq

T L
2n

n−(γ−ε)
‖u‖L∞T Hs .

(3.2)

Now if we choose ε > 0 so small that ε < min
(
γ − α, 2(s + (n−1)α

4n )− γ
)
, then

since
2n

n− α
≤ 2n

n− (γ − ε)
<

2n

n− (γ + ε)
≤ 2n

n− α− 2(s− σ)
,

we have from (3.2) and Sobolev embedding Hs−σ
r ↪→ Lr ∩ L

2n
n−α−2(s−σ) that

‖N(u)‖L∞T Hs∩Lq
T Hs−σ

r
≤ C(‖ϕ‖Hs + T 1− 2

q ‖u‖L∞T Hs‖u‖2
Lq

T Hs−σ
r

)

≤ C(‖ϕ‖Hs + T 1− 2
q ρ3)

for some constant C. Here we used the conventional embedding that if 2(s− σ) ≥
n − α then Hs−σ

r ↪→ Lr1 for any r1 ≥ r. Thus if we choose ρ and T so that
C‖ϕ‖Hs ≤ ρ

2 and CT 1− 2
q ρ3 ≤ ρ

2 , then we conclude that N maps from Y s
T,ρ to itself.
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For any u, v ∈ Y s
T,ρ, we have

dT (N(u), N(v)) . ‖F (u)− F (v)‖L1
T Hs

. ‖In−γ(|u|2 − |v|2)u‖L1
T Hs + ‖In−γ(|v|2)(u− v)‖L1

T Hs .
(3.3)

By Lemma 3.2 and Hölder’s inequality, we have for sufficiently small ε > 0

‖In−γ(|u|2 − |v|2)u‖L1
T Hs

. ‖In−γ(|u|2 − |v|2)‖L2
T L∞‖u‖L∞T Hs

+ ‖In−γ(|u|2 − |v|2)‖L2
T Hs

2n
γ+ε

‖u‖
L2

T L
2n

n−(γ+ε)

. ρ‖|u|2 − |v|2‖
1
2

L1
T L

n
n−(γ+ε)

‖|u|2 − |v|2‖
1
2

L1
T L

n
n−(γ−ε)

+ ρ‖u− v‖L∞T Hs(‖u‖
L2

T L
2n

n−(γ−ε)
+ ‖v‖

L2
T L

2n
n−(γ−ε)

)

+ ρ‖u− v‖
L2

T L
2n

n−(γ−ε)
(‖u‖L∞T Hs + ‖v‖L∞T Hs).

(3.4)

Now by another Hölder’s inequality with respect to the time variable, we have

‖In−γ(|u|2 − |v|2)u‖L1
T Hs . T 1− 2

q ρ2dT (u, v).

Similarly,

‖In−γ(|v|2)(u− v)‖L1
T Hs

. ‖In−γ(|v|2)‖L1
T L∞‖u− v‖L∞T Hs + ‖In−γ(|v|2)‖

L2
T L

2n
γ+ε

‖u− v‖
L2

T L
2n

n−(γ+ε)

. ‖v‖
L2

T L
2n

n−(γ−ε)
‖v‖

L2
T L

2n
n−(γ+ε)

dT (u, v)

+ ‖v‖L∞T Hs‖v‖
L2

T L
2n

n−(γ−ε)
‖u− v‖

L2
T L

2n
n−(γ+ε)

.

(3.5)

Hence we get
‖In−γ(|v|2)(u− v)‖L1

T Hs . T 1− 2
q ρ2dT (u, v).

Substituting these two estimates into (3.3) and then using the fact CT 1− 2
q ρ2 ≤ 1

2

for small T , we conclude that N is a contraction mapping. ¤

Remark 1. If we follow the proof above with the Schrödinger admissible pairs, we
conclude that Proposition 3.1 holds for n ≥ 3, 0 < α < γ, α ≤ 2, s > γ

2 − n−2
4n α,

q = 4
α , r = 2n

n−2 and σ = (n+2)α
4n .

Remark 2. In general, the Strichartz estimate (1.4) is not uniform on m. However,
using Lemma 4 of [20] where a non-relativistic limit problem of Dirac equation is
treated, we can find a solution um with uniform norms on m stated in Proposition
3.1 above and Theorem 3.3 below, provided n = 3 and m is large. Thus it is
naturally expected that vm = eimtum is very close to wm the solution of Schrödinger
equation (2.8). However, the Strichartz estimates of the solution wm are not be
uniform on m even on a finite time interval. This causes a trouble in the limit
problem concerning a low regularity than H

γ
2 . To overcome this difficulty, we need



SEMI-RELATIVISTIC EQUATION 11

a much more subtle estimate. But we will not pursue this topic here, which will be
treated somewhere.

Now we show the local solutions can be extended globally in time by using the
energy conservation law.

Theorem 3.3. Let 0 < γ < 2n
n+1 , n ≥ 2. Then there exists an α with 0 < α < γ

such that if ϕ ∈ H
1
2 and if λ > 0, or λ < 0 but ‖ϕ‖L2 is sufficiently small, then

(1.2) has a unique solution u ∈ C([0,∞); H
1
2 ) ∩ Lq

loc(H
1
2−σ
r ), where q = 4n

(n−1)α ,

r = 2n
n−α and σ = (n+1)α

4n .

Proof. Let T ∗ be the maximal existence time and it be finite. The local existence
theory shows that ‖u‖

Lq
T∗H

1
2−σ

r

= ∞. Since γ < 2, from the local existence Lemma

3.1, we see that the energy conservation law (1.3) holds. Thus at any t < T ∗, the
solution u satisfies that

1
2
‖u(t)‖2

H
1
2
≤ E(u) + |V (u)|
≤ E(ϕ) + C‖u‖2

L
2n

n−γ+1
‖u‖

H
1
2

≤ E(ϕ) + C‖u‖2−γ
L2 ‖u‖γ

H
1
2

= E(ϕ) + C‖ϕ‖2−γ
L2 ‖u‖γ

H
1
2
.

and hence by Young’s inequality

‖u(t)‖2
H

1
2
≤ CE(ϕ). (3.6)

The smallness of ‖ϕ‖L2 is used to guarantee the positivity of E(ϕ) when λ < 0.
From the estimate (3.2) and (3.6), we have

‖u‖
Lq

T H
1
2−σ

r

. CE(ϕ) + T 1− 2
q E(ϕ)

1
2 ‖u‖2

Lq
T H

1
2−σ

r

.

Thus for sufficiently small T depending on E(ϕ),

‖u‖
Lq(Tj−1,Tj ;H

1
2−σ

r )
≤ CE(ϕ),

where Tj − Tj−1 = T for j ≤ k − 1 and Tk = T ∗ This means that

‖u‖q

Lq(0,T∗;H
1
2−σ

r )
≤

∑

1≤j≤k

‖u‖q

Lq(Tj−1,Tj ;H
1
2−σ

r )
≤ (kCE(ϕ))q < ∞

and hence that T ∗ = ∞.
The condition γ < 2n

n+1 is necessary for the existence of α satisfying s = 1
2 >

γ
2 − (n+1)α

4n and α < γ. This completes the proof. ¤

Remark 3. If we choose θ = 1, then we deduce the same result as in Theorem 3.3
with 0 < γ < 2n

n+2 , q = 4
α , r = 2n

n−α and σ = (n+2)α
4n .

Now we consider the small data global existence and scattering for 2 < γ < n.
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Theorem 3.4. Let 2 < γ < n, n ≥ 3 and s > γ
2 − n−2

2n . Then there exists
ρ > 0 such that for any ϕ ∈ Hs with ‖ϕ‖Hs ≤ ρ, (1.2) has a unique solution

u ∈ (C ∩L∞)(Hs)∩L2(Hs−n+2
2n

2n
n−2

), if ‖ϕ‖Hs is sufficiently small. Moreover there is

ϕ+ ∈ Hs such that

‖u(t)− U(t)ϕ+‖Hs → 0 as t →∞.

Proof. We will use the Strichartz estimate (1.4) with θ = 1 and endpoint admissible
pair (q, r, σ) =

(
2, 2n

n−2 , n+2
2n

)
(See Remark 1).

Let us define a complete metric space (Y s
ρ , d) with metric d by

Y s
ρ =

{
v ∈ L∞(Hs) ∩ L2(Hs−σ

r ) : ‖v‖L∞Hs∩L2Hs−σ
r

≤ ρ
}

,

d(u, v) = ‖u− v‖L∞Hs∩L2Hs−σ
r

,

Then from the estimate (3.2), we have

‖N(u)‖L∞Hs∩L2Hs−σ
r

≤ C‖ϕ‖Hs + C‖u‖2
L2Hs−σ

r
‖u‖L∞Hs .

If we choose sufficiently small ρ such that C‖ϕ‖Hs ≤ ρ
2 and Cρ3 ≤ ρ

2 , then N

maps Y s
ρ to itself. Similarly, from (3.3)–(3.5), one can show that d(N(u), N(v)) ≤

1
2d(u, v). This proves the existence part.

To prove the scattering, let us define a function ϕ+ by

ϕ+ = ϕ− i

∫ ∞

0

U(−t′)F (u)(t′) dt′.

Then since the solution u is in Y s
ρ , ϕ+ ∈ Hs, and therefore there holds

‖u(t)− u+(t)‖Hs .
∫ ∞

t

‖F (u)‖Hs dt′

. ‖u‖L∞Hs

∫ ∞

t

‖u‖2
Hs−σ

r
dt′ → 0 as t →∞.

¤

4. Non-existence of scattering

We prove the non-existence of non-trivial asymptotically free solution.

Theorem 4.1. Assume that 0 < γ ≤ 1 for n ≥ 3 and 0 < γ < n
2 for n = 1, 2.

Suppose that u is a smooth global solution to (1.1) and there exists a smooth function
ϕ+ such that

‖u(t)− u+(t)‖L2 → 0 as t →∞,

where u+(t) = U(t)ϕ+. Then u = u+ = 0.

Proof. Let us define a function of H(t) by

H(t) = sgn(λ)Re〈u(t), u+(t)〉.
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Then from the condition of u and u+, H(t) is uniformly bounded on t and by the
regularization

d

dt
H(t) = |λ|Im〈In−γ(|u|2)u, u+〉. (4.1)

Suppose ϕ+ 6= 0. Then we derive a contradiction to the uniform boundedness of
H on t.

The integration in (4.1) is rewritten as

〈In−γ(|u|2)u, u+〉 = J1 + J2 + J3,

where

J1 = 〈In−γ(|u+|2)u+, u+〉,
J2 = 〈In−γ(|u|2 − |u+|2)u+, u+〉,
J3 = 〈In−γ(|u|2)(u− u+), u+〉.

To estimate each Ji, we need the following time decay estimate.

Lemma 4.2. If ϕ+ is sufficiently smooth, then

‖U(t)ϕ+‖L∞ . t−
n
2 .

As for J2, from Lemma 3.2, we have

|J2(t)|
= |〈(|u|2 − |u+|2), In−γ(|u+|2)〉|
≤ ‖u− u+‖L2(‖u‖L2 + ‖u+‖L2)‖In−γ(|u+|2)‖L∞

. ‖u− u+‖L2(‖u‖L2 + ‖u+‖L2)‖u+‖
L

2n
n−γ−ε

‖u+‖
L

2n
n−γ+ε

. ‖u− u+‖L2(‖u‖L2 + ‖u+‖L2)‖u+‖
n−γ−ε

n + n−γ+ε
n

L2 ‖u+‖2−
n−γ−ε

n + n−γ+ε
n

L∞

. ‖u− u+‖L2(‖u‖L2 + ‖u+‖L2)‖u+‖
2(n−γ)

n

L2 ‖u+‖
2γ
n

L∞ .

(4.2)

For the fourth inequality we used Hölder’s inequality

‖u‖Lr ≤ ‖u‖
2
r

L2‖u‖1−
2
r

L∞ . (4.3)

Now from Lemma 4.2 we get

|J2(t)| = o(t−γ). (4.4)
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Since γ ≤ 1 for n ≥ 3 and γ < n
2 for n = 1, 2, we can take ε > 0 such that

γ + ε < n
2 . Hence by the same argument for J2 we have for J3 that

|J3(t)| = |〈|u|2, In−γ((u− u+)u+)〉|
≤ ‖u‖2L2‖In−γ((u− u+)u+)‖L∞

. ‖u‖2L2

∥∥∥|(u− u+)u+| 12
∥∥∥

L
2n

n−γ−ε

∥∥∥|(u− u+)u+| 12
∥∥∥

L
2n

n−γ+ε

. ‖u‖2L2

∥∥∥(u− u+)u+
∥∥∥

1
2

L
n

n−γ−ε

∥∥∥(u− u+)u+
∥∥∥

1
2

L
n

n−γ+ε

. ‖u‖2L2‖u− u+‖L2‖u+‖
1
2

L
2n

n−2(γ+ε)
‖u+‖

1
2

L
2n

n−2(γ−ε)

. ‖u‖2L2‖u− u+‖L2‖u+‖
n−2γ

n

L2 ‖u+‖1−
n−2γ

n

L∞

= o(t−γ).

(4.5)

As for J1, if |x| ≤ At for some A > 1, then for any t > 0

In−γ(|u+|2)(x) ≥
∫

|y|≤At

|x− y|−γ |u+(y)|2 dy

≥ 1
(2At)γ

∫

|y|≤At

|u+(y)|2 dy.

Now we prove ∫

|y|≤At

|u+(y)|2 dy & ‖ϕ+‖2L2 (4.6)

for large t, provided ϕ+ is sufficiently smooth. Choose a large R such that ‖ηRϕ+‖2L2 ≥
2
3‖ϕ+‖2L2 , where ηR is smooth cut-off function supported in the ball of radius 2R
with center at the origin. Then

‖u+‖2L2(|x|≤At) ≥
∣∣∣‖U(t)(ηRϕ+)‖2L2(|x|≤At) − ‖ϕ+‖2L2(|x|>R)

∣∣∣ .

Since the linear solution u+ has the finite propagation propagation speed (actually
speed 1), one can easily show that |U(t)(ηRϕ+)(x)| . |x|−N‖ϕ+‖L2 for any N ,
provided |x| > 1 + 2R + t. Hence we deduce that if N > n

2 and t is large enough so
that At > 1 + 3R + t, then

‖U(t)(ηRϕ+)‖2L2(|x|≤At) = ‖U(t)(ηRϕ+)‖2L2 −
∫

|x|>At

|U(t)ηRϕ+|2 dx

≥ ‖ηRϕ+‖L2 − C

∫

|x|>At

|x|−2N dx‖ϕ+‖2L2

≥ 2
3
‖ϕ+‖2L2 − C(At)n−2N‖ϕ+‖2L2 .

Therefore for t large enough,

‖u+‖2L2(|x|≤At) ≥
1
3
‖ϕ+‖2L2

and hence

J1(t) & t−γ . (4.7)
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Now combining (4.7) with (4.4) and (4.5), we deduce that for t sufficiently large

d

dt
H(t) & t−γ ≥ t−1.

This is a contradiction to the uniform boundedness of H(t) on t. ¤

References

[1] A. Bachelot, Convergence dans Lp(Rn+1) de la solution de l’équation de Klein-Gordon
vers celle de l’équation des ondes, Ann. Fac. Sci. Toulouse Math., 5 (1986/87), pp. 37–60.

[2] J. E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equa-
tion, J. Math. Phys., 25 (1984), pp. 3270–3274.
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