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Abstract. Consider the nonlinear wave equation with zero mass and a time-independent
potential in three space dimensions. When it comes to the associated Cauchy problem, it
is already known that short-range potentials do not affect the existence of small-amplitude
solutions. In this paper, we focus on the associated scattering problem and we show that
the situation is quite different there. In particular, we show that even arbitrarily small and
rapidly decaying potentials may affect the asymptotic behavior of solutions.

1. Introduction

Consider the nonlinear wave equation with potential

∂2
t u−∆u + V (x) · u = F (u) in R3 × R, (NWP)

where F (u) behaves like |u|p for some p > 1. If the potential V (x) is sufficiently small and
rapidly decaying, then one might expect solutions to (NWP) to behave like solutions to

∂2
t u−∆u = F (u) in R3 × R. (NW)

When it comes to the associated Cauchy problems, for instance, the known sharp existence
results for (NW) coincide with those for (NWP), if the potential is sufficiently short-range.
In this paper, we focus on the associated scattering problems and we show that the situation
is quite different there. More precisely, we show that the sharp conditions needed to define
the scattering operator for (NW) are strictly weaker than those for (NWP), if the potential
is non-positive but not identically zero. In particular, even short-range potentials may affect
the asymptotic behavior of solutions.

Let us first focus on the associated Cauchy problems and prescribe initial data

u(x, 0) = ϕ(x), ∂tu(x, 0) = ψ(x). (1.1)

Sharp existence results for (NW) go back to the classical work of John [6], where ϕ, ψ are
assumed to have compact support. An extension of John’s result to more general data was
obtained by Asakura [1] and then slightly refined by Kubota [9] and Tsutaya [16]. In these
results, one assumes that

∑

|α|≤3

|∂α
x ϕ(x)|+

∑

|β|≤2

|∂β
xψ(x)| ≤ ε(1 + |x|)−k−1 (1.2)

for some k > 0 and some small ε > 0. To ensure the existence of classical solutions to the
Cauchy problem associated with (NW), it then suffices to require that

p > 1 +
√

2, k ≥ 2/(p− 1). (1.3)
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Recall that p denotes the order of the nonlinear term. Conditions (1.3) are also known to
be necessary for the existence of small-amplitude solutions. That is, there exist arbitrarily
small initial data satisfying (1.2) for which the solution to (NW) blows up in finite time, if
either 1 < p ≤ 1 +

√
2 or else 0 < k < 2/(p− 1) for some p > 1; see [1, 4, 6, 14].

When it comes to the Cauchy problem associated with (NWP), the above results apply
verbatim for all sufficiently short-range potentials. If either of the conditions (1.3) fails to
hold, then one can still have blow up for arbitrarily small data and short-range potentials;
see [7, 17]. And if conditions (1.3) hold, then a result of Strauss and Tsutaya [15] ensures
the existence of classical solutions, provided that

∑

|α|≤2

|∂α
x V (x)| ≤ V0(1 + |x|)−2−δ, δ > 0 (1.4)

for some small V0 > 0. Moreover, it was also shown in [15] that both the smallness and the
decay assumption (1.4) are sharp, if the potential is assumed to be non-positive. Namely,
a non-positive potential which is either large or decaying like |x|−2+δ at infinity will force
solutions to blow up in finite time, even in the case that conditions (1.3) hold; see also [7].
For non-negative potentials, on the other hand, the smallness assumption does not seem to
be needed; this was illustrated in [2] for potentials of compact support.

Next, we turn to the associated scattering problems for initial data satisfying (1.2). When
it comes to (NW), the existence of the scattering operator was shown by Pecher [13] under
the assumptions

1 +
√

2 < p ≤ 3, k > 2/(p− 1). (1.5)

An extension of this result to (NWP) was obtained by the first author [8] under the slightly
different assumptions

1 +
√

2 < p < 3, k ≥ 2/(p− 1) (1.6)

for all short-range potentials satisfying (1.4). To interpret these results, it is perhaps better
to think in terms of the energy norm

||u||e =

(∫

R3

|∂tu|2 dx +

∫

R3

|∇u|2 dx

)1/2

. (1.7)

As one might expect from the assumption (1.2) on the initial data, the solutions constructed
in [8, 13] behave like |x|−k at infinity. Thus, their first-order derivatives are in L2(R3) if and
only if k > 1/2. This also gives the range of decay rates k for which finite-energy solutions
arise. The results of [8, 13], on the other hand, are restricted to decay rates k > 1 because
of either (1.5) or (1.6). Thus, there exist finite-energy solutions to both (NW) and (NWP)
whose asymptotic behavior has not been studied yet.

Our main goal in this paper is to establish the sharp conditions needed to define the
scattering operator for both (NW) and (NWP) when the assumption (1.2) is imposed on
the initial data. There are related results which impose more general assumptions, avoiding
the pointwise estimate (1.2). Nevertheless, these results are not optimal with respect to the
order of the nonlinearity; see [5, 11] and the references cited therein.

Let us denote by u−0 the solution to the homogeneous wave equation

∂2
t u0 −∆u0 = 0 in R3 × R (1.8)
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subject to the initial data (1.1). As it is well-known, one can obtain a solution u to (NWP)
by solving the associated integral equation

u = u−0 + L F (u)−L (V u), (1.9)

where the Duhamel operator L is defined by the formula

[L G](x, t) =
1

4π

∫ t

−∞

1

t− τ

∫

|y−x|=t−τ

G(y, τ) dSy dτ. (1.10)

Regarding the existence of solutions to (1.9), we shall prove the following

Theorem 1.1 (Existence). Let u−0 be the solution to the homogeneous wave equation

∂2
t u0 −∆u0 = 0, u0(x, 0) = ϕ(x), ∂tu0(x, 0) = ψ(x).

Assume (1.2), (1.3), (1.4) and take F (u) = |u|p or F (u) = |u|p−1u. If ε, V0 are sufficiently
small, then the integral equation (1.9) has a unique C2-solution.

Remark 1.2. The solutions we construct lie in a certain Banach space that we introduce in
the next section; see (2.4). We can similarly construct solutions for more general nonlinear
terms than the ones listed here; our precise assumptions on F appear in (2.8), (2.9).

The proof of Theorem 1.1 is essentially based on the work of Pecher [13] as well as other
results for the Cauchy problem [1, 6, 15, 16]. However, our assumptions on the initial data
are more general than those in [13], while the domain of dependence does no longer extend
over a bounded region. To establish the existence of solutions, we thus need to derive a new
estimate for the inhomogeneous wave equation with a nonlinear term and a potential; see
Lemma 3.1. For the homogeneous wave equation (1.8), we use the weighted L∞-estimates
of Lemma 2.1, which are pretty well-known by now.

Regarding the existence of the scattering operator, we shall prove the following

Theorem 1.3 (Scattering). Let the assumptions of Theorem 1.1 hold. Also, assume

kp ≥ k + 2, k > 1 for the case V (x) ≡/ 0; (1.11)

kp ≥ k + 2, kp > 5/2 for the case V (x) ≡ 0. (1.12)

Then the unique solution u provided by Theorem 1.1 satisfies

||u− u−0 ||e → 0 as t → −∞, (1.13)

and there exists a unique solution u+
0 to the homogeneous equation (1.8) which satisfies

||u− u+
0 ||e → 0 as t → +∞. (1.14)

In particular, one can define the scattering operator S : u−0 → u+
0 .

Remark 1.4. The first condition in (1.11), (1.12) simply repeats one of our assumptions in
Theorem 1.1. It is one of the necessary conditions (1.3) for the existence of solutions. Here,
we have chosen to restate it explicitly in order to illustrate that the assumptions imposed in
the presence of a short-range potential (1.11) are strictly stronger than those imposed in its
absence (1.12). This fact only becomes clear when the first condition is included.
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Remark 1.5. Consider our finite-energy solutions, i.e., the ones with decay rates k > 1/2.
We assume the first condition in (1.12) to ensure their existence. Then the second condition
follows automatically. In particular, our theorem shows that all our finite-energy solutions
are asymptotically free in the absence of the potential. For short-range potentials, we have
the same conclusion, yet only if k > 1; this excludes some of our finite-energy solutions.

To complement our scattering result, Theorem 1.3, we shall also show that the conditions
given there are actually sharp. More precisely, we shall also establish the following

Theorem 1.6 (No scattering). Let the assumptions of Theorem 1.1 hold. Also, assume
either

kp ≥ k + 2, k ≤ 1, 0 ≡/ V (x) ≤ 0 (1.15)

or else
kp ≥ k + 2, kp ≤ 5/2, V (x) ≡ 0. (1.16)

If the initial data are chosen so that

ϕ(x) ≡ 0, ψ(x) ≤ 0, |ψ(x)| ≥ ε1(1 + |x|)−k−1

for some small ε1 > 0, then the solution u provided by Theorem 1.1 does not satisfy (1.13).

Remark 1.7. The smallness assumption on ε1 is merely needed to ensure the existence of
solutions, as Theorem 1.1 is only applicable for small initial data. For large initial data, on
the other hand, solutions to (NWP) need not even exist for all times; see [10].

Results analogous to Theorem 1.6 have been obtained by Glassey [3] and Matsumura [12]
in the context of the nonlinear Klein-Gordon equation. However, their approach cannot be
applied here because our solutions are not necessarily in L2. To briefly outline our method
of proof, our goal is to argue by contradiction. Assuming that (1.13) does hold, we are able
to find a function G(x, t) such that G(· , t) ∈ L2(R3) for all times, whereas∫

R3

G(x, t) · ∂t(u− u−0 ) dx

fails to approach zero as t → −∞. By Hölder’s inequality then, one cannot really have

||∂t(u− u−0 )||L2(R3) → 0 as t → −∞,

so the convergence (1.13) in the energy norm has to fail as well.
The remaining of this paper is organized as follows. In section 2, we give the well-known

weighted L∞-estimates for the homogeneous wave equation and then establish some useful
estimates involving our weight function (2.6). In section 3, we combine these facts to prove
our existence result, Theorem 1.1, and our scattering result, Theorem 1.3. Finally, the proof
of Theorem 1.6 is given in section 4.

2. A priori estimates

In this section, we gather some estimates that will be needed in the proof of our existence
result, Theorem 1.1. Let us first focus on the homogeneous wave equation

∂2
t u0 −∆u0 = 0 in R3 × R (2.1)

and impose the conditions

u0(x, 0) = ϕ(x), ∂tu0(x, 0) = ψ(x). (2.2)
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When it comes to the initial data, we shall assume that
∑

|α|≤3

|∂α
x ϕ(x)|+

∑

|β|≤2

|∂β
xψ(x)| ≤ ε 〈x〉−k−1 , (2.3)

where 〈x〉 = 1 + |x| and the constants ε, k are both positive. To study the homogeneous
wave equation with such data, it is convenient to introduce the Banach space

X =
{
u(x, t) : ∂α

x u(x, t) ∈ C(R3 × R) for |α| ≤ 2, ||u|| < ∞}
. (2.4)

Here, the norm || · || is defined by

||u|| =
∑

|α|≤2

sup
x∈R3

t∈R

|∂α
x u(x, t)| ·Wk(|x|, |t|), (2.5)

where the weight function Wk is of the form

Wk(|x|, |t|) = 〈|t|+ |x|〉µ 〈|t| − |x|〉ν
(

1 + ln
〈|t|+ |x|〉
〈|t| − |x|〉

)−δ1k

(2.6)

with µ = min(k, 1), ν = max(k − 1, 0) and δ1k the usual Kronecker delta.
For the proof of the following lemma, we refer the reader to [1, 16].

Lemma 2.1. Suppose ϕ ∈ C3(R3) and ψ ∈ C2(R3) are subject to (2.3) for some ε, k > 0.
Then the Cauchy problem (2.1)-(2.2) admits a unique solution u−0 ∈ X (2.4). Moreover, the
estimate ||u−0 || ≤ C0ε holds for some constant C0 that depends solely on k.

Next, we turn to the nonlinear wave equation with potential

∂2
t u−∆u + V (x) · u = F (u) in R3 × R. (NWP)

When it comes to the potential term V (x), we shall assume that
∑

|α|≤2

|∂α
x V (x)| ≤ V0 〈x〉−l , l > 2 (2.7)

for some small V0 > 0. When it comes to the nonlinear term F (u), we require that

F ∈ C2(R); F (0) = F ′(0) = F ′′(0) = 0 (2.8)

and that the estimate

|F ′′(u)− F ′′(v)| ≤
{

A|u− v|p−2 if 1 +
√

2 < p < 3
A(|u|+ |v|)p−3 |u− v| if p ≥ 3

(2.9)

holds for some A > 0 and p > 1 +
√

2 whenever |u|, |v| ≤ 1.
Recall that we seek a solution to the integral equation (1.9), where u−0 is the solution of

Lemma 2.1. One of our assumptions (1.3) ensures that k ≥ 2/(p− 1), where k is the decay
rate of the initial data. There is no loss of generality in decreasing the decay rate k, as long
as the lower bound is not contradicted. Since we actually have

2

p− 1
< min (p− 1, 1 + 1/p)

whenever p > 1 +
√

2, this means there is no loss of generality in assuming

2

p− 1
≤ k < min(p− 1, 1 + 1/p), p > 1 +

√
2. (2.10)
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Now, in the definition (2.6) of our weight function, we also introduced the parameters

µ = min(k, 1), ν = max(k − 1, 0). (2.11)

Under our assumption (2.10), those are easily seen to satisfy the conditions

0 ≤ ν ≤ νp < 1, µ + ν = k, µp ≥ min(k + 2, p) > 2. (2.12)

Remark 2.2. In what follows, we shall frequently use the bracket notation 〈s〉 = 1 + |s|.
For the proof of the following lemma, we refer the reader to [1, 16].

Lemma 2.3. Let r, t > 0 be arbitrary. Assuming that k > 0, one has
∫ t+r

|t−r|
〈γ〉−k dγ ≤ C(k) · rWk(r, t)

−1,

where the weight function Wk is given by (2.6).

Lemma 2.4. Let w ≥ 0 be arbitrary. Given constants a < 1 and b ≥ 0, one has

Ab ≡
∫ w

0

〈γ〉−a

(
1 + ln

〈w〉
〈γ〉

)b

dγ ≤ C(a, b) · w 〈w〉−a . (2.13)

Proof. When 0 ≤ w ≤ 1, the desired estimate is easy to obtain. Assume now that w ≥ 1.
Since the given integral is increasing in b, it suffices to treat the case that b is an integer.
Integrating by parts and using the fact that a < 1, we find

Ab =

[
〈γ〉1−a

1− a
·
(

1 + ln
〈w〉
〈γ〉

)b
]w

γ=0

+

∫ w

0

b 〈γ〉−a

1− a
·
(

1 + ln
〈w〉
〈γ〉

)b−1

dγ

≤ 〈w〉1−a

1− a
+

b

1− a
· Ab−1.

Since the desired (2.13) holds trivially when b = 0, the result follows by induction.

Lemma 2.5. Let γ ∈ R and z ≥ |γ| be arbitrary. Suppose that (2.10), (2.11) hold. Given
any constants b ≥ 0 and l > 2, one has

I ≡
∫ ∞

z

〈β + γ〉1−l · 〈β〉−µ

(
1 + ln

〈β〉
〈γ〉

)b

dβ ≤ C 〈z〉−µ (2.14)

as well as

Jb ≡
∫ ∞

z

〈β〉1−µp

(
1 + ln

〈β〉
〈γ〉

)b

dβ ≤ C 〈z〉2−µp

(
1 + ln

〈z〉
〈γ〉

)b

. (2.15)

Besides, the constant C is independent of γ and z.

Proof. To prove (2.14), it is convenient to divide the given integral into two parts. Let

I1 ≡
∫ ∞

max(z,2|γ|)
〈β + γ〉1−l · 〈β〉−µ

(
1 + ln

〈β〉
〈γ〉

)b

dβ.

Since 2(1 + β + γ) ≥ 1 + β within the region of integration and since l > 2, we find

I1 ≤ C1

∫ ∞

z

〈β〉1−l · 〈β〉−µ · 〈β〉l−2 dβ = C2 〈z〉−µ
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because µ > 0 by (2.11). Thus, it remains to now treat

I − I1 =

∫ max(z,2|γ|)

z

〈β + γ〉1−l · 〈β〉−µ

(
1 + ln

〈β〉
〈γ〉

)b

dβ.

Since |γ| ≤ z ≤ β ≤ 2|γ| within the region of integration, we find

I − I1 ≤ C 〈z〉−µ

∫ ∞

z

〈β + γ〉1−l dβ ≤ C 〈z〉−µ

because l > 2. This proves our first assertion (2.14).
To prove (2.15), we modify our approach in the previous lemma as follows. Integrating by

parts, we get

Jb =

[
〈β〉2−µp

2− µp
·
(

1 + ln
〈β〉
〈γ〉

)b
]∞

β=z

−
∫ ∞

z

b 〈β〉1−µp

2− µp
·
(

1 + ln
〈β〉
〈γ〉

)b−1

dβ

=
〈z〉2−µp

µp− 2
·
(

1 + ln
〈z〉
〈γ〉

)b

+
b

µp− 2
· Jb−1

since µp > 2 by (2.12). Iterating this fact a sufficient number of times, we thus obtain

Jb ≤ C 〈z〉2−µp

(
1 + ln

〈z〉
〈γ〉

)b

+ C

∫ ∞

z

〈β〉1−µp ·
(

1 + ln
〈β〉
〈γ〉

)b′

dβ

for some b′ ≤ 0. Here, the logarithmic factor in the integrand is bounded since β ≥ z ≥ |γ|
within the region of integration. Recalling that µp > 2, we may thus deduce (2.15).

Lemma 2.6. Let r > 0 and t ∈ R. Assuming (2.10), (2.11) and that l > 2, one has

I ≡
∫ t

−∞

∫ λ+

|λ−|
〈λ〉1−l ·Wk(λ, |τ |)−1 dλ dτ ≤ Cr ·Wk(r, |t|)−1,

where λ± = t− τ ± r, Wk is given by (2.6) and the constant C is independent of r, t.

Proof. We divide the given integral into two parts.
First, we treat the part in which τ ≥ 0. For this part, we have to show that

I1 ≡
∫ t

0

∫ λ+

|λ−|
〈λ〉1−l ·Wk(λ, τ)−1 dλ dτ ≤ Cr ·Wk(r, t)

−1 (2.16)

for each t > 0. Recalling the definition (2.6) of Wk, let us then write

I1 =

∫ t

0

∫ t−τ+r

|t−τ−r|
〈λ〉1−l · 〈λ + τ〉−µ 〈λ− τ〉−ν

(
1 + ln

〈λ + τ〉
〈λ− τ〉

)δ1k

dλ dτ

and change variables by β = λ− τ , γ = λ + τ to arrive at

I1 ≤ C

∫ t+r

|t−r|
〈γ〉−µ

∫ γ

−γ

〈β + γ〉1−l · 〈β〉−ν

(
1 + ln

〈γ〉
〈β〉

)δ1k

dβ dγ.

According to Lemma 3.2 in [7], one does have the estimate
∫ γ

−γ

〈β + γ〉1−l · 〈β〉−ν

(
1 + ln

〈γ〉
〈β〉

)δ1k

dβ ≤ C 〈γ〉−ν



8 PASCHALIS KARAGEORGIS AND KIMITOSHI TSUTAYA

whenever l > 2 and ν < 1. In view of (2.12) then, the last two equations imply that

I1 ≤ C

∫ t+r

|t−r|
〈γ〉−µ−ν dγ = C

∫ t+r

|t−r|
〈γ〉−k dγ.

Once we now invoke Lemma 2.3, we arrive at the desired estimate (2.16).
Next, we treat the part in which τ ≤ 0. For this part, we have to show that

I2 ≡
∫ min(0,t)

−∞

∫ λ+

|λ−|
〈λ〉1−l ·Wk(λ,−τ)−1 dλ dτ ≤ Cr ·Wk(r, |t|)−1 (2.17)

for any t ∈ R whatsoever. Recalling the definition (2.6) of Wk, let us then write

I2 =

∫ min(0,t)

−∞

∫ λ+

|λ−|
〈λ〉1−l · 〈λ− τ〉−µ 〈λ + τ〉−ν

(
1 + ln

〈λ− τ〉
〈λ + τ〉

)δ1k

dλ dτ.

As τ ≤ t within the region of integration, we have λ ≥ |λ−| ≥ t− τ − r. As τ ≤ 0, we also
have λ ≥ |λ−| ≥ |t− r|+ τ . Changing variables by β = λ− τ and γ = λ + τ , we then get

I2 ≤ C

∫ t+r

t−r

〈γ〉−ν

∫ ∞

max(|γ|,|t−r|)
〈β + γ〉1−l · 〈β〉−µ

(
1 + ln

〈β〉
〈γ〉

)δ1k

dβ dγ

≤ C

∫ t+r

t−r

〈γ〉−ν · 〈z〉−µ dγ

by Lemma 2.5 with z = max(|γ|, |t− r|). Note that this trivially implies

I2 ≤ C

∫ t+r

t−r

〈γ〉−ν · 〈z〉−µ ·
(

1 + ln
〈z〉
〈γ〉

)b

dγ

for any b ≥ 0 and that we also have ν < 1 by (2.12). To establish the desired (2.17), we
shall now show that the more general estimate

I ′2 ≡
∫ t+r

t−r

〈γ〉−c1 · 〈z〉−c2 ·
(

1 + ln
〈z〉
〈γ〉

)b

dγ ≤ Cr ·Wk(r, |t|)−1 (2.18)

holds whenever z = max(|γ|, |t− r|), b ≥ 0, c1 < 1 and c1 + c2 = µ + ν = k.
Case 1: When t ≥ 0, we have t− r ≤ |t− r| ≤ t + r and our definition (2.18) reads

I ′2 =

∫ t+r

|t−r|
〈γ〉−k dγ + 〈t− r〉−c2

∫ |t−r|

t−r

〈γ〉−c1 ·
(

1 + ln
〈t− r〉
〈γ〉

)b

dγ

because z = |γ| within the former integral and z = |t− r| within the latter. This gives

I ′2 ≤ Cr ·Wk(r, t)
−1 + 〈t− r〉−c2

∫ |t−r|

t−r

〈γ〉−c1 ·
(

1 + ln
〈t− r〉
〈γ〉

)b

dγ

by Lemma 2.3. Since c1 < 1 and since we may henceforth assume that r ≥ t, we find

I ′2 ≤ Cr ·Wk(r, t)
−1 + 2 〈r − t〉−c2

∫ r−t

0

〈γ〉−c1 ·
(

1 + ln
〈r − t〉
〈γ〉

)b

dγ

≤ Cr ·Wk(r, t)
−1 + C(r − t) · 〈r − t〉−µ−ν

by Lemma 2.4 with w = r − t ≥ 0. To deduce the desired (2.18), it remains to show that

(r − t) · 〈r − t〉−µ−ν ≤ Cr · 〈r + t〉−µ 〈r − t〉−ν when r ≥ t ≥ 0.
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If r ≥ t and r ≤ 1, this is easy to see because r − t ≤ r and 〈r − t〉 is equivalent to 〈r + t〉.
If r ≥ t and r ≥ 1, on the other hand, r is equivalent to 〈r + t〉 and we similarly get

(r − t) · 〈r − t〉−µ−ν ≤ 〈r + t〉1−µ 〈r − t〉−ν ≤ Cr · 〈r + t〉−µ 〈r − t〉−ν

because µ ≤ 1 by (2.11).
Case 2: When t ≤ 0, we have |r + t| ≤ r + |t| = r − t, so our definition (2.18) reads

I ′2 = 〈r − t〉−c2

∫ t+r

t−r

〈γ〉−c1 ·
(

1 + ln
〈r − t〉
〈γ〉

)b

dγ. (2.19)

Subcase 2a: If it happens that |t| ≤ 3r, we proceed as in the previous case to obtain

I ′2 ≤ 〈r − t〉−c2

∫ r−t

t−r

〈γ〉−c1 ·
(

1 + ln
〈r − t〉
〈γ〉

)b

dγ ≤ C(r − t) · 〈r − t〉−µ−ν

by Lemma 2.4. Since r − t = r + |t| ≤ 4r for this subcase, the desired (2.18) follows.
Subcase 2b: If it happens that −t = |t| ≥ 3r, then 〈r + t〉 is equivalent to 〈r − t〉 because

|r + t| ≤ r + |t| = r − t ≤ −2(r + t)

for this subcase. In particular, equation (2.19) trivially leads to

I ′2 ≤ C 〈r ± t〉−µ−ν

∫ t+r

t−r

dγ ≤ Cr 〈r ± t〉−µ−ν ,

which implies the desired estimate (2.18) whenever 〈r + t〉 is equivalent to 〈r − t〉.
Lemma 2.7. Let r > 0 and t ∈ R. Assuming (2.10) and (2.11), one has

J ≡
∫ t

−∞

∫ λ+

|λ−|
λ ·Wk(λ, |τ |)−p dλ dτ ≤ Cr ·Wk(r, |t|)−1,

where λ± = t− τ ± r, Wk is given by (2.6) and the constant C is independent of r, t.

Proof. We proceed as in the proof of the previous lemma.
First, we treat the part in which τ ≥ 0. For this part, we have to show that

J1 ≡
∫ t

0

∫ λ+

|λ−|
λ ·Wk(λ, τ)−p dλ dτ ≤ Cr ·Wk(r, t)

−1 (2.20)

for each t > 0. Let us then change variables by β = λ− τ , γ = λ + τ to get

J1 ≤ C

∫ t+r

|t−r|
〈γ〉−µp

∫ γ

−γ

(β + γ) · 〈β〉−νp

(
1 + ln

〈γ〉
〈β〉

)pδ1k

dβ dγ.

According to Lemma 3.3 in [7], one does have the estimate
∫ γ

−γ

(β + γ) · 〈β〉−νp

(
1 + ln

〈γ〉
〈β〉

)pδ1k

dβ ≤ C 〈γ〉µp−k

whenever (2.10) and (2.11) hold. In particular, the last two equations also imply

J1 ≤ C

∫ t+r

|t−r|
〈γ〉−k dγ ≤ Cr ·Wk(r, t)

−1

by means of Lemma 2.3. This proves the desired estimate (2.20).
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Next, we treat the part in which τ ≤ 0. For this part, we have to show that

J2 ≡
∫ min(0,t)

−∞

∫ λ+

|λ−|
λ ·Wk(λ,−τ)−p dλ dτ ≤ Cr ·Wk(r, |t|)−1 (2.21)

for any t ∈ R whatsoever. Recalling the definition (2.6) of Wk, let us then write

J2 =

∫ min(0,t)

−∞

∫ λ+

|λ−|
λ · 〈λ− τ〉−µp 〈λ + τ〉−νp

(
1 + ln

〈λ− τ〉
〈λ + τ〉

)pδ1k

dλ dτ.

Changing variables by β = λ− τ and γ = λ + τ , we find

J2 ≤ C

∫ t+r

t−r

〈γ〉−νp

∫ ∞

max(|γ|,|t−r|)
(β + γ) · 〈β〉−µp

(
1 + ln

〈β〉
〈γ〉

)pδ1k

dβ dγ

≤ C

∫ t+r

t−r

〈γ〉−νp

∫ ∞

max(|γ|,|t−r|)
〈β〉1−µp

(
1 + ln

〈β〉
〈γ〉

)pδ1k

dβ dγ

because β + γ ≤ β + |γ| ≤ 2β within the region of integration. This already implies

J2 ≤ C

∫ t+r

t−r

〈γ〉−νp · 〈z〉2−µp ·
(

1 + ln
〈z〉
〈γ〉

)pδ1k

dγ

by Lemma 2.5 with z = max(|γ|, |t− r|). Moreover, we also have

2− µp = 2− kp + νp ≤ −k + νp

because µ + ν = k and k ≥ 2/(p− 1) by assumption. This allows us to conclude that

J2 ≤ C

∫ t+r

t−r

〈γ〉−νp · 〈z〉−(k−νp) ·
(

1 + ln
〈z〉
〈γ〉

)pδ1k

dγ.

As νp < 1 by (2.12), we may then invoke our estimate (2.18) to complete the proof.

3. Existence of the Scattering Operator

In this section, we turn to the proofs of Theorem 1.1 and Theorem 1.3. Our first step is
to establish the basic estimate for the existence proof.

Lemma 3.1. Suppose V (x) satisfies (2.7) and F (u) satisfies (2.8), (2.9). Assume that (2.10)
and (2.11) also hold. Letting L be the Duhamel operator (1.10), one then has

||L F (u)|| ≤ C1||u||p, ||L (V u)|| ≤ C1V0||u|| (3.1)

for each u ∈ X (2.4) with ||u|| ≤ 1. Besides, the constant C1 is independent of u, V0.

Proof. Recall the definition (1.10) of the Duhamel operator, according to which

[L F (u)](x, t) =
1

4π

∫ t

−∞
(t− τ)

∫

|ξ|=1

F (u(x + (t− τ)ξ, τ)) dSξ dτ.

Using a direct differentiation, we then find

∂α
x [L F (u)](x, t) =

1

4π

∫ t

−∞

1

t− τ

∫

|y−x|=t−τ

∂α
y F (u(y, τ)) dSy dτ (3.2)

for each multi-index α.
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To estimate the integrand, we use the fact that

|∂α
y F (u(y, τ))| ≤ C||u||p ·Wk(|y|, |τ |)−p, |α| ≤ 2. (3.3)

One can easily obtain this fact using our assumptions (2.8), (2.9) on F and the definition of
our norm (2.5). Let us merely treat the case |α| = 0 here, as the cases |α| = 1, 2 are quite
similar. First, we combine (2.8) with (2.9) to find that

|F (u)| ≤ C|u|p if |u| ≤ 1.

Next, we recall the definition (2.5) of our norm, according to which

|u(y, τ)| ≤ ||u|| ·Wk(|y|, |τ |)−1.

Since ||u|| ≤ 1 by assumption and since Wk ≥ 1 by definition (2.6), we do have |u| ≤ 1 here.
Once we now combine the last two equations, we obtain (3.3) for the case |α| = 0.

In order to proceed, we shall also need to invoke the following lemma from [13].

Lemma 3.2. Given t > 0, x ∈ R3 and a continuous function f : R→ R, one has

1

t

∫

|y−x|=t

f(|y|) dSy =
2π

r

∫ t+r

|t−r|
λf(λ) dλ,

where we have set r = |x| for convenience.

Inserting our estimate (3.3) into (3.2) and using Lemma 3.2, we now find that

|∂α
x L F (u)| ≤ C||u||p

r

∫ t

−∞

∫ t−τ+r

|t−τ−r|
λ ·Wk(λ, |τ |)−p dλ dτ

whenever |α| ≤ 2. In view of our estimate in Lemma 2.7, this actually implies

|∂α
x L F (u)| ≤ C||u||p ·Wk(r, |t|)−1, |α| ≤ 2.

In view of the definition (2.5) of our norm, it thus implies our first assertion in (3.1).
To prove our second assertion in (3.1), we slightly modify our approach as follows. First,

we return to (3.2) and replace F (u) by V u. To estimate the integrand, we now note that

|∂α
y [V (y) · u(y, τ)]| ≤ CV0||u|| · 〈y〉−l Wk(|y|, |τ |)−1, |α| ≤ 2

because of (2.5) and (2.7). Using this fact and Lemma 3.2, we find that

|∂α
x L (V u)| ≤ CV0||u||

r

∫ t

−∞

∫ t−τ+r

|t−τ−r|
〈λ〉1−l ·Wk(λ, |τ |)−1 dλ dτ

whenever |α| ≤ 2. In view of Lemma 2.6 and (2.5), the desired estimate follows.

We are finally in a position to give the proofs of Theorem 1.1 and Theorem 1.3.

Proof of Theorem 1.1. Our iteration argument is almost identical with that of [1, 6], so
we only give a sketch of the proof. As we have already mentioned earlier, one may decrease
the decay rate k of the initial data to ensure that (2.10) holds without loss of generality. We
let u0 = u−0 be the solution given by Lemma 2.1 and recursively define

ui+1 = u−0 + L F (ui)−L (V ui), i ≥ 0. (3.4)

According to Lemma 2.1, we then have u0 ∈ X (2.4) and we also have

||u0|| ≤ C0ε.
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In order to proceed, we shall assume that ε, V0 are so small that

2C1(2C0ε)
p−1 + 2C1V0 ≤ 1, 2C0ε ≤ 1

when C1 is the constant appearing in Lemma 3.1. Then we have

2C1(2||u0||)p−1 + 2C1V0 ≤ 1, 2||u0|| ≤ 1.

Using Lemma 3.1 and induction, we now find that ||ui|| ≤ 2||u0|| for all i. In particular, the
whole sequence {ui} lies in X. Using Lemma 3.1 and a contraction argument, as in [1, 6],
we deduce the existence of a unique solution u ∈ X to the integral equation (1.9).

Proof of Theorem 1.3. Our first step is to establish (1.13), which asserts that

||u− u−0 ||e → 0 as t → −∞.

To prove this fact, as it is well-known, it suffices to obtain an estimate of the form

∫ t

−∞
||F (u)||L2(R3) dτ +

∫ t

−∞
||V u||L2(R3) dτ ≤ C 〈t〉−δ , t ≤ 0 (3.5)

for some δ > 0. Let us then focus on the derivation of (3.5), instead.
We recall that we are making two different kinds of assumptions in this theorem, as we

can get better results in the absence of the potential. More precisely, we are assuming either

kp ≥ k + 2, kp > 5/2, V (x) ≡ 0 (3.6)

or else

kp ≥ k + 2, k > 1, V (x) ≡/ 0. (3.7)

For the latter case, however, we are additionally assuming that V (x) satisfies (2.7).
Case 1: Suppose (3.6) holds. To establish (3.5), it then suffices to show that

G1(τ) ≡
∫

R3

F (u(x, τ))2 dx ≤ C 〈τ〉−2δ−2 , τ ≤ 0 (3.8)

for some δ > 0. Now, using our assumptions (2.8), (2.9) on F and the definition (2.5) of our
norm, one easily finds that

F (u(x, τ))2 ≤ C|u(x, τ)|2p ≤ C||u||2p ·Wk(|x|, |τ |)−2p

because u ∈ X by Theorem 1.1. Recall that the weight function (2.6) is given by

Wk(|x|, |τ |) = 〈|τ |+ |x|〉µ 〈|τ | − |x|〉ν
(

1 + ln
〈|τ |+ |x|〉
〈|τ | − |x|〉

)−δ1k

,

where µ = min(k, 1), ν = k − µ and δ1k is the usual Kronecker delta. Inserting the last two
equations in our definition (3.8), we now switch to polar coordinates to find that

G1(τ) ≤ C

∫ ∞

0

〈|τ |+ r〉2−2µp 〈|τ | − r〉−2νp

(
1 + ln

〈|τ |+ r〉
〈|τ | − r〉

)2pδ1k

dr. (3.9)
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Note that each of 〈|τ | ± r〉 is equivalent to 〈r〉 whenever r ≥ 2|τ |, while each of 〈|τ | ± r〉 is
equivalent to 〈τ〉 whenever |τ | ≥ 2r. Thus, the last equation also implies

G1(τ) ≤ C

∫ ∞

2|τ |
〈r〉2−2(µ+ν)p dr + C 〈τ〉2−2(µ+ν)p

∫ |τ |/2

0

dr

+ C

∫ 2|τ |

|τ |/2

〈|τ |+ r〉2−2µp 〈|τ | − r〉−2νp

(
1 + ln

〈|τ |+ r〉
〈|τ | − r〉

)2pδ1k

dr.

Here, µ + ν = k by definition (2.11), so we actually have

2− 2(µ + ν)p = 2− 2kp ≤ −2k − 2 < −2

because 2kp ≥ 2k + 4 by (3.6). Combining the last two equations, we then get

G1(τ) ≤ C 〈τ〉3−2kp + C 〈τ〉2−2µp+δ

∫ 2|τ |

|τ |/2

〈|τ | − r〉−2νp dr

for any δ > 0. Note that this trivially implies

G1(τ) ≤ C 〈τ〉3−2kp + C 〈τ〉2−2µp+δ + C 〈τ〉3−2(µ+ν)p+2δ

≤ C 〈τ〉3−2kp+2δ + C 〈τ〉2−2µp+2δ (3.10)

because µ + ν = k by above. Now, our assumption (3.6) ensures that

kp ≥ k + 2, kp > 5/2.

In view of our definition (2.11), this also gives

µp = min(kp, p) ≥ min(k + 2, p) > 2

because k > 0 and p > 1 +
√

2. In particular, we can always choose some δ such that

0 < 2δ ≤ min(kp− 5/2, µp− 2).

For this choice of δ, it is now easy to check that (3.10) implies the desired (3.8).
Case 2: Suppose (3.7) holds. Then kp ≥ k + 2 > 3, so the estimates of the previous case are
still applicable. Thus, to establish (3.5), we need only worry about the potential term now.
As in the previous case, it suffices to show that

G2(τ) ≡
∫

R3

V (x)2 · u(x, τ)2 dx ≤ C 〈τ〉−2ε−2 , τ ≤ 0 (3.11)

for some ε > 0. Arguing as before and using our assumption (2.7), we find

G2(τ) ≤ C

∫ ∞

0

〈r〉2−2l 〈|τ |+ r〉−2µ 〈|τ | − r〉−2ν

(
1 + ln

〈|τ |+ r〉
〈|τ | − r〉

)2δ1k

dr.

In analogy with (3.9), we divide this integral into three parts, and we now get

G2(τ) ≤ C

∫ ∞

2|τ |
〈r〉2−2l−2k dr + C 〈τ〉−2k

∫ |τ |/2

0

〈r〉2−2l dr

+ C 〈τ〉2−2l−2µ

∫ 2|τ |

|τ |/2

〈|τ | − r〉−2ν

(
1 + ln

〈|τ |+ r〉
〈|τ | − r〉

)2δ1k

dr
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because µ + ν = k. Since l > 2 by our assumption (2.7), we then get

G2(τ) ≤ C 〈τ〉3−2l−2k + C 〈τ〉−2k + C 〈τ〉2−2l−2µ+ε

∫ 2|τ |

|τ |/2

〈|τ | − r〉−2ν dr

for any ε > 0. Note that this trivially implies

G2(τ) ≤ C 〈τ〉−2k + C 〈τ〉2−2l−2µ+ε + C 〈τ〉3−2l−2k+2ε

≤ C 〈τ〉−2k+2ε + C 〈τ〉2−2l−2µ+2ε (3.12)

because l > 2. Now, our assumption (3.7) ensures that k > 1, hence

µ = min(k, 1) = 1

by our definition (2.11). In particular, we can always choose some ε such that

0 < 2ε ≤ min(k − 1, µ + l − 2).

For this choice of ε, it is now easy to check that (3.12) implies the desired (3.11).
This finally completes the proof of (3.5), which also implies our first assertion (1.13). To

prove the remaining assertions of the theorem, we set

u+
0 (x, t) = u(x, t)− 1

4π

∫ ∞

t

1

τ − t

∫

|y−x|=τ−t

F (u(y, τ)) dSy dτ

+
1

4π

∫ ∞

t

1

τ − t

∫

|y−x|=τ−t

V (y) · u(y, τ) dSy dτ.

As one can readily check, u+
0 is then a C2-solution to the homogeneous wave equation (1.8).

Besides, the expression u−u+
0 bears a close resemblance to the Duhamel operator (1.10), so

one may establish the convergence

||u− u+
0 ||e → 0 as t → +∞

in the exact same way that we obtained (1.13). Given some other C2-solution with the same
properties as u+

0 , the difference w of the two must satisfy the homogeneous equation (1.8)
and its energy norm ||w||e must tend to zero as t → +∞. Since this implies that w ≡ 0, the
uniqueness assertion of the theorem follows as well.

4. Non-existence of the scattering operator

In this section, we give the proof of Theorem 1.6. One of the key ingredients in the proof
is a standard fact about the wave equation. We only include its derivation here for the sake
of completeness.

Lemma 4.1. Let the assumptions of Theorem 1.1 hold. Also, assume

ϕ(x) ≡ 0, ψ(x) ≤ 0, V (x) ≤ 0 for all x ∈ R3.

Denote by u and u−0 the solutions of Theorem 1.1 and Lemma 2.1, respectively. Then

u(x, t) ≥ u−0 (x, t) =
|t|
4π

∫

|ξ|=1

|ψ(x + tξ)| dSξ (4.1)

for all x ∈ R3 and each t ≤ 0.
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Proof. Repeating the iteration argument in the proof of Theorem 1.1, we let u0 = u−0 and
then recursively define a sequence of functions {ui} by setting

ui+1 = u−0 + L F (ui)−L (V ui), i ≥ 0. (4.2)

Due to our assumption that ϕ ≡ 0, we have the explicit representation

u0(x, t) = u−0 (x, t) =
t

4π

∫

|ξ|=1

ψ(x + tξ) dSξ.

Due to our assumption that ψ ≤ 0, we thus have u0 = u−0 ≥ 0 for each t ≤ 0.
Suppose ui ≥ u−0 ≥ 0 for some i and each t ≤ 0. When it comes to the expression

[L F (ui)](x, t) =
1

4π

∫ t

−∞

1

t− τ

∫

|y−x|=t−τ

F (ui(y, τ)) dSy dτ

we defined in (1.10), we then have F (ui(y, τ)) = ui(y, τ)p whenever t ≤ 0. Thus, the whole
expression is non-negative for each t ≤ 0. The same is true for −L (V ui) because V ≤ 0 by
assumption. Using (4.2) and induction, we thus find ui ≥ u−0 ≥ 0 for all i and each t ≤ 0.
Since the solution u arises as the limit of the sequence {ui}, the result follows.

We are now ready to give the proof of Theorem 1.6. We divide the proof into two parts,
as we are making two different kinds of assumptions in this theorem.

Proof of Theorem 1.6 assuming (1.15). Our goal is to show that the unique solution of
Theorem 1.1 does not exhibit the asymptotic behavior

||u− u−0 ||e → 0 as t → −∞. (4.3)

When it comes to this theorem, we are assuming the initial data are such that

ϕ(x) ≡ 0, ψ(x) ≤ 0, |ψ(x)| ≥ ε1 〈x〉−k−1 (4.4)

for some ε1 > 0. In this case, we also assume that (1.15) holds, i.e., we assume that

kp ≥ k + 2, 0 < k ≤ 1, 0 ≡/ V (x) ≤ 0. (4.5)

With R > 0 to be specified below, let us fix a smooth test function ζ ≥ 0 such that

ζ(x) = 1 if |x| ≤ R; (4.6)

|∆ζ(x)| ≤ 〈x〉−4 if |x| ≥ R; (4.7)

|ζ(x)|+ |∇ζ(x)| = O(|x|−4) as |x| → ∞. (4.8)

We remark that our test function ζ lies in L2(R3) because of the last equation.
Suppose now, for the sake of contradiction, that (4.3) does hold. Since ζ ∈ L2 by above,

we may then use Hölder’s inequality to see that

H1(t) =

∫

R3

ζ(x) · ∂t(u− u−0 ) dx (4.9)

is absolutely convergent on (−∞,−t0) for some t0 > 0 and that

H1(t) → 0 as t → −∞. (4.10)

By definition, the functions u, u−0 are solutions to the equations

∂2
t u = ∆u + F (u)− V (x) · u, ∂2

t u
−
0 = ∆u−0 .
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Differentiating (4.9) under the integral sign, as we may, we thus obtain the identity

H ′
1(t) =

∫

R3

ζ ·∆(u− u−0 ) dx +

∫

R3

ζF (u) dx−
∫

R3

ζV u dx (4.11)

for all times t < −t0.
To handle the first integral, we use the estimates of Theorem 1.1 and Lemma 2.1. Since

both u and u−0 are known to lie in the Banach space (2.4), we certainly have
∑

|α|≤2

|∂α
x [u(x, t)− u−0 (x, t)]| ≤ CWk(|x|, |t|)−1,

where Wk is our weight function (2.6). We remark that the last equation reads

∑

|α|≤2

|∂α
x [u(x, t)− u−0 (x, t)]| ≤ C 〈|x|+ |t|〉−k

(
1 + ln

〈|x|+ |t|〉
〈|x| − |t|〉

)δ1k

in this case, as k ≤ 1 by our assumption (4.5). In particular, we trivially get
∑

|α|≤2

|∂α
x [u(x, t)− u−0 (x, t)]| ≤ C 〈|x|+ |t|〉−k · 〈x〉1/2 (4.12)

because the logarithmic factor is bounded whenever |t| ≥ 2|x|.
Let us now return to our identity (4.11) and integrate by parts to obtain

H ′
1(t) =

∫

R3

∆ζ · (u− u−0 ) dx +

∫

R3

ζF (u) dx−
∫

R3

ζV u dx

≡ A1 + A2 + A3. (4.13)

One can easily justify this integration by parts using the decay properties (4.8) of ζ and our
estimate (4.12). Next, we recall (4.6), according to which ∆ζ = 0 whenever |x| ≤ R. Once
we now employ (4.7) and (4.12) to estimate the first integral, we find

|A1| ≤
∫

|x|≥R

〈x〉−4 · C 〈t〉−k 〈x〉1/2 dx ≤ C 〈t〉−k 〈R〉−1/2 .

Inserting this estimate in (4.13), we thus find

H ′
1(t) ≥

∫

R3

ζF (u) dx−
∫

R3

ζV u dx− C 〈t〉−k 〈R〉−1/2 (4.14)

for all times t < −t0 and some constant C which is independent of R.
To handle the last two integrals, we recall the various sign conditions we have imposed.

First of all, the test function ζ was chosen to be non-negative, while V ≤ 0 by (4.5). Due to
our choice (4.4) of initial data, we can also invoke Lemma 4.1 to get

u(x, t) ≥ |t|
4π

∫

|ξ|=1

|ψ(x + tξ)| dSξ ≥ C|t|
∫

|ξ|=1

〈x + tξ〉−k−1 dSξ. (4.15)

This shows that u is non-negative, so the same is true for F (u) = up as well. Ignoring the
first integral in (4.14) and using the fact that ζV u ≤ 0, we then trivially get

H ′
1(t) ≥

∫

|x|≤|t|/2

|ζV u| dx− C 〈t〉−k 〈R〉−1/2 (4.16)

for all times t < −t0 and some constant C which is independent of R.
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When it comes to the integral in (4.16), we have |t| ≥ 2|x| within the region of integration.
Assuming that |t| ≥ 1 as well, we may now use (4.15) to find that

u(x, t) ≥ C|t|
∫

|ξ|=1

〈x + tξ〉−k−1 dSξ ≥ C1|t|−k

within the region of integration. In particular, (4.16) also implies

H ′
1(t) ≥ C1|t|−k ·

[∫

|x|≤|t|/2

|ζV | dx− C2 〈R〉−1/2

]

for all times t < −t0 − 1, so it actually implies

H ′
1(t) ≥ C1|t|−k ·

[∫

|x|≤R

|ζV | dx− C2 〈R〉−1/2

]
(4.17)

for all times t < −t0 − 2R− 1. Besides, the constants C1, C2 are independent of R.
Since ζ(x) = 1 whenever |x| ≤ R by (4.6), the expression in brackets is given by∫

|x|≤R

|ζV | dx− C2 〈R〉−1/2 =

∫

|x|≤R

|V | dx− C2 〈R〉−1/2 .

Recalling (4.5), we now fix some R0 > 0 so that V ≡/ 0 in the ball |x| ≤ R0. Since∫

|x|≤R

|V | dx− C2 〈R〉−1/2 ≥
∫

|x|≤R0

|V | dx− C2 〈R〉−1/2

for each R ≥ R0, we then have∫

|x|≤R

|ζV | dx− C2 〈R〉−1/2 ≥ 1

2

∫

|x|≤R0

|V | dx

for a sufficiently large choice of R.
Fixing R and inserting the last inequality in (4.17), we find

H ′
1(t) ≥ C3|t|−k

for all times t < −t1, where t1 = t0 + 2R + 1. Since k ≤ 1 by (4.5), this also gives

H ′
1(t) ≥ C3|t|−k ≥ C3|t|−1

and we may now integrate to get

H1(t)−H1(2t) ≥ C3 ln 2

for all times t < −t1. Note that this is contrary to (4.10). Since we obtained (4.10) under
the assumption that (4.3) holds, the contradiction above disproves (4.3), as needed.

Proof of Theorem 1.6 assuming (1.16). Once again, we consider initial data with

ϕ(x) ≡ 0, ψ(x) ≤ 0, |ψ(x)| ≥ ε1 〈x〉−k−1 (4.18)

for some ε1 > 0 and our goal is to disprove the convergence

||u− u−0 ||e → 0 as t → −∞. (4.19)

In this case, however, we assume that (1.16) holds, i.e., we assume that

0 < k, k + 2 ≤ kp ≤ 5/2, V (x) ≡ 0. (4.20)

Since 2kp ≥ 2k + 4 > 4, it is clear that 〈|x|+ |t|〉−kp ∈ L2(R3) for all times.
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Suppose now, for the sake of contradiction, that (4.19) actually holds. Then

H2(t) =

∫

R3

〈|x|+ |t|〉−kp · ∂t(u− u−0 ) dx (4.21)

is well-defined on (−∞,−T0) for some T0 > 0, and one easily finds that

H ′
2(t) = kp

∫

R3

〈|x|+ |t|〉−kp−1 · ∂t(u− u−0 ) dx

+

∫

R3

〈|x|+ |t|〉−kp ·∆(u− u−0 ) dx

+

∫

R3

〈|x|+ |t|〉−kp · F (u) dx

≡ B1 + B2 + B3 (4.22)

for all times t < −T0.
First, we focus on B1. According to Hölder’s inequality, we have

|B1| ≤ C||u− u−0 ||e ·
(∫

R3

〈|x|+ |t|〉−2kp−2 dx

)1/2

and since 2kp + 2 > 6 by above, this also implies that

|B1| ≤ C||u− u−0 ||e · 〈t〉1/2−kp . (4.23)

Next, we obtain the exact same estimate for B2. Integrating by parts, we get

|B2| ≤ C

∫

R3

〈|x|+ |t|〉−kp−1 · |∇(u− u−0 )| dx

and then an application of Hölder’s inequality gives

|B2| ≤ C||u− u−0 ||e ·
(∫

R3

〈|x|+ |t|〉−2kp−2 dx

)1/2

≤ C||u− u−0 ||e · 〈t〉1/2−kp (4.24)

exactly as before.
Finally, we obtain a lower bound for B3. Note that Lemma 4.1 applies to give

u(x, t) ≥ C|t|
∫

|ξ|=1

〈x + tξ〉−k−1 dSξ

within the region of integration for all times t < −T0. Since this implies

u(x, t) ≥ C|t|
∫

|ξ|=1

〈x + tξ〉−k−1 dSξ ≥ C 〈t〉−k

whenever |t| ≥ 1 and |t| ≥ 2|x|, we then easily find that

B3 ≥
∫

|t|/3≤|x|≤|t|/2

〈|x|+ |t|〉−kp · u(x, t)p dx ≥ C 〈t〉3−2kp (4.25)

for all times t < −T0 − 1.
Let us now return to (4.22). Using our estimates (4.23), (4.24) and (4.25), we get

H ′
2(t) ≥ C1 〈t〉3−2kp − C2||u− u−0 ||e · 〈t〉1/2−kp
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for all times t < −T0 − 1. Moreover, our assumption (4.20) ensures that

〈t〉1/2−kp ≤ 〈t〉3−2kp

because it ensures that kp ≤ 5/2. Combining the last two equations, we then find

H ′
2(t) ≥

[
C1 − C2||u− u−0 ||e

]
· 〈t〉3−2kp

for all times t < −T0 − 1. In view of (4.19), this also implies

H ′
2(t) ≥ C3 〈t〉3−2kp

for all sufficiently negative times, say, for all times t < −T1.
Next, we integrate the last inequality to get

H2(t)−H2(2t) ≥ C4 〈t〉4−2kp (4.26)

for all times t < −T1. Recalling our definition (4.21), we also have

|H2(s)| ≤ ||∂t(u− u−0 )||L2(R3) ·
(∫

R3

〈|x|+ |s|〉−2kp dx

)1/2

for any s whatsoever. Since 2kp ≥ 2k + 4 > 4 by (4.20), this actually implies

|H2(s)| ≤ C||u− u−0 ||e(s) · 〈s〉3/2−kp

for any s whatsoever. Once we now combine this fact with (4.26), we find

C4 〈t〉4−2kp ≤ sup
2t≤s≤t

2|H2(s)|

≤ C 〈t〉3/2−kp · sup
2t≤s≤t

||u− u−0 ||e(s)

for all times t < −T1. Since kp ≤ 5/2 by our assumption (4.20), this also gives

sup
2t≤s≤t

||u− u−0 ||e(s) ≥ C5 〈t〉5/2−kp ≥ C5,

contrary to (4.19). Thus, the convergence (4.19) cannot possibly hold, as needed.
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