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Chapter 1

Introduction

This dissertation studies about the probe method for stationary/non-stationary heat equation.

The probe method was originally introduced by M. Tkehata [16] for reconstructing an unknown
inclusion inside an isotropic stationary heat conductive medium by many boundary measurements
( i.e. that is the so called Dirichlet-to-Neumann map).

In Chapter 2, we developed the theory of the probe method for stationary, anisotropic heat
equation with mixed type boundary condition and source term. Here the unknown inclusion D and
the back ground €\ D with an ambient region  have anisotropic conductivity vy + 1 and 7,
respectively. We assume 7, is either positive or negative definite almost everywhere in the closure D
of D. In case of 7y and ~; are conformal to each other, the probe method had been already studied
in [10].

We also have to point out an analogous method called singular sources method done by R.
Potthast ([12]) and his collaborators ([36]). Recently, K. Erhard and R. Potthast ([12]) gave a
numerical realization of the probe method and it was carefully examined by J. Cheng, J. J. Liu and
G. Nakamura ([32]). They did it for the inverse boundary value problem for the Helmholtz equation
identifying an obstacle.

When we search back the origin of the probe method and singular sources method, they both
stem from the uniqueness result by V. Isakov [21] for identifying an unknown inclusion inside a
conductive medium. The conductivities for the inclusion and known back ground were assumed to
be isotropic.

Next we point out two new ingredients of our results.

(i) We give the reconstruction for identifying D under the minimum regularity assumption on



70 and 7;. That is we assume v; € L>(Q),79 € C%1(Q). It seems it is very hard to weaken these
assumptions, because the unique continuation property was used in most of our arguments for the
background medium and its necessary and sufficient regularity assumption on 7 is 7o € C%1(Q) for
n =3 and 7y € L>®(R) for n = 2.

(ii) Due to the mixed type boundary condition and the existence of the source term, we had
to prove the L? boundedness of the Green function of the boundary value problem associated to
our inverse problem in order to analyze the behavior of indicator function which is a mathematical
testing machine for the identification. This was already given by M. Griiter and K-O. Widman for
n > 3, but it was missing for n = 2.

In Chapter 3, we consider about the probe method for identifying unknown inclusion for non-
stationary heat equation. As for the known results, H. Bellout prove the local uniqueness and
stability in [2] when the inclusion is independent of time. Also, A. Elayyan and V. Isakov proved
the uniqueness for the localized Dirichlet-to-Neumann map ([11]).

There was not any result for reconstructing the inclusion. We developed a theory of probe
method for 1 space dimension, non-stationary heat equation to reconstruct the unknown inclusion.
As far as we know, this is the first attempt which gave the reconstruction of the unknown inclusion.

Likewise the argument for the stationary heat equation, we have to define the indicator function.
But we cannot estimate indicator function directly, because the heat operator doesn’t have the
coercivity. But we can obtain representation formula of indicator function using reflected solution
which is the Green function minus the fundamental solution of heat equation. This enables to
analyze the behavior of indicator function by that of the reflected solution. Therefore we need to
analyze reflected solution more carefully.

The behavior of the reflected solution w(x,t) can be obtained in the following way.

(i) When D is independent of time, we can obtain the reflected solution by using the Laplace
transformation in time and solving some transmission boundary value problem for ordinary different
equation. Also, we can extract the dominant part in its behavior of the reflected solution.

(ii) When D depends on time, we freeze the coefficient of non-stationary heat equation at time 7
and denote the associated reflected solution by w7 (z,t). Then, we can prove that w(z,t) — w™(z,t)

is in the Sobolev space H'¥ (see Section 3.1). So, the dominant part of w(z,t) can be obtained from



that of wt(x,t).

In the last chapter, we deal with the numerical realization of probe method for the time-
independent case. The key for this is the numerical realization of Runge’s approximation theorem
based on the single layer potential. We proposed a scheme for the probe method based on the

optimization technique for Runge’s approximation. The numerical scheme of this is also given.



Chapter 2

Stationary Heat Equation Case

2.1 Statement of the Problem and Result

Let Q be an bounded domain in R” (n = 2 or 3) with C? boundary I'. ( is considered as a

conductive heat medium with heat conductivity

v =0+ xpm (2.1.1)

with matrices vo(z) = (0i; (%)), 71 () = (1145(2)). The regularity assumption for vq is v € C*'(Q).
As for 1, we only assume v € L*>°(€2). Here D is a bounded domain with Lipschitz boundary 0D
such that D C Q, Q\ D is connected, xp is the characteristic function of D and C%*(Q) is the space
of functions which are Lipschitz continuous on .

We assume that v = (%-j (x)) and o = (’Yoij (x)) are symmetric matrices satisfying

> q0ii(@)€& > Crle? (€= (61, &) ER™, ae. z€0)
N (2.1.2)
Z vij(2)&& > C1lE)? (€= (&, ,&) ER™, ae. z€Q)

i,j=1

for some constant C; > 0. Moreover, we assume that for any a € 0D, there exists a § > 0 such that

cither
zn: T1ij&& > Colé)? (€= (&, ,&) €R", ae. x € Bs(a) N D) (2.1.3)
i Y6 < —Colé* (€= (&, -+ ,&) €R", ae. x € Bs(a) N D) (2.1.4)
=1

holds for some constant Cy > 0, where Bs(a) := {z € R"; |x — a| < 6}.



(@3

Let I consist of two parts. That is
r=Tpuly, (2.1.5)

where I'p, 'y are open subsets of I' such that T'p NT'y = ¢, I'p # ¢, I'ny # ¢ and for n = 3, the
boundaries OI'p of T'p and OT'y of T'y are C2. We have assumed I'p # ¢ here for simplicity. For
the case I'p = ¢, consult [18].

The two dimensional figure of Q, D, T'p and I'y is given below.

v

~ Ty

I'

Consider the mixed type boundary value problem of stationary heat equation:

{ (Lpu)(z) := div(y(z)Vu(z)) = F(z) in Q (2.1.6)
u=fonlp, Or,u=gonly
for given f € i@ (T'p),g € Fﬁé(FN),F € L2(Q) where

(Or,u)(z) :=v(2)dyu(x) (2.1.7)
with the unit outer normal vector v = (v, ,v,) of I'. We also define

(Lpu)(x) := div(vo(z)Vu(z)) (2.1.8)
and

(OL,u)(x) = vo(x)0,u(zx). (2.1.9)

Here we have used the notations given in [14] to denote Sobolev spaces.



The physical meaning of f, g and u are the temperature, heat flux and heat, respectively. The
mixed type boundary condition appears in many practical applications. For example, if I'p is
grounded or iced to have voltage or temperature equal zero on I'p, we have f = 0. Then, the
measurement IIp is to measure temperature induced from inputting heat flux infinitely many times.
When I'p = ¢, the many measurements IIp correspond to the so called continuous model ([4]).

There is an another model called the complete model which is more practical than the continuous
model. The complete model ([4]) has some mixed type boundary condition, but it is not exactly the
same as ours. Recently, Hyvonen ([15]) showed that the complete model can be approximated by
the continuous model.

From the Lax-Milgram theorem (see Section 2.5), (2.1.6) has a unique solution v = u(f, g, F') €

' (Q) with the estimate:

lullzr ) < € (1 lza g, 1904 0y + 122 ), (2.1.10)

where the constant C' > 0 does not depend on f, g, F.

Moreover, even for F' € W* with W := {w € ﬁl(Q); w =0 on FD} and supp F' C 2, we have
a similar result and in this case ||F|12(q) in (2.1.10) has to be replaced by ||F|lw~. Hereafter, the
norm || - ||w and inner product ( , ) of W are those of Fl(ﬂ), and the norm of the dual space W*
of W is denoted by || - ||w-.

Next, we define the Dirichlet to Neumann map Ap and the Neumann to Dirichlet map Il as

follows.

Definition 2.1.1.  Let u(f, g, F) be the solution to (2.1.6).
1 1
(i) Fixing g and F, define Ap : H*(T'p) — H *(I'p) by

Ap(f) = 0L, u(f,g,F) on I'p. (2.1.11)

N

(ii) Fixing f and F, define llp : H *(T'x) — H?(I'y) by

IIp(9) == u(f, g, F) on I'y. (2.1.12)
And we also define Ay := Ap,Ily :=1Ip if D = ¢.

1
Remark 2.1.1. The trace of dr,u(f,g,F) € H?(Q) exists, because F € L*(Q) or F € W* with
supp F' C (.



Now, we consider the two kinds of inverse problems (IP1) and (IP2):

(IP1) Suppose 7o is known and ~y;, D are unknown. Reconstruct D from Ap.

(IP2) Suppose 7 is known and ~;, D are unknown. Reconstruct D from IIp.

Theorem 2.1.1. There are reconstruction procedures for the both inverse problems (IP1) and (IP2).

Remark 2.1.2. ([3])

(i) Calderén started the inverse problem for identifying the conductivity v from Ap when I'y = ¢

and F = 0.

(i) Let 1 be subdomain of 2 such that D € Q; € Q; € Q, Q\ Q; and ©; \ D are connected and its
1

1
boundary I’y is Lipschitz smooth. Define the Dirichlet to Neumannmap A;p: H*(T'1) — H *(0%4)

1
by A1p(p) = dr,v(p) on Ty for any ¢ € H?(I';) where v = v(p) € Fl(Ql) is the solution to
Lpv =01in 4, v = ¢ on I'y. Knowing A;p, D can be reconstructed from A;p by an argument
analogous to that given in [17]. However, to relate Ajp to Ap or IIp, the usual way is to solve the
Cauchy problem iteratively which is very ill-posed. Therefore, we focuss on obtaining a reconstruc-
tion procedure which directly uses Ap or Ip.

2.2 Indicator Functions and Reconstruction Procedure

Definition 2.2.1 (Needle). We call a nonselfintersecting piecewise C! curve
C :={c(0);0 <0 <1} joining ¢(0),c(1) € T needle if it satisfies C \ {c(0),c(1)} C Q.

Definition 2.2.2 (Singular Solution).
(i) Fix 2° € Q and G(x — z2°) € D'(R") be a fundamental solution of

div (70(2°)VG(x — 2°)) 4+ 8(z — 2°) = 0 in R™. (2.2.1)
(ii) Let H;(z,2%) € D'(RY) (j = 1,2) be solutions of
LyHj(x,2%) +6(z —2°) =0 in Q (2.2.2)

such that o
Hj(z,2") — G(z — 2%) € H (Q) (2.2.3)

)
and

0
{8L¢Hl(§’ (2.2.4)

We call each H,(z,2°) singular solution.



Remark 2.2.1. The construction of singular solution can be done similarly as Lemma 3 in [19]

Let C := {¢(0);0 < 6 < 1} be a needle. By the Runge’s approximation theorem in Section 2.6,

. . . =1
there exist sequences of approximate functions {vix}, {var} C H (2) such that

.77l .
vk = Vi(+,c(0)) == v+ H;(-,c(0) (k—o0) inH,(Q\C) (j=12) (2.2.5)
where
L =FinQ
{ etk = &0 (2.2.6)
6L¢v1k =g on FN
and
L =Fin Q)
otak =& (2.2.7)
vop = fonTp
where Cg := {c(¥) : 0 <9 < 0} and v} € HI(Q) (j = 1,2) are the solutions to
Lgvi = F in Q
ot =4 (2.2.8)
vi=0o0nTp, Ir,v)=gonly
and
Lyvh = F in Q
ote =4 (2.2.9)
vy=fonlp, Jp,v5=0o0nTy.

we call {vig}, {var} C FI(Q) Runge’s approximation functions.

Definition 2.2.3 (Indicator Functions for Stationary Heat Equation Case). Let C =
{c(60);0 < 6 < 1} be a needle, 0 (0 < 6 < 1) satisfy Co N D = ¢ and {v;;} Cﬁl(Q) J =12
be the Runge’s approximation functions. Then, we define two indicator functions for stationary
heat equation case I1(¢,C) and I3(0,C) associated with (IP1) and (IP2):

L(6,C) := klirﬂo ((Ap — A¢)(vlk|FD),U1k|FD>1 (2.2.10)
and
IQ(G,C) = thIEO <(8LDU2k) |FN’ (HD - H¢)((8LDUQk)|FN)>2 (2211)

. - —1 —1 . N
where (, )1 and (, )5 are the pairings for the pair {H~2(Tp), H*>(T'p)} and {H >(I'y), H2(Tx)},
respectively.

Remark 2.2.2. From (2.3.7), we can see that the definitions of the indicator functions do not depend
on the choice of {v;}.



Definition 2.2.4 (First Hitting Point). Let C = {c(#);0 < 6 < 1} be a needle such that
CND # ¢. We define O(C, D) by

O(C,D) :=sup{0;0<0<1, c(¥)¢D (0<VI <0} (2.2.12)

We call ¢(©(C, D)) the first hitting point of C to D.

Definition 2.2.5 (Detecting Point). Let C be as in Definition 2.2.4. For the indicator functions
I;(0,C) (j =1,2), we define their detecting point ¢(6,(C, D)) (j = 1,2) by

c(6;(C,D)) := sup{ c(0);0<6 <1, sup |I;(¥,C)| < oo}. (2.2.13)
0<9<6

Then, we have our main theorem.

Theorem 2.2.1. For each j (j = 1,2), we obtain detecting point is first hitting point. i.e

O(C,D)=6,;(C,D) ifCND #¢. (2.2.14)

Since we can reconstruct D by knowing 6,(C, D) for all possible C, Theorem 2.2.1 implies Theorem
2.1.1.
Before ending this section, we summarize all the steps necessary for our reconstruction procedure.

For simplicity, we only give them for the inverse problem (IP1).

Step 1. Cousider a needle C = {¢(0);0 < 6 < 1} and the domain Q\ Cy.
(Co = {c();0 < 9 < 0))

Step 2. Take vy € ﬁl(Q) (k € N) which approximates Vi(-,¢(0)) = vi + Hi(-,c(0)).

(See Section 2.6 for the details).
Step 3. Compute the indicator function I;(0,C) = klgrolo«AD — A¢)(v1k |FD),v1k |FD>1 for small 6.
Step 4. Increase 0 and search for the detecting point ¢(61(C, D)) at which |1(6,C)| blows up.

By Theorem 2.2.1, this gives the first hitting point ¢(©(C, D)).
Step 5. Take many C’s and repeat all the previous steps. Plot all the ¢(©(C, D)) for these ~’s.

Then these points generate the boundary 0D of D.
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2.3 Estimates of Indicator Functions

In this Section we give some estimates for the indicator functions for stationary heat equation
case I;(0,C) (j =1,2).
Let ujr € H (Q) (j=1,2 k€ N) be

{Ulk = u(viklp, .9, F) (2.3.1)
g = u(f, (3L¢U2k)’FN,F),

where u = u(f, g, F) is the solution to (2.1.6).
To estimate indicator functions, we need the following Lemma:

Lemma 2.3.1 (Weak Solution). Let
wik =ujk —vjp (j=1,2;k €N), (2.3.2)

then for j=1,2, wji has a limit w; € HI(Q) satisfying

w; =0 onlp, Jr,wj=0 onlx.

Proof wj;, satisfy

Lpwj, = di —v)Vu,i) in Q

pwjr = div((y0 —7)Vuji) in (2.3.4)

wijOOn FD, (9Lijk=OOn FN.

More precisely, wj, € W is the solution of the variational equation:
/ YVwji, - Vodr = /(70 —¥)Vuji - Vodr (¢ € W). (2.3.5)
Q Q
Since
sup /(Vo — NV vk —vji) - Vo dr| < Il vk = vitllgr py = 0 (2.3.6)
lellw <11/

as k,l — oo by Cg N D = ¢ and from (2.2.5), v — V;(+,c(0)) (k — o0) in FIIOC(Q \ Cp), we have
from (2.1.10)

lwjr — wjillgr gy =0 (k1 — 00). (2.3.7)
Hence, there exist limits w; := klim Wik € iR () (4 =1,2) and they satisfy (2.3.3). O

Also, we use the following blow-up properties to estimate indicator functions.



Theorem 2.3.2 (Blow-up Property). Let u,v € FI(Q) be the solution to

Lpu=F in ) Lyv=F inQ
u=fonlp, Orp,u=gonlyn, \u=fonlp, Or,u=gonly,

respectively, then u,v satisfy the following estimation:
(i)
(Ap —Ag)f, f1 < / 'yle~Vvd:177/ Fu—v)dz+ {g,u—v)
D Q

and

(40 =801 > [ 07wy (0V0) - (Vo) da = [ Plu—v)dat (g.u—o)a

(i)
(g,(HD—H¢)g>2S/D*yle~Vvd:c—/QF(u—v)dx—<8L¢(u—v),f>1

and

(9,(IIp —TIlg)g)2 = /D Y 'y (V) - (Vo) de — /Q F(u—v)dz —(0r,(u—v), /1.

The proof is given in Section 2.8.

Therefore,

/70‘1717‘1(%VV1(~,C(9)))-(VoVVl(-,C(H)))dx—/Fw1d$+<97w1>2
D Q

§11(9,C)g/D%VIfl(-,c(G))-VVl(-,c(G))dx—/Qleda:—&—(g,wl)g
and

/70*1717’1(70VV2(',C(9)))~(VOVVz(-,C(@))dx*/szdﬂ?+<3L¢w2,f>1
D Q

SIQ(H,C)g/DmVVQ(-,c(G))-VVg(-,c(H))dx—/Qngdx—(8L¢w2,f)1.

2.4 Behavior of the Indicator Functions

11

(2.3.8)

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

In this section we analyze the behavior of the indicator functions I;(6,C) as 8 T ©(C, D) when

CN D # ¢. Hereafter, constants C, C’ which will appear in the estimates are general constants.

Let CN'D # ¢ and 0 < 0 < 1 satisfy Cy N D = ¢.

Lemma 2.4.1. There exists a constant M > 0 independent of 6 such that

|lwjllL2) <M (j=1,2) as 07T O(C, D).

(2.4.1)
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Proof For simplicity, put 6y := ©(C, D) and cg, := (). For 0 < 6 < 0y, K = K (z,c(0)) be the

Green function given in Section 2.7 for A = Lp.

K satisfies
LpK+6(- —¢(0) =0in Q
pK +0( —c(6)) =0in (2.4.2)
K=0onT.
Define W; (j =1,2) by
Wj =w; + V} (j =1, 2) (243)
Then, from (2.2.2), (2.2.4), (2.2.8), (2.2.9) and (2.3.3), we have
LpWi+6(- —¢(0)) =Fin Q
pWi+09(- —c(0)) = Fin (2.4.4)
Wi = Hl(-,c(ﬁ)) onl'p, Or,Wi=gonly
and
LpWy+6(- —c(f)) =F in Q
pWz+0(- —e(6)) = Fin (2.4.5)
WQZfOIl FD, aLDW2=8LDH2(',C(9)) on FN.
Hence, defining Z; (j =1,2) by
Z; =W; - K, (2.4.6)
we have
LpZi=FinQ
par =2 m (2.4.7)
Z1 = H1(~,c(9)) onl'p, 0,21 =9g—0r,wonly
and
LpZy=F in Q
pez =21 (2.4.8)
Zngon FD, (9LDZ2:6LDH2(-,C(9))—6LDU} on PN.

1
Next we prove that Jp, K is uniformly bounded in H *(T") as 6 T 6. In order to do that let

n € C§°(2), n =1 in an open neighborhood of D and ¢ := 1 — 7. Then, we have
Lp(CK) = (Lg¢) K + 270(x)V( - VK. (2.4.9)

Here, we can assume c(6) ¢ supp (. Hence, from Theorem 2.7.1, the right hand side of (2.4.9) is
uniformly bounded in L?(Q2) as @ T 6y. Then, ((K )|F = 0 and the well-posedness of the Dirichlet
boundary value problem imply 9y, ,w = 9, ((K) is uniformly bounded in F_%(F) as 01 6.

Now, by (2.1.6) and what we have just proven, we have that for each j (j = 1,2), Z; is uniformly
bounded in Fl(ﬂ) as 0 — 6. Hence, by (2.2.3), (2.4.3), (2.4.6) and (2.7.12), w; = Z, + K =V} is
uniformly bounded in L2(Q2) as 6 1 6.
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Let o € C§°(9) satisfy a = 1 in an open neighborhood of D and w; := w; — aw; (j = 1,2).

From (2.3.3) and supp(y — v0) C D, we have
(1—a)Lpw; =0 in Q (2.4.10)

and

LDa = L¢C¥. (2411)

Then w; satisfies

Lyw; = F; in Q
pet = N (2.4.12)
wj =0onIp, Jr,w; =0o0nTly,
where F; := —(Lpa)w; — 2yVa - Vw; satisfies supp F; C 2 and || Fj|lw~ is uniformly bounded for
any 6 (0 <60 — 60y <n). Therefore, by the continuity of the trace and 0, ws = Jr,, Wo,
le“ﬁ%(n\,) + HaLd,w2||H7%(§) <Mas07106(C,D) (2.4.13)

for another constant M > 0 independent of 6.

Now it is easy to see that the dominant parts of/ Yo 'yt V(- e(0))) - (v V(- e(8))) da
D

and
/D NVVi(+,e(0)) - VVi(-,e(0)) da are /D N (10VG; (- =c(0) ) - (VG5 (- ~c(9)) ) de
and

/ 1 VG;(-—c(8)) - VG, (- —c(0)) dz which are positive or negative according to (2.1.3) or
DﬁBg(ch)

(2.1.4) and blow up as 6 T 6y. Here we have used the identity:

Yo (o +7) " = (o ) T (o F )T (o) e (e + 1) (2.4.14)

Therefore, by (2.2.5), (2.3.13), (2.3.14), (2.4.1), (2.4.13), and the definition of the singular solution

and its property given in Defintion 2.2.2,
11;(6,C)| — o0 (01 00). (2.4.15)
Finally, (2.2.14) can be proven by the standard argument given in [17], So we omit its proof.
2.5 Boundary Problem for Forward Problem

In this section we discuss about the mixed type boundary problem for forward problem. Now we

assume vy € L*°(Q) satisfies v > ¢ in Q



Theorem 2.5.1. If f,g, F as follows there exists unique solution of (2.1.6)
(2.1.10)

1 ~
Proof For f € H*(I'p), there exists f € H

Letue H (€2) be the solution to

Lpu=0in Q, al, = f.
Then,

~ Y !
il @y < Ol 0 < O W gt

Also, by the continuity of trace,

~ 1 ’
1000y g < Ol gy < O o,

Let v :=u — u , v satisfies

Lpv=Gin Q
v=0onTp, Jr,v= only

where G = F'— Lpu, g := g — O, u. Now define
(G,w) := <F,w>+/’yVﬂ-dex—|—/ §w’r dr
Q Ty N
and

Blv, w] ::/’va-dex
Q

for any v,w € W. By the Schwarz inequality,

Blo.ull < | PIVelIVulde < Mol g ol oy
By the Poincaré inequality
Iz )

Blv,v] > / Y| Vv|? de > 8| Vol L2) > 6'||v
Q

for some constant 4’ > 0 independent of v, w.

Now we remind the Lax-Milgram theorem.

1
?(I") which is extension of f.

14

. Moreover u satisfies

(2.5.1)

(2.5.2)

(2.5.3)

(2.5.4)

(2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)
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Theorem 2.5.2 (Lax-Milgram Theorem). Let X be real Hilbert space and B : X x X — R be
bilinear map satisfying
[ Blz, yl| < 7ll=[l[lyll (2.5.9)

Blz,z] > 6||z|?, (2.5.10)

then there exists a unique bounded linear bijective operator S : X — X such that
(z,y) = B[Sz, y] (2.5.11)

and
IS] <67t 1S7HI < (2.5.12)

By applying Theorem 2.5.2, there exists a unique bounded linear bijective operator S : W — W
such that

(S~ v, w) = Blv,w] (v,we W), |IS||< (@)L S~ <M (2.5.13)

where (, ) is the inner product in W x W.

As immediate estimates, we have

[(Fw)| < [|Fflwllwllw, (2.5.14)

< Mg o 0l (2.5.15)

/ YVu - Vw dx
Q

Hence, by (2.5.3), (2.5.14) and (2.5.15), the continuity of the trace u|r f and extension f of f,

(G )l < C1fllgt o + 9l 3, + I1F )

|w]|w . (2.5.16)
By the Riesz representation theorem, the exists a unique v € W such that
(G w) = =(v,w), [[vllw = [|Gllw- (2.5.17)
Let vo € W be vg = S~'%. Then, by (2.5.13),
Blvg,w] + (G,w) =0 (we W) (2.5.18)
Therefore, vy is the solution to (2.5.1).

”u”ﬁl(g) < ”'UOHHI(Q) + ”ﬂHﬁl(Q) (HUHH Q) + ||fHH2 F))

< C(IGIw- + 1t ) < C" (U a

(2.5.19)

+ llgll; + 1 Fllw+)

T2 (Ty)
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2.6 Runge’s Approximation Theorem

In this section two Runge’s approximation theorems are given and they are applied to construct
construct the two sequences of approximate functions {vy;} and {var} given in Section 2.2.

Theorem 2.6.1 (Rungeis Approximation Theorem to L, 1). Let U be an open subset of
such that U C 2 and Q\ U is connected.

X = {u‘U; u € FI(V),L¢U = 0 in an open neighborhood V of U}

=1 _ (2.6.1)
Y = {U|U;v €H (2),Lyv=01n 973L¢”|FN =0, supp(v|FD) C FO}

where V' is an open subset of Q0 depending on u such that

UcvcvcQ (2.6.2)

and Ty is a fived open subset of I'p. Then, Y is dense in X with respect to Fl(U) topology.
Proof By Hahn-Banach theorem, it is enough to prove.
—1 *
feH (V) ,f(U‘U)ZO (veY)=>f(u‘U):O (ueX) (2.6.3)

Suppose f € Fl(V)*, f(v’U) =0 (veY). Let y € Ty and take a small open ball B centered

at y and Qo := QU B. We extend 79 € C%1(Q) to a neighborhood of Qy preserving its regularity .
Also, let

T:{UeH (V); ¥|. =0} =R, T(¥)=f(¥y) (2.6.4)

T has a bounded linear extension T’ € " (€2)*. Hence, by the unique solvability of a unique solution

to variational problem, there exists

we T (Q), wlp, = 0; f/ YoVw - V¥ de =T(U) (Ve T (Q), vl =0) (2.6.5)
Q
Therefore
7/ Y Vw -V dz = f(¥],) (v e T (), vl =0) (2.6.6)
Q
0
Define w by

_ w in )
w = (2.6.7)
0 inQ\N
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Since w‘FD = 0, we obtain

@ e T (D). (2.6.8)
Claim
| wva Vo= fiely)  (oe @) (269)
0
The proof of this claim is given later.
From this claim,
Lyw=0in Qo \ U. (2.6.10)
Note that
w=01in Q\ QD Q\U,
@=0in g\ o\ (2.6.11)
Qo \ U is connected.
Hence, and we have the weak unique continuation theorem for Ly due to 7o € C%1(£).
w=01in Qo \ U (2.6.12)
Therefore
w=0in Q\U (2.6.13)

Now let v € X. Then, for some V which is an open neighborhood of U, there exists u € Fl(V)
such that

Lyu=0inV, ul, =v. (2.6.14)

By taking a cut off function, for some V C V which an open neighborhood of V', there exists
% € H'(Q) such that
il =ulg (2.6.15)

Hence, by reminding (2.6.6) and (2.6.13), w € H'(V) and Lgu = 0 in 1%

f) = f(ul,) = f(@,) =/%vm-vadx

! (2.6.16)

Z/VoVw-Vﬂdx:/%VquudmZo
e e



Finally, we prove the claim. For any ¢ € H* (),

/ YoVw - Vudx = / YoVw - Vudx +/ YoVw - Vudx = / YoVw - Vudzx
Qo Q0\Q Q Q
Letve I (©) be the solution of

Lyv =0, in €, 8L¢U‘FN =0, v|FD = <p|FD

Clearly,
—1
v—p e H (), (’U—(,D)’FD =0

By (2.6.6),
—/Q'yoVw V(v—g)de = f(v|, —¢|,)

Here note that v’U €Y by supp(v‘FD) C Ty,
f(U|U) =0
On the other hand, remind that

w e Fl(Q),w|

T = 0; Lgv = 0 in £, 8L¢’U’I‘N =0, VL, =@

By the definition of weak solution,

/’yoVw'Vvd:c:O
Q

By (2.6.7), (2.6.20), (2.6.21) and (2.6.23)

—/Q'yOV{E-Vgodx:f(ap|U)

Likewise the proof given in [17] we have the second Runge’s approximation theorem.
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(2.6.17)

(2.6.18)

(2.6.19)

(2.6.20)

(2.6.21)

(2.6.22)

(2.6.23)

(2.6.24)

Theorem 2.6.2 (Runge’s Approximation Theorem to Ly 2). Let U be an open subset of

such that U C Q and Q\ U is connected. Define the two spaces X,Y of functions by

X = {u’U; u Eﬁl(V),L¢ﬂ= 0 in VY,
Y = {v|U; v E Fl(Q),L¢v =0 in Q, supp(v|r) - FO},

(2.6.25)

where V is an open subset of Q depending on u such that U C V. C V C Q and Ty is a fized open

subset of I'y. Then, Y is dense in X with respect to Hl(U) norm.
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Next we construct {v;x} (j = 1,2). By Theorem 2.6.1 and Theorem 2.6.2, there exist {v{} }, {v},.} C

Fl(Q) such that v/, — H(-,c(d)) in Flloc(Q \ Cy) for each j =1,2,
LgvY,, =0in Q
dr,v4, =0on Ty, supp (vf,|.) CT1o

and
Lgvl, =01in Q
supp (vy|.) € T2o,

where I'yg C I'p, T'sg C I'y are open subsets.

Then, we only have to define each {v;z} (j =1,2) by
vjk = V) 4 Ujy,

2.7 The Green Function of Elliptic Operator

(2.6.26)

(2.6.27)

(2.6.28)

In this section we give the proof of the existence of the Green function which we used in Lemma

2.4.1. In [13], the existence is only proven for n > 3. So we have given here the proof of the existence

including the case n = 2.

Let © be a bounded domain of R" (n > 2).

Definition 2.7.1. For a measurable set A C Q and u € L'(A), we define

]{‘u(m) dx := 'u(lA)/Au(x) dx

where p is Lebesgue measure in R™.

Definition 2.7.2. For p > 0, we define LL(Q2) and || f| ;7o) by

L2(Q) := {f : measurable function on Q; || f[|r(q) < oo},

/]

v = swplon(fe € 9 |f(@)] > o)) }.

Let a;; € L*>(Q) (1 <4,j < n) satisfy

n

3 aii(@)6g 2 NP (zeQ, €= (61, ,6n) ERY)

ij=1

(2.7.1)

(2.7.2)

(2.7.3)

(2.7.4)
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and

n

i,j=1

for some constants 0 < A < A < oco.

Theorem 2.7.1. There exists a nonnegative function K : Q x Q& — R U {oo} such that for each
y€Qand anyr >0
—1 _ . —
K(-,y) € H (2\ B.(y)) nWH1(Q) (2.7.6)

and for all p € C§°(Q)
alK(-,y), ¢l = ¢(y), (2.7.7)

where a[u,v] := Z / a;;(x)0;udjv dx.
Q

ij=1

This is called Green function for A- = Z 0; (aij(m)aj ) and it satisfies the following properties:
i,j=1
For each fix y € Q, denote the function K(x) := K(z,y) by K. Let e > 4 and define x; (i =1,2,3)
by

% forn =2 427; forn =2 % forn =2
X1 = . X2 = and x3 = (2.7.8)
P formn >3, % forn >3 n—2 forn>3.
Then, we have
K € LX(Q) with | K||px gy < Cn)A™! (2.7.9)

for some constant C(n) > 0 depending only on n,
VK € L¥*(Q) with [[VK| 1x2 ) < C(n, A, 4) (2.7.10)
for some constant C(n, A\, A) > 0 depending only on n, A, A,

K e WP(Q) for each 1 < p < x2, (2.7.11)

K(z,y) < C(n, A/ Ha —y| 7. (2.7.12)
Here, C(n),C(n, A\, A) and C(n, A/\) are positive constants which depend only on n,{n,\, A} and

{n, A/\}, respectively. Moreover, WHP(Q) is the Sobolev space with ™" having the same meaning
as”” of H=2(Tp).

Remark 2.7.1. For n > 3, the uniqueness of K is given in ([13]).
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Proof of Theorem 2.7.1
Fix y € Q and p > 0. Write B, := B,(y).

For the proof of Theorem 2.7.1, we need the following Fact and Lemma 2.7.2

Fact([35]) For p > 1,

1fllze) < 1 fllze)- (2.7.13)
_1
p\r¢ q
1Fllzr-ac) < <q> () r@=0 [ fllp (o) for 0 <g <p—1. (2.7.14)
Lemma 2.7.2. ([15]) Let u € ﬁl(ﬂ) satisfy w > 0 in Q and
Z / aij(x)0iudjp dx < 0 for any ¢ € HY(Q) with ¢ > 0 in Q. (2.7.15)
i,j=1"9

Then, there exists a constant C(n) > 0 depending only on n, such that for « > 1 and B,(x) C €,

yesglﬁp(x)w(y) < C(n) ( Of 1 )2 (f)n ]ip(x) u®(y) dy. (2.7.16)

We define T', which is bounded linear function on FI(Q), by

T(p) ::]{3 pdx. (2.7.17)

P

For any u,v € H'(Q),

lafu,o]] < A Vull 20y [ Voll 2@y < Allullgr g o (2718)

I @

alu, u] > )\HVUH%Q(Q) > Null (2.7.19)

2
T(Q)
for some constant A" > 0 independent of w.
By the Lax-Milgram theorem and the Riesz representation theorem, there exists G, € H'(Q)
satisfying
alG,, ¢ :f pdz (2.7.20)

B,



for all ¢ € H'(Q). Taking |G,| € H'(Q) as a test function,
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alG,, G, :][ G, dz gf G, dz = a[G,, |G, ). (2.7.21)
B, B,
Put M = M > 1, then
a[GP’Gl)]
G, G [ff' ,Gp] :a[G,,, 'ﬁ;'] (2.7.22)
From (2.7.22),
Gl |Gl 1
5 ] — St - Z/ 7)011C10,1G, | d
|Gl
=F Z a” 2)9;G,0,G, dx_— alGy, Gyl < alGp, Gyl = a| G, 2.
3,7=1
(2.7.23)
Vuin {z € Q; u > 0}
Note that for u € H (), V|u| € L2(Q) with V]u| = 0 in{z€Qu=0}
—Vu in {z € Q; u < 0}.
Then, we have
|Gyl |Gl Gl |Gl Gyl
_ — = — — <0. .
% G,, i Gyl =a % G, % al s G, <0 (2.7.24)
Hence
Gl
G, = M” > 0. (2.7.25)
At first, we prove
Gl (@) < C)A™ (2.7.26)
for some constant C'(n) > 0 depending only on n.
Fixing g > 0, choose a test function p(z) = max{l — L, 0}.
o0 Gy(x)
Then we have
1 i 2
7>][ gpdm—Z/a” )0;G @gpdm—Z/ a;j(x aGQP dx > \ |VG/;| dx,
By, i,j=1 i,j=1 4 Qo P
(2.7.27)
where Q,, = {z € Q;G,(z) > 0¢}. By Sobolev’s inequality,
G, | \% G, VG2 C(n)
log —£ dm) <C(n / Viog —2| dz=C(n / P < 2.7.28
(/ - o [, |Tes s e vl




for some constant C(n) > 0 depending only on n. Hence,

G 2x1
log —£

A1
dx) <Cn)Xtogt
0o

(10g2)% () 51 < (/Q

200

Therefore,

a1 2C(n) 4
2 QO x1 <
a0/(Q25) X1 < (log 2)?

and this gives (2.7.26).
Now, we take G, € FI(Q) as a test function. Then we have
)\/ VG, |*dz < i: a;j(2)0;G,0;Gp dx :][ Gpdx = L G,dx
Q i1 B, 1(By) B,

< 1
- H(Bp)

for some constants C(n),C’(n) > 0 depending only on n.
Thus
/ VG, |? dz < C'(n)X2p~ 1.
Q

Next we will show
Gp(x) < Cn, A/ NA o —y| X if o — y| > 2p.

Let R := |z — y|(> 2p).

First we consider the case: Bz (z) C Q.

Since G, is the solution of Au =0 in Q\ Bg, we have

G,(2)" < Cla,n, A/N) ][ G,* dy

B ()
4

by using Lemma 2.7.2. By (2.7.14) and (2.7.26), we have from n > 3,

n
G,"dr < —————u( Bz
/B{}(””) r n—a(n—2) ( 4)

for some constant C'(n,«) > 0 depending only on n, «. Hence, for (2.7.34) and (2.7.35),

a(n—2)

n

Gl < O(n,a)A* R (=2

LI72(Q)

G,(z) < C(n, AJN)AN"TR™("=2)
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(2.7.29)

(2.7.30)

__1 __1 __n_
1G Il 21 (B, 1(B,)' ™27 < C)| VG, r2@yu(By) 27 = C'(0)|[ VG, || p2oyp” 27 -

(2.7.31)

(2.7.32)

(2.7.33)

(2.7.34)

(2.7.35)

(2.7.36)
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for some constant C(n, A/\) > 0 depending only n, A/A.
For n = 2, we have from (2.7.14) and (2.7.26),

g 172% _ _ 4da
/BRu) Gotdv< ——33 “(B?) 16l 5 ) < ClA™ R (2.7.37)
4

for some constant C(«) > 0 depending only on «.
Hence, for (2.7.34) and (2.7.37),

G,(z) < C(A/NN'R™2 (2.7.38)
for some constant C'(A/A) > 0 depending only on A/\.

Next we consider the case: B (z) ¢ Q. Consider a domain  such that Br (z) C € and extend
operator A to Q. Then, likewise G, for A, we have ép for this extended A. By restricting ép to £,
we have

A(G, —G,) =0in Q. (2.7.39)
G,=0< C:‘p on 0f), therefore the maximum principle implies

G, <G,in Q. (2.7.40)
Since C~¥p satisfies (2.7.33), we have
G,(x) < C(n, AJAATIR™X3, (2.7.41)
This completes the proof of (2.7.33).
Next we will show
IVGllxe gy < CO\A) (2.7.42)

for some constant C(\, A) > 0 depending only on A, A.
To show (2.7.42), we will show

/ VG, |>dz < C(n,\, A)R™X (2.7.43)
O\Br

8
for some constant C(n, A, A) > 0 depending only on n, A\, A, where x4 = — forn =2, x4 =n —2
€
for n > 3.
C
Choose a test function n € C*(Q) satisfying n = 1 in Q\ Bg, n =0 in By and [Vl < R for

some constant C' > 0.
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Let R > 4p and take G,n?* as a test function. Then, we have

O—][ G,,nda:—Z/aU )0:G,0;(G,n?) dx

1,7=1

(2.7.44)
>Z/ aij(2)9;G,0;G, da +22/ aij(2)9;G,0;G,G yn da.
i,j=1 Q\Br i,j=1 \BR
This implies
) c
A IVG,|*dx < Z aij(7)0;G,0;G, dr < 24 \VG,,|§G,,ndx
Q\Br ij—1"\Br Br\Br
2AC A 24202 / (2.7.45)
<= VGdegf/ VG, |2 de + S / G,%dz.
R BR\B§| P| 8 2 BR\BR| p| AR BR\Bg .
Hence
/ VG, |2d33<4( ) 02/ G, dx (2.7.46)
O\Br AN R Jppp, -
Combining this with (2.7.33), we have
C\ AR E forn =2
/ VG, 2 de < { ST forn (2.7.47)
Q\Br C(n,\, A)R=("=2) for n > 3

for some constants C(\, A),C(n, A\, A) > 0 depending only on {A, A}, {n, A, A}, respectively.
Next we consider the case R < 4p. From (2.7.32), we have

2 g —m C/\_2p_§ forn =2
/ VG, |2 dz < C(n)A~2p™ 51 = (2.7.48)
O\Bg C(n)A2p~ (=2 forn >3

for some constant C' > 0 and some constant C(n) > 0 which depends on n. Observe that, for n > 3,
C(n)A2p~ =2 < C(n, )R~ ("2 (2.7.49)
for some constant C(n, \) depending only on n, A and for n = 2,
CA2p ¢ <CAR ¢ <CAR ¢ (2.7.50)

for some constant C(\) > 0 depending only on A. Therefore we obtain (2.7.43).

Next we return to the proof of (2.7.42).

For n > 3, we set Q. :={z € Q; |VG,(z)| > o} and Ry, = U;ﬁ for fixed o1 > 0.
From (2.7.47) and (2.7.49),

2u(€,, N (2\ Br, ) < / VG, de < Cln, A Ao (2.7.51)
O\ Br,,



for some constant C(n, A, A) > 0 depending only on n, A, A. That is
a1u(€, N(2\ Bg,, )™ < C(n,\,A).
for some constant C(n, A, A) > 0 depending only on n, A\, A. Combining this with
#(Q%, NBr,,) < u(Br,,) = C(n)Ry, = (C'(n)or) =1
for some constants C(n),C’(n) > 0 depending only on n,
Ulu(ﬂgl)%l < C(n, A\ A).

for some constants C'(n, A, A) > 0 depending only on n, A\, A. Hence

VG,

n—1 S C(n, )\, A)
L. (9)

*

for some constants C(n, A\, A) > 0 depending only on n, A, A.
For n =2, we set R,, = 0;45? for fixed o9 > 0.
From (2.7.47) and (2.7.50),
_8
A, 0@\ Br, ) < [ VG, do < CO\A)of
O\Br,,

for some constant C'(A, A) > 0 depending only on A, A. That is
021, 0 (Q\ Br,,)) % < C'(A\4)
for some constant C’(\, A) > 0 depending only on A, A. Combining this with

2e

w(,, N Br,,) < u(Bg,,) = 7R2, = 1o, ©*°,

4+e

oan(€,) < /(A A)

for some constant C’(\, A) > 0 depending only on A, A. Hence
!/
VG, ., < COA)

for some constant C’(A, A) > 0 depending only on A, A.
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(2.7.52)

(2.7.53)

(2.7.54)

(2.7.55)

(2.7.56)

(2.7.57)

(2.7.58)

(2.7.59)

(2.7.60)
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Now by (2.7.13),
1Gollnxi@) < C)A™" and  [|[VG,|px(q) < C(n, A, A) (2.7.61)

for some constants C'(n), C(n, \, A) > 0 depending only on n, {n, A\, A}, respectively.
€

2
Note that x; > x2 and x2 > 1, because 4f€ < 5 and 1tz > 1. Hence,
G, € Whxz(Q). (2.7.62)
Reminding €2 is bounded,
G, e WHP(Q) for 1 < p < xo. (2.7.63)

Hence, fixing xo € [1, x2] and applying Rellich’s compactness theorem, there exists K € W1Xo ()
such that

G, — K weakly in WHP(Q) (1 <p < xa). (2.7.64)
By (2.7.64) and,

][ pdr — o(y) as p—0 (2.7.65)
B

for any ¢ € C5°(§2), we have

alK(-,y), ] = »(y). (2.7.66)

Furthermore, from (2.7.26) and (2.7.42), we get (2.7.9), (2.7.10). Also, from (2.7.47) and (2.7.48),
we can prove (2.7.6).

Finally (2.7.12) is an easy consequence of (2.7.33), because K (-,y) is Holder continuous in Q \ {y}.
This follows from the famous De Giorgi-Nash-Moser regularity theorem, because K(-,y) is the
solution of Au =0 in Q\ Bgr(y).

2.8 Blow-up Properties

In this section we prove Theorem 2.3.2 which is used used in Section 2.3.

Proof of Theorem 2.3.2  We use the inequality given in [17]:

YV (v —u)-V(v—u)+ (v =7%)Vu-Vu>v%"(y=7%)7 (V) (Vo) (2.8.1)
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We first prove (i). Observe that

/{”YV(U —v) - V(u—v)+(y=70)Vv- Vu}de
Q
Q

/{wv(v —u)-V(v—u)+ (v —7)Vu-Vu}dz
Q
_ / (Vv - Vv — 29V - Vi + 1V - V) dz.  (2.8.3)
Q

By the definition of the Dirichlet-to-Neumann map and Neumann-to-Dirichlet map, we have

/Q{'yV(u —v)-V(u—2v)+ (y —7)Vv - Vo}dx
—((Ap — Ag)f P — / Flu—v) dz + (g, u— )2

Q (2.8.4)
(g, (Tp — TL,)g)z — /Q Flu—v)de — (O, (u—v), )

from (2.8.3) and we have

/Q {10V — ) - V(v — ) + (7 — 70)Vau - Vau} d
(Ap — Ao 1+ / F(u—v)de — {g,u - v)s
@ (2.8.5)

g, (Ip — T1,)g)s + / Flu—v)de + (O, (u—v), )1

from (2.8.2), where do is line segment for n = 2 and the surface measure for n = 3.

Reminding (2.1.2), we have (2.3.9) and (2.3.11) from (2.8.4), respectively. Also, from (2.8.1), we

have (2.3.10) and (2.3.12) from (2.8.5).



Chapter 3

Non-stationary Heat Equation
Case

3.1 Statement of the Problem and Result

Let Q C R" (n > 1) be a bounded domain with C? boundary I if n > 2. Q is considered as an
isotropic heat conductive medium with heat conductivity
1 inQ\D() ,
v(z,t) = ) ie. y(z,t) =14 (k= 1)xpe (3.1.1)
k in D(t)
for each 0 < ¢t < T,0 < T < co. Here k > 0 (k # 1) is constant, D(t) is a bounded domain

such that D(t) C Q, Q\ D(¢t) is connected and dD(t) is C? if n > 2, the dependency of dD(t) on

t €[0,T]is C* and xp(y) is the characteristic function of D(t). The two dimensional figure of € and
D := U D(t) x {t} is given below.

0<t<T
We will use the following notations in this paper. For any E C R" (or E C R""!) and Ty, Ty € R
(T < T1),T > 0, we denote Ep 1) := E x (Tp,T1) and Ep := E x (0,T).

For p,q € Z4 := NU{0} or p =1, H?(Q2), H?(T') and H??(Q2r) denote the usual Sobolev spaces
where p and ¢ in HP4(Q2r) denote the regularity with respect to x and ¢, respectively.(cf.[29])
Also, for an open set U C R™"! with Lipschitz boundary and p,q € Z,, HP(U) is defined
likewise HP4(Qr). That is ¢ € HP4(U) if and only if there exists g € HP4(R"™1) = {g €
D'(R"™); [lgl rroaensry = {1+ €)% + (1+72)2}g(€,7) || L2(gns1) < 00} such that g, = g. Here

the norm HgHHp,q(U) = inf ||g||Hp,q(Rn+1).
g‘U=g7g€H’”=q(R"“)

29
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Figure 3.1: 2 dimensional figure of 2 and D

Now, we consider the boundary value problem:

(Ppu)(z,t) := dyu(z,t) — divy (y(z, 1) Veu(z,t)) =0 in Qp (31.2)
Opu(z,t) = f(x,t) on Iy, wu(z,0)=0. o
The physical meaning of u and f are the temperature and heat flux, respectively.
Definition 3.1.1 (Weak Solution to 3.1.2). If u € H%(Q7) satisfies
/ (—udpp + v(z, t)Vyu - Vo) de dt = / f«p[rT do dt (3.1.3)
Qr T'r

for all p € W(Qr) := {u € H"°(Qr);0u € L*((0,T); (HY(Q))*)} with o =0 at t =T, we call u a
weak solution to (3.1.2).
Here we have used the notations given in [29] to denote Sovolev spaces.
Theorem 3.1.1 ([39]) (Unique Solvability of Parabolic Equation 1).
For given f € L2((0,T); (Hz(I))*), there exists a unique solution u = u(f) € W(Qr) to (3.1.2).
Next, we define the Neumann to Dirichlet map IIp as follow.

Definition 3.1.2 (Neumann-to-Dirichlet Map).
Let u(f) € W(Qr) be the solution to (3.1.2). We define the Neumann-to-Dirichlet map Ip :

L*((0,T); (H?(T))*) — L((0,T); H2(I")) by

Ip(f) :=u(f) on TI'rp. (3.1.4)

The measurement I is to measure the temperature induced from inputting current or heat flux

infinitely many times.
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Now, we consider the inverse problem:

(IP) Suppose k,D are unknown. Reconstruct D from IIp.
Our main theorem is the following.

Theorem 3.1.2. If n = 1, there is a reconstruction procedure for the inverse problem (IP). The
details of the reconstruction procedure will be given later.

The proof will be given later.

This is the first attempt to study the probe method for the inverse boundary value problem for

non-stationary heat equations.

We end this section by giving the Runge’s approximation theorem which we need in our recon-
struction procedure.

Theorem 3.1.3 (Runge’s Approximation Theorem for F,).
For Ty < Ty <T1 <T7, let U be an open subset of Qry ;) such that

{8U is Lipschitz, (3.1.5)

UcC Q1) and Qry 1) \ U is connected.

Then, for any open subset V' of Qs 11y such that UcvcVc Qry ) and any v € H>Y(V)
satisfying

Pyv:=0w—Av=0 in V, v|(T6)TO] =0, (3.1.6)
there exists a sequence {v'} C H*'(Qgy 1)) such that
Pyv? =0 in Qzyrp), U]|(T(§,To] =0 (3.1.7)
and .
v = v (j—o00) in L*(U). (3.1.8)

Henceforth, for example, v denote the restriction of the function v to R™ x (=T}, Tp]. We

(=T5,To]

also have the same kind of theorem for the dual problem.

Theorem 3.1.4 (Runge’s Approximation Theorem for Pq’;)
ForT) < To < Ty <T7, let Q and U be as above. Then, for any open subset V' of Q1 1p) such

that U CV CV C Qery,ryy and any ¢ € H?Y(V) satisfying

Pio:=—0ip—Dyp=0 in V, w\[ThT{):a (3.1.9)
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there exists a sequence {7} C H>"(Qqy,11y) such that
Pio? =0 in Qryr, ¢J|[T17T1,) =0 (3.1.10)

and

@ = (j —o00) in L*U). (3.1.11)

These proofs are given in [9)].

3.2 Pre-indicator Function

In this section we define the pre-indicator function. Then, based on this pre-indicator function,
we will define in sections 3.3 and 3.4 the so called indicator function which is the mathematical
testing machine to detect the inclusion.

For (y,s),(y',s") € Qr \ D such that (y,s) # (v, ¢), let G, 5 (x,t) and Gy s (@;t) be

1 |z — y?
T Py | >
Gy,s)(w,t) = [ ) [ ( )] o)
0 (=)
0 (s>t
et = (3.2.2)
1 |z — y/|2 /
[47T(S,_t)]n/2€Xp|:_4(s,_t):| (t<8).

By Runge’s approximation theorem (Theorem 3.1.3, 3.1.4), we can select sequences {vfy 5) 1, {gp{y, s,)} C

H?Y(Q(_c r4e)) such that
bevgy,s) =0 InQcr4e), UZ%S)‘(*E»O] =9

(3.2.3)

j
Yy,s)

and

0,

* 7 —0 J -
P¢Q0(y/75/) =0 in Q(fg,T+s)7 <p(y/781) [T, T+e) - (324)

%',w - G?y’,s') (j —00) in L2(U)
for each open set U C Q(_ 14.) satisfying U|[0 2 D, U # (y,s), (v, s') of the type given in
Runge’s approximation theorems. Here U| (0,7] denote the restriction of the set U to R™ x [0,T]. We

call these {vfy S)}, {go{y, S,)} Runge’s approximation functions.
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Remark 3.2.1. Later we will move (y,s) along some non-selfintersecting continuous curve C* :=
{(y(A),5);0 < A < 1} for fixed s € (0,7) such that y(0),y(1) € 92, y(A) € Q (0 < A < 1). Since
the approximation domain U must avoid (y, s) and has to contain D, we want to have Q_. 74 \U

small and narrow as much as possible. Hence, for fixed j € N and (y,s) = (y(\),s) € C*\ D with
0 <X <1, wetake U = U, and {vgy o) in (3.2.3) as follows.

(i) Each Uj satisfies (3.1.5).

(ii) {U,} satisfies U; C U1 (j € N) and U Uj = Qcr4e) \ C3,
j=1
where €5 = {(y(V),5)i0 < X' < A,
(iii) Each v} | satisfies
(y:5)
) 1 .
[y = Cvallzwy <5 G=12). (3.2.5)

In the same way, we take U = U; and {gpgy, S,)} in (3.2.4) by making the replacement (y,s) =
(', s").
Using these Runge’s approximation functions {vgyj)}, {(p{y,AS,)}, we define the pre-indicator func-

tion as follow.

Definition 3.2.1 (Pre-indicator Function). 4 4
Let (y75)7 (y/75/) € QT \ D such that (yas) 7& (y/75/)7 and {’Ugy,s)}7 {wﬁy’,s/)} C H271(Q(76,T+6))

be Runge’s approximation functions as above. We define the pre-indicator function I(y’,s’;y, s) by
J

I(ylwsl;ya S) = hm r {auv(y,8)|FT(p.gy/’S')
T

J—00

Ly HD(avay,S) |FT)8V('D€7J/,S')

o Ydodt.  (3.2.6)

Next we analyze the behavior of the pre-indicator function. To do it, we have to represent the

pre-indicator function in terms of the reflected solution which is defined as follow.

Theorem 3.2.1 ([39]) (Unique Solvability of Parabolic Equation 2).
For given F € L*((0,T); (H'())*), there exists a unique solution v =v(F) € W(Qr) to

PDU =F n QT
{ Oyv =0 onTr, v(z,0)=0. (3.2.7)
Lemma 3.2.2 (Reflected Solution). ‘ '
| For RUﬁge’s approximationlfunction {UZ%S)} C H2’1(Q(757T+6)), let uzy,s) = u(&,v&m) ’FT) and
wfy,s) = ugy,s) - vg%s), then wZ%s) has a limit w, sy € W(Qr) satisfying
Ppwy sy = (k= 1)dive(Xp) VaG(y,s)) i Qr
5 oot v (3.2.8)
l,’w(y’s) = 0 on 1T, w(%s) (m,()) = 0
We call w, s the reflected solution.
Proof wgyjs) satisfies
PDwgy’S) =(k-1) din(XD(t)szZy’s)) in Qp (3.2.9)

=0onTlp, w! (2,00=0

7
Oy (,5)

(y,s)
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e
/ (—w (y 5Ot + Y(z, 1)V, w (.s) " V) dxdt = —(k — 1)/ Vr”gy,s) -Vaepdrdt (3.2.10)
QT D

for all p € W(Qr) with p =0at t =T.

From this relation, we have

. T 1
%,s)lwmﬂéC( / | div(X Do) Vavdy, o)lPars - dt)

T
, 3.2.11
< C”( sup / IVav(y o l2oen I Vael L2 @) dt) i
LpEHl(Q)§H<P||H1(Q):1 0 l
< C"|[Var], L2 (p)-
(see [39]). Therefore
Ilw(y7é) (y é)HW @) < C ||V U(yL&) vmv‘(j;,s)HLz(D) — 0 as m,n — oQ. (3212)

On the other hand, taking the limit in (3.2.10), we obtain

/ (—W(y,s) 0t + (7, 1)Vaow(y,s) - Vo) dodt = —(k — 1)/ V2Gy,s) - Vapdadt (3.2.13)
D

T

for all ¢ € W(Qr) with ¢ = 0 at ¢t = T. This shows wy, ) satisfies (3.2.8). Here we used the

well known interior Schauder-type estimate (cf.[28]) in D C U. for taking the limit in (3.2.10) and

(3.2.12).
Proposition 3.2.3. For (y,s),(y,s') € Qr \ D such that (y,s) # (y',s'), then
Iy, s"5y,8) = (k—1 / Vi(Gys) +wy,s) - VaGiy oy dodt. (3.2.14)
Proof
W) = Uy + Wy = Clys) + W) (G = 00) in L2(U) (3.2.15)

where U C Q(_. 74.) is open set satisfying U Z (y, s) and DcC U|(0 )

From Green’s theorem and (3.2.15),
J J J
/rT{a””@,s)@(y',s') D00yl Y0l o} dordt
— _ . J
= /QT(k Dxp) Ve u(ys V@i, o dodt (3.2.16)

— (k- 1)/ Va(Gy,s) + Wiy,s)) - VaGly o) dudt
D
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due to (y,s),(y',s’) € D. Here we also used the well known interior Schauder-type estimate in

D C U for taking the limit in (3.2.16).
Proposition 3.2.4. For (y,s),(y',s') € Qr \ D such that (y,s) # (y',s'), then

I(y',s;y,8) = —/Q (Orw(y,)G{y sy + Vawiys) - VaGiy o) da dt. (3.2.17)

s/

Proof From (3.2.13), w(, ) satisfies

/ (—’w(y’s)atgo + Vewy,s) Vaep)dedt = —(k — 1)/ Va (w(y’s) + G(yys)) -Vaepdrdt (3.2.18)
Qr D

for all p € W(Qr) with p =0 at t =T.

Let B,(y, s) be an open ball in R"*! whose radius is r > 0 centered at (y, s) and we simply write
B, = B,(0,0) and set n € C§°(R™™!) such that

1on B, c
0<n<1, n= — and |[Vun| £ 5— (3.2.19)
0 on R"*1\ Bg R—r

for 0 < r < R < oo. For such 7, we define

x—y §—t ~
Ne(x,t) = 77( . Y S ), Ne(x,t) =1 —ne(z,t) (3.2.20)
for 0 < € < g9 with small &g such that suppn. C E C E C Qp \ D with some relatively compact
open set F and suppn. 3 (y, s) for 0 < & < &.

We take ¢ =7.G{,, ) in (3.2.18). From (3.2.14), and 7. = 0 on D,

(RHS of (3.2.18)) = —(k — 1)/ Vw(w(y,s) + G(y’s)) . vazy/75/) dx dt
D

(3.2.21)
=—I(y',s";y,5).
On the other hand, by GZ‘y,7S,) =0ont>ég,
(LHS of (3.2.18)) = 8tw(y,S)G’(*y, ) dx dt — / 8tw(y,s)GE<y' s)Tle dx dt
Q. o Q. o

+ / Vow(y,s) - VaGiy oy dedt — / Vaw(y.s) - VaGiy oye dzdt (3.2.22)
QS/ QS/

- vww(%s) . v$nEGzy/’sl) dz dt.
Q.

Note that G7,, .y, VaG{,/ o) € LY(Qr) and w4 € C®(E), we obtain

/ 8tw(y,s)szy, s e drdt = / 6tw(y,S)G2‘y, s e dx dt — 0, (3.2.23)
Q. ' ENQ, ) '
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/ Vaw(y,s) - Vway,,s/)ne drdt = / Vaw(y,s) - V$G?y/,s’)n€ drdt — 0 (3.2.24)
QS/ E

N

2 /_t 2
as € — 0 and set Q,.(y',s') := {(m,t) e R |2 2y | + (s 7 ) < 1},
T r

/ Vawy,s) - Vx’?sG?y/,s/) drdt = / Vawy,s) - VanG?y/7s/) dz dt

Qs’ EHQS/
< sup  [Vewgy,s [Vane| Gy ) da dt
(z,t)eE (Qer(Y',8")\Qer(y',8"))NQ2 (3 9 25)
o / 2.
~N ——— G*1 /gl dl' dt
e(R=7) St s N spray,

1 2
< C'sfl/ — - exp [m} e"T2dedr < 0" — 0
(Br\Br)N{r>0} (47T€27_) 2 4T

as € — 0. These yield (3.2.17).
Proposition 3.2.5. Let (y,s),(y,s') € Q7 \ D such that (y,s) # (y',s"). Then,

/ (Orw(y,)Glyr sy + Vawiy.s) - VGl o) drdt = we, (', 8') + /{m W(y,5) 00 Gy ) dodi.
’ (3.2.26)

s

Proof To prove this proposition, we show the following Claim .

Claim

31_1% . (8tw(yys)G2‘y,,s,+€) + wa(yys) . V$G°(ky,’5,+€)) dx dt
‘ (3.2.27)
= \/Q (atw(y75)GE<y/,s/) + V:Cw(y,s) . vfG?y’,S’)) dx dt

(Proof of Claim) For some small § > 0,

/{; [(atw(yVS)G?yzs/_‘_s) + vzW(%s) . VIG?y’,S/-i-E))

S !

- (8tw(y,s)G>(ky/7S/) + V‘/ij(y7s) . viGzﬁy’,S’))] dx dt

U A A
Q. \(Bs(y,5)UBs (y':8")) Bs(y,s) Bs(y',s )N/

[(atU/(y,s) (G}(ky’,s’+€) - Giky/’s/)) + VIW(%S) . VI(G}(ky/75/+5) - Gz(y/’s/))] de dt

(3.2.28)

Obviously, (1st term of (3.2.28)) — 0 as € — 0.



For the 2nd term of (3.2.28), G¥

(v,s) € C>(Bs(y, s)) we have

/ |8tw(y’s) (Gzcy',sl-i-s) - G?y’,s’)” dx dt
Bs(y,s)
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< / 10wy, (Gly ooy — Gly o)) dadt (3.2.29)
Bs(Y)(s—3,5+5)
< NOrwiy,s)llL2((s—8.5+6): (11 (Bs )Gy 542) = Glyron L2 ((s=8,5+8):H1 (Bs(y))) — O
and
/ Va0 IVa(Gly oo — Gy d
Bs(y.9) (3.2.30)
< vaw(y,s)||L2(B(;(y,s))||vf6(G2<y/,s’+s) - G?y/,s/))||L2(B§(y,S)) —0
as € — 0, where B, (y) :={x e R"; |z —y| <r}.
The 3rd terms can be estimated as follows.
310 S(G*// *G*/ /)dl’dt
x/B,;(y/’s/)mQS/ #we) (W' +e) (")
= / Qw(y,5) (@, t+€)Gly o) (@,t) dedt — / D (y,5)Gly oy da dt
Bs(y',s'—e)NQy_, Bs(y’,s" )Ny
_ / Oy 0) (L + ) — Wy 1) (2,8)) Gy o ()
Uy
+ Dw(y,s) (@, t + )Gy o2, 1) drdt — Qw(y,5) (2, )Gy oy (2, t) dz dl.
U2 U3
(3.2.31)
where
Uy :={(z,t) € Bs(y/,s') N Bs(y', s —e);t < s —e},
Us :={(z,t) € Bs(y/,s' —e);t < s —e¢,(x,t) & U}, (3.2.32)
Us :={(z,t) € Bs(y',s');8 —e <t <}
Here note that w, ;) € C*(Bs(y',s')) and G{,, ;) € LY(Qr), then
|(1st term of (3.2.31))| < sup |0c(wiy,s) (T, +€) —wye)(2,1))] =0 (3.2.33)
(z,t)€Bs(y’,s')NBs(y’,s'—¢)
as e — 0, and
|(2nd term of (3.2.31))] < C|Bs(y’,s" —¢) \ Bs(y',s")| — 0, (3.2.34)
|(3rd term of (3.2.31))] < Ce — 0 (3.2.35)
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as ¢ — 0. In the same way using V(G (y o4e) — G, o)) is dominated by some LY (Bs(y',s"))

independent of £, we can show

/ wa(y,s) . Vw(GE(y,)S,_,_E) - G’(ky/7s/)) drdt — 0 (3236)
Bs(y',s’)

as € — 0. Hence we have proven Claim .

Now we return to the proof of proposition 3.2.5. From Claim ,

(LHS of (3.2.26)) = lim |  (9w(y.0)Glyrurie) + Vattys) - VoG,

e—0 Y

/’S/+€)) dx dt

s/

= lim [/ Wy,5) 00 Gy ey dodt + / Wy,s) (%, 8) Gy grpe) (2, 8) dx}
FS/ Q

e—0

(3.2.37)
= Elin(l) {/ w(y7s)8yG2‘y,7s,+E) do dt + /Q w(y,s) (@, )Gy 0)(2,€) dx}
- FS,
= /r w(yys)&,Gz‘y,’S,) do dt + 611_1% /Q Wy, (T, S/)G(y’,O)($7 ) dz.
Then, the proof will be finished if we remind the well known fact.
Fact
lim [ wy ) (z,5)G oy 0)(@,€) de = w6 (Y, ). (3.2.38)

e—0 Jo
From these propositions and G, sy = 0 on t > s’, we obtain an important representation
formula for the pre-indicator function.

Theorem 3.2.6 (Representation Formula).
For (y7 8)7 (y/u 8/) € QT \ D such that (y7 S) 7& (y/7 S/),

Iy, 8y, 5) = —wye) () — /F Wiy 00 Gy oy dordt. (3.2.39)
T
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3.3 1 Dimensional and Time-independent Case

We assume that Q = (a1, a0), D(t) = (d1,do) (a1 < di < do < ag) and set wy o := w4

(do,ao)r’

w_ and wy 1 = w(y7s)|(ah

= Wiy (d1,do)T di)r”

t

T

aj d1 do ag x

| 0 |

Figure 3.2: 1 dimensional and time-independent case

(3.2.8) is equivalent to the following transmission boundary problem (3.3.1)-(3.3.3):

8tw+,o - azw_,_,() =0 in (do, ao)T
8tw_ - k@iw_ = (k‘ — 1)6%6:(%5) in (dl, dO)T (331)

8tw+,1 — @%whl =0 in (al, dl)T

w4 0(z,0) =0 on (do,ap), w—(x,0)=0o0n (do,d1), wy1(x,0)=0 on (do,ao) (3.3.2)

Ozwy o(ao,t) =0, Oywy1(a,t)=0 on (0,7)

Ozwy o(do,t) — kOyw_(do,t) = (k — 1)0:Gy,s)(do,t) on (0,T)
Opwy 1(dy,t) — kOpyw_(dy,t) = (k —1)0,G(y,5)(d1,t) on (0,T)
w4 0(do, t) = w_(dp,t), w_(d1,t) =w41(d1,t) on (0,T).

(3.3.3)

Taking the Laplace transform with respect to ¢, when y € (do, ag), we obtain the following ordinary
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TL(wy0) — 07L(w40) =0 in (do,ao)
L) — k2w ) = (k- )R ZWZIVD 2y (4, ay) (3:34)
Tﬁ(w+71) — aﬁﬁ(w_hl) =0 in ((Il,dl)
and the boundary conditions
O L(wy 0)(ag, 7) =0, IxL(wy1)(as,7) =0
exp(—st —do)\V/T
Oy £ (ws.0)(dos 7) — kDuL(w_)(do, ) = (k — 1) 2L (y — do)v/7)
exp(=s7 = (y = dy) ) (3:35)
O L(wy1)(d1, 7) = kOp L(w-)(dy,7) = (k — 1) 5
L(wy0)(do,7) = L(w-)(do,T), L(w-)(d1,7) = L(wy1)(d1,T)
Here the Laplace transform £(u)(x,7) of u(z,t) is defined by
L(u)(x,T) ::/ e Tu(x,t) dt (3.3.6)
0
and we have used .
L(0:G ) = —5——exp(—s7 — |z = y|\/7),
f?'x — (3.3.7)
L(03G y,5)) = ~5- exp(—sT — |z — y|\/7).
Solving (3.3.4), we get
L(wy ) = C}r,o exp(v/TT) + C?ho exp(—v/7x),
L(wy ) = Cp g exp(v/T) + CF 1 exp(—/7), (3.3.8)
_exp(=sT — (y — x)y/7) 1 \/? 2 \/?
Lw_) = NG +4C2 exp e + C= exp 2% ¢
for some constant 041—,07 C_2._70, C_ls_yl, C_2~_71, Cl,C? € C. Let’s find these coefficients.
From boundary condition, we obtain
Cio=exp(2a0vT)C o, CF 1 =exp(2a1V/7)C1 ;. (3.3.9)
Plug in (3.3.9) to (3.3.5),
57— (y—do)v/T
(e dov/T | o(2a0— do)f) do\fcq _e—doﬁcg _ e 2(v )
T
e~ ST~ —d1)/T
( d1f+e(2a1 dl)f) _edlfcl _ d1\/>02 _ 2(y VT
=
dov/T (2a0—do)v/T\ (1 NG dor/F (11 —do\/F M2\ — e—sT—(y—do)vT (3.3.10)
(eloVT — ¢ )CL o — VE(ePVECL —e C2)=- NG
diT (2a1—dy)/T\ 1 Vi diy/F 1 —di\/T 12 e—sT—(y—di)VT
(e —e )Ci 1 — V(e Cl —e Cf)z—T




edo\/; + e(2a07d0)ﬁ 0 _ed()\/% _e—dg %

0 eIVT 4 oCu—d)VE  _gi/E  _di/E

edoVT _ o(2a0—do)VT 0 _\/Eedoﬁ \/Eefdoﬁ

0 VT _ oQai—d)VT  _\[eVE e iVE
edoﬁ
efs‘rfyﬁ edl\/?
T 231 edovT
ehvT

By Cramer’s theorem, we obtain

o :_e—ST—yﬁ% L :_e—ST—yﬁ%
+0 27 Dy Tt 27 Dy
L _TTNTDy T,
N 2\/’77' ]D)o’ N 2\/’77' Dy
i.e.
Lluws0) =~ exply/Fr) + expl2a0 — o) 2
Wi, 0) = N exp(y/Tz) + exp(2ag TX Dy
e~ ST—YVT D,
L) = =5 (exp(v/7) + exp(2a — vFa)
_ _ _ —8sT—Y\/T D D
o) P = =2V e Dy ([T, D
2T 2T Dg k Do
where
edoVT 4 (2a0—do)vT 0 —eVE —e
0 ehVT 4 Ra—d)vT  _ghiVE e
Dy :=
O] dovT _ e(2a0—do)v7 0 JReoVE
0 eh VT _ g(2a1—di)vT —\/Eedl\/%
edoV/T 0 _edO\/% _e V%
e VT ed1ﬁ+e(2a1—d1)ﬁ —edl\/% _e_dl\/%
Dy =
' edovT 0 —VEebVE ke DVE
VT VT _ (Qai—d)VT et VE e tVE
edoVT 4 o(2a0—do)vT  gdovT 7€do\/% 76_d0\/%
0 eV —edl\/% —e~hVE
Dy :=
2T edovT _ pao—do)VT  pdovT  _\JReloVE R oVE
0 eV —\/Eedl\/% \/Ee_dl\/%

41

Clo

cL

ct

02
B (3.3.11)
(3.3.12)

di\/F

\/Eefdo\/% ’
\/Eefdl\/%
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edoVT 4 e(2a0—do)VT 0 edovVT e doV/E

0 VT | oar—di)VT  odivT  _—di/E

D3 := dov/T _ p(2a0—do) V7 0 VT Sl doV/E

0 VT _ pa1—di)VT  odiVT \/Ee_dl\/g

and

edoVT | o(2a0—do) VT 0 _ehoF o pdovT

0 eMVT 4 o(201—d1) VT _edlﬁ edivT

Dy := edov/T _ o(2a0—do) VT 0 _\/Eedo\/% edov/T

0 VT _ p(2a1—d1) VT 7\/E6d1\/% e VT

Calculating D; (j = 0,1, 2, 3,4) more carefully, then we obtain
Dy = eBoVT 2(00—do) V7 i V7 o(do=d)y/F
X [—(1 + e~2(a0=do)VT)
X {R(1+ e 2 BmaVT) (1 e 2omd)VE) | /(1 - e 2 ma)VT) (] 2o d)VE )
— (1 — e 2(a0=do)V'T)

« {\/E(l + 6*2(111*!11)\/?)(1 + e—Q(do—dﬂ\/%) +(1— 672(d17a1)ﬁ)(1 _ ¢~ 2(do—d1) %)}],
(3.3.14)

D, = ed[)\/?e(do_dl)\/%edlﬁ
x [(1 4 e~ 2(dima)VT)

 {—k(1 — e"2o=dVE) 4 /(1 4 ¢ 20—V Ty 9y /pe~ (o= AFTVTY(3.3.15)

(1= e 2BV

< {=VR(L+ e 200V 4 9 e+ TVE () 2tV

Dy = 6d0\/?edlﬁEQ(ao*do)\/?e(do—dﬂ\/%
% [(1 4 e*Q(GO*do)ﬁ)

« {Qﬁe(do—dl)(l—ﬁ)ﬁ _ \/E(l + 672(dofd1)\/%) — k(1 — 672(dofd1)\/%)} (3.3.16)

_ (1 _ 6—2(a0—do)ﬁ)

« {_2\/Ee(do—d1)(1—ﬁ)ﬁ+ V(1 +e—2(do—d1)\/§) rQ _ o~ 2(do—di) ],
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Dy = o2d0V/T p2(a0—do)V/T pdiv/T o —diy/F
X [(1 + e=2(a0—do)vT)
« {\/g(l + 672(dra1)ﬁ) _ 9/ke do=d) (1t Jr)+2(dr —ar) }v/T r(1- 672(d17a1)ﬁ)}
(1 = e Han—do)vT)
) {VE(L + e A =a)VTy 4 (] — e~ 2di—a)VT) _|_267{(d07d1)(1+ﬁ)+2(d17a1)}\/?}]
(3.3.17)
and
D, = €2d0ﬁ62(agfdo)ﬁed1\/?ed1\/%
X [(1 + e=2(a0—do)vT)
% {\/%(1 n e—2(d1—a1)ﬁ) (- e—z(dl—al)ﬁ) _ 2\/E€—(do—d1)(1—ﬁ)ﬁe—2(dl—al)ﬁ)}
— (1 — e~ 2(a0=do)vT)
x {(1 = e 2d1=a0)VT) _ E(1 4 e~ 2di—a)VT) 4 9o~ (do=d) (1= JRVT =2(di—a) V7))
(3.3.18)

Firstly, let’s consider about £(w4 o). Since (3.3.14) and (3.3.15), L(w4 o) is represented as

1
E(w+,0) — _ﬁ(efm'*(yfz)\/? + 67577(y+1372a0)\/?)
((=k + VE) + (—VE + 1)) + O(e2F1V7)

20—V (=(k+ VB) = (VE -+ 1)) + O(e200v7))

) (3.3.19)
- _ (6757'7(’!;711?+2(a07d0))\/77' + efsrf(y+zf2do)ﬁ)
NG
1—-k oLl T
X m + 0(6 0 ) (%T > 0)
where b
Lo := min ag — do, %,dl — (11}
— - 1
L1 := min do\/Edl , do 5 il (1 + \/E) ydy — al} (3.3.20)
L6 = min{Lo, Ll}
Here, we know
e—sT—(y—z+2(a0—do)) VT e—s7—(y+z—2do) VT
2\/T = L(Gy,s)(x — 2(ao — do), ")), 27 = L(Gy,s)(—z + 2do, ),

(3.3.21)



then

Llwro) = L{G(y0) (@ = 2ao = do), ) + Gy, (=2 + 2do, -)) G ~vEy o(e%aﬁ))

+Vk
11—k
1+ VE

where Cp := min{2L{, ag — do} due to

es‘rCo\ﬁ)

E(G(y7s)(—x+2d0,')) -l-O( \ﬁ

y+l‘—2d0+2L6>2L6, y—x—|—2(ao—d0) >ag—dyify,z € (do,(lo).

We set
Rys)(@,7) = L(wy,0 — W 05p)(2,7)

with
\/>
W oplx, ) 1=
+707P( ) 1+\/>

then R, s (x,7) is analytic in 7 for 7 > 0.

G(y S)( x + 2d0,t),

[SE

i 1
—so— 715 [(024w?)2 40]

/ IRy,s)(®,0 +iw)| dw < M/ c dw < oo (o >0).

(02 + w?)i

Also we have to show next Claim

Claim
R(y’s) (J,‘, 0) = O,
where
1 O'+’L'OO :
R(y,s)(gy,t> = 5 - e " Ry,s)(x,T)dr
with o > 0.

(Proof of Claim) By Cauchy’s theorem,
R(y é)('ra O) =0,
h _ ! i dt with a cl
where R(y o(@, 1) == i Jow e'"Ry,s)(x,T) dT with a close curve

No={o+ Ne";—n/2 <y <n/2}UJo —iN,o +iN]
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(3.3.22)

(3.3.23)

(3.3.24)

(3.3.25)

(3.3.26)

(3.3.27)

(3.3.28)

(3.3.29)
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for N € N.
Hence,
1 o+iN M z efs(aJrN cos w)f%[(02+2Na cos 1/)+N2)%+(0'+N cos 1!1)]%
—/ Ry.s) (@, 7)dr| < —— - dvp
21t Jo_in 2m J = (62 4+ 2Nocost) + N2)a
M (% d M
<o 2 2 v Nt 2 2)1 —0
2r J_x (02 + N2)1  2(02 + N2)1
(3.3.30)
as N T oo. Therefore the proof of Claim is complete. O

By (3.3.26), Claim, and by taking inverse Laplace transform with respect to 7 in (3.3.24), we obtain

Ryo(@,1) = wio(x,t) —wy 0p(z,1) (3.3.31)

(cf.[25]). Moreover, we obtain

. Cl o, a1 1

1 o+i00 M [ elt=s)0 o~ ysllo+p)2+0]2

[Rey.o) (@, 0)| = | 5— Rz, m)dr| < = [ © ° ; dp
v 2mi o—100 v 2m — 0 (0’2 + p2)1
(3.3.32)
Melt=s)o /°° dp
< - < 00
2m Jooo (0% 4 p?)1

for o > 0.
From same idea as this, by (3.3.14) and (3.3.16), we can rewrite £(wy 1) as

b
2y
(2vE — (=2vR)el™ TV 4 O b7
(—(k+VE) — (VE + 1)) + O(e=2LovT) (3.3.33)
AWk et @t(do—d) (A= o)V o—LavT
+0
Pl T o )

C(er 1) _ (efs‘rf(yfm)ﬁ + efsTf(y+w72a1)\ﬁ)

X

for k > 1 and

E(w+ 1) = (67577(9*1’)\/? + 67577(y+1‘72a1)\/;)

1
NG
o (R VE) - (VE+1) + O(eLaVT)

(—(k+vVEk) = (VE + 1)) + O(e~2EovT)
e—sT—(y—z)V/T e—sT—Ly'V/T
R O(ﬁ)

(3.3.34)
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for 0 <k <1dueto (0<)y—x<y+z—2a; when z € (a1,d1),y € (dg,ap). Therefore

Clwe ) —ME(G(y,s) (x+(do—d1)<1— ;E>>)+o(€_“\;ﬁ> Fh>1
wyy) =

- VE eswa“ﬁ)
——L(G o (z,) + O ——=— | f0< k<1
Gt + O
(3.3.35)
Finally we consider about for £(w_). Firstly we obtain
—L3yT »
D3exp< Tx> _ 2(1+ Vk) + O(e ) (= Jp)do) VT (3.3.36)
Do k —(14 VE)2 + O(e—2LovT)
due to (3.3.14) and (3.3.17).
Also we obtain
—9(1 — —LavT z
D“exp<_\fx> _ 20 VR FOETYT) (v oot Frav? (3.3.37)
Do k —(1+ Vk)2 + O(e2LovT)
2(d1 al) -2
for k 1 k#1
o> (14 200 ),
%exp <\/?x) _ 201+ VE) +O(e V) (-t (1 )i —2(d1 —a1)) V7 (3.3.38)
Do k —(1+Vk)? + O(e—2LoVT)
—2
2(dy —
forO<k<|([1+ M . So we conclude
do — d
efs‘rf(yfz)\/? 2 e*STf(y*(ﬁJr(l*ﬁ)dD)\ﬁ) e*ST*LZ\/F
Lw_)=— + + O( >
2yT 1+Vk 2V VT (3.3.39)
LGy, ) + —2—C ( * 4+ (1 ! )d >)+0(e_57_wﬁ>
= - s)\Ty - - = )\ — - T = 5" - =
) 1+ vk (y:9) vk VE 0 NG
2dy —a1)\
because for k> 1+ A~ @) (k#1),
do — dy
T 1 2 do —dy
—y——4+ |1 - — |do+ —=d1 < — <0 3.3.40
v (1- o+ <220 (<) (3.3.40)

-2
and for 0 < k < 1+M ,
dy — dy

X 1 dl 1 —a . —a
— _\/E+(1+\/E)dl_Q(dl_al)<_dO_\/E+(1+\/E)dl_2(dl 1)< 2(d1 ()(<O;
3.3.41

when (VRS (do,ao), x € (dl,do).
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Next, we define indicator function for the time-independent case Zing(y, s;€) for identifying dy
as follow.

Definition 3.3.1 (Indicator function for the time-independent case). For (y,s) € Q7 \ D,
e > 0, we define indicator function for the time-independent case Ziq(y, s;€) by

Tina(y, s;€) := |I(y +¢,5 + €%y, 9)|. (3.3.42)

Theorem 3.3.1. Let (y,s) € Qr. If (y,s) € D, then Tina(y, s;e) — 00 as e — 0, and if y > do,
then Tina(y, s;€) is bounded as e — 0.

Proof The integrand of the 2nd term of (3.2.39) has no singularity on I'r. Hence 2nd term of

(3.2.39) is bounded as (y',s’) — (y,s). Then, the conclusion follows by observing

Wy 0p(y+e,s+%) = g exp —w . (3.3.43)
Theorem 3.3.2. For any 0 < s < T,
(1) Eliir(l)Iind(y, s;€) = 0o when y = dy, (3.3.44)
(2) giir(l)Imd(y, s;e) < C when y # dy. (3.3.45)
Therefore dy is given by
do = inf{y < aop; g%lind(y’, s;e) < oo for any y' € (y,a0)}. (3.3.46)

Remark 3.3.1. A similar identification can be done for d;.
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3.4 1 Dimensional and Time-dependent Case

We assume () = (al,ao),D(t) = (d1(f),d0(t>) (a1 < dl(t) < do(t) < Clo) foreach 0 <t < T
with do,d; € C*([0,T]).

For fixed t = 0, let w(gyys) be the reflected solution satisfying (3.2.8) with D = D(0)r.

06 ._ .0 0 ._ .0 6 ._ .0
Set wh o= w(y75)‘(d0(9),a0)T7 w? = w(%s)’(dl(e)}do(o))T and wy g = wy ’(al,dl(O))T'

Figure 3.3: 1 dimensional and time-dependent case

From the discussion for the 1 dimensional and time-independent case, when y € Qr \ D, we

obtain
1ok

Ll y=—2r
(w+,0) 1+\/E

(Gy,)(— +2do(6), ) + L(w] o,,) (3.4.1)
and

) = LGy )+ —2 Tt (1= 7 Jan0),
L(w?) =~ L(Gy,s(,-) + T \/EE(G(y,s) (\/E + (1 \/E>d0(0)’ >) (3.4.2)
+L(w?.,).
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Let
wy (T, t) i= Lﬁ (=2 +2do(t),1), (3.4.3)
2 T 1
wﬂp(xﬂt) = _G(y,s) (.%‘,t) 1+ \/> (y,s) (\[ + (1 — \/E)d[)(t)’t) (3.4.4)
and

. do(t
wy =4 0P on (do(t):a0) ¢ ach0<i<T. (3.4.5)
w_, on (di(t),do(t))

Lemma 3.4.1. w, ) — wp, is bounded in H*°(Qr) as (y, s) tends to x = dy(t).

Proof Toshow this lemma, it is sufficient to prove Pp(w(y,s)—wp) is bounded in L2((0,T); H~1())

with H=1(Q) := (H}(Q))* norm, because we have the following unique solvability:

Theorem 3.4.2 ([39]) (Unique solvability 3).
For given f € L2((0,T); (H2(T'))*) and F € L2((0,T); H-X(R)), there exists a solution v =
u(f, F) € W(Qr) to

{PDUF m QT (346)

ov=f on 0y, v(z,0)=0.

For any ¢ € W (Qr) with supp ¢ C Qr := {(d,a¢)7;d € R such that dy (t) < d < do(t) for cach t €
0,7} and p =0 at t =T,

<Ppr7 >

_ 1+f U /do(t) 105G y.0)) (— + 2do(t), D)o de

do (t . ) (3.4.7)
£)(0:G y.s + (1= == )do(t),t ) pduat
- [ oG (1= Faone)eseal
do(t)
— (k' — 1)/ / (azG(y,s))ang dz dt.
0o Jd
From (3.2.8),
do(t
<PDw(y 5)9 QD - - ]. / / 6‘ G(y s) :EQO dx dt (348)
for any ¢ € W(Q7) with supp ¢ C Qr and ¢ = 0 at t = T, then
(Pp(w(y,s) —
—_— ) (= + 2do (1), ) da dt
1+JU$A@ Gy o+ 2o (8. D)o (3.4.9)

/ /dO(t . S”(j@ + (1 - \}E)do@),t)@dxdt]
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for any ¢ € W(Qr) with supp ¢ C Qr and p=0att="T.

By integration by parts with respect to x, we have

21— V&) (T a0
(Pole ~ w0 ) =2 [Lai0([ G-+ 20000000500
1+vVk Jo do(t) (3.4.10)

+ dO(t)G x + L d Opodz |d
ol ==+ (1= —=)do(t),t )| Do da ) dt.
/d @, )<\/E ( \/E) 0( ) ) x)

Since G(y,s) € L*(Qr) in 1 dimension, we can easily see
Pp(w(y,s) —wp) € L*((0,7); H1(Q)) (3.4.11)
i.e
Wy,s) = Wy € H(Qr). (3.4.12)

Now we define S,.o(y,s) as an open sector of small radius r, small angle 2 with vertex (y, s)

and parallel to the z axis which figure is given below.

Figure 3.4: The sector S;.q(y, s)

Geometric assumption for Theorem 3.1.4
We can take small 7 > 0, > 0 such that for each 0 < s < T, S,.(y, ) touches 9, D at only one
point (dy(s), s) as y | do(s) along the line t = s.

Proposition 3.4.3. For each 0 < s < T,

[Vawp||L2(s,.0 (y,5)) — 00 as y | do(s). (3.4.13)



o1

Proof From Fatou’s lemma,

hmlnf IV wp||L2(3 5) = liminf [Vawy 0;p”%2(8

yﬂdo Ta(y: d ’ r;a(y,s))
s+rsina do( s)+rcosa d — 9da(t 2 d —9da(t 2
>c/ / (z + o<> 2o(1))* [ o dols) — 20
do(s)+ tan « (t - 8) 2(t o S)
) V2(dg(s)=do(t)) | _rcosa
strsina , Ve +gsa (3.4.14)
> C/ t—s)"8 T 268 e gt
V2(dg (s ) do(’ﬂ))_,'_\fx/t
: fldo( )—do(®)] rcosa
s+7sin o - — + — R
> 0/ (t—s)% VR 62— e .
s _VBldg(9)—dg)| | _yi=s
Vi—s V2 tan o
By dy € C([0,T7), for (0 <)s < t(< T),
ldo(s) — do(t)] < B(t — s) (3.4.15)

for some constant 3 > 0. Therefore

2

s+rsin o s fﬁ\/t s+\};(‘;57‘3;
Ta(ys))_c/ t—S 7/

lin inf ||V wpl32 " agdt. (3.4.16)

P VISV
Here
V2B\/E—sLLesa V2By/E—s+ Lo
/ s \/2“7‘552 _€2d£>1/ s \/%73 £2d§
V2BVt V2OVE=St (3.4.17)
e C'(t=%) frcosa E—s
22 Vi—s tana )
Therefore

[M[

s+7rsin «
_sfrcosa t—s
lim inf >C (t—s)7% B a
liminf [[Vowplzes,.. .0 2 / *) ( Vi-s tana)

>C/s+”‘““ - s) _g(rcosa Vit—s dt (3.4.18)
Vt—s tan o o
oy rsina
20/ (t—s)"

dt =
Definition 3.4.1 (Indicator Function for the Time-dependent Case).
For (y,s) € Qr \ D, we define indicator function for the time-dependent case Zyep(y, s) by

M\w

Zaep(ys 8) = [[Vy I(-s 1Y, 8)| L2(Sp0 (u,5)) - (3.4.19)

Theorem 3.4.4. For each0 < s < T, Lyep(y, 5) is finite for each do(s) < y < ag, but Zgep(y, s) — 00
asy | do(s).

Hence we know dg(s) based on Zgep(y, s) — 00 as y | do(s).
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3.5 Proof of Runge’s Approximation Theorem Based on Hahn-
Banach Theorem

In this section, we prove Runge’s approximation theorem based on Hahn-Banach theorem.
Another proof of Runge’s approximation theorem based on the single layer potential is given Section
4.2, which is more constructive. To prove Runge’s approximation theorem based on Hahn-Banach
theorem, we need the following well known unique solvability result. We need the following well
known unique solvability result.

Theorem 3.5.1 ([26]) (Unique solvability 4).
For F € LQ(Q(T&T{)), there exists a unique solution w = w(F') € H271(Q(T67T{)) to

Pfw=1Fin Q Tl

¢ (T3,T7)
{ w=0 on F(Té,T{); w(;c’Tl’) =0. (351)

We only give the proof of Theorem 3.1.3 (cf.[27]). Let
X ={v |U;v € H2’1(V)7P¢v =0inV, v‘(T, T = 0} (3.5.2)
0’
and

Y= {u |, iu € H* (), Psu =0 in Qgy 10y, u‘(TéyTo] =0}. (3.5.3)

We want to prove that if fo € L*(U) satisfies (fo,u)r2(y = 0 (u‘U € Y), then (fo,v)r2w) =
0 (1}|U € X).

For such fy € L?(U), by Theorem 3.5.1, there exists a unique wq € HQ’I(Q(Té,T{)) satisfying

{ P;U)O = FO in Q(TévT{) (354)
wo =0 on F(Té,T{)) wo(a:,Tl’) =0.
where
in U
Fp = {fo o _ (3.5.5)
0 in Q(Té,Tl’) \U
For any u’U ey,
0= / ufodx dt = / uPjwo dv dt = / (uPjwo — Pyuwg) dx dt
’ g ) Rt (3.5.6)
= / (Opuwg — ud,wp) do dt = —/ ud,wo do dt.
Terg.rp Terg.rp

Then we obtain 8yw0]mm . 0, since u|39(w " € L2((T},T}); Hz (")) can be taken arbitrarily.
0’71 0’71



Then using the unique continuation property (cf.[20]),
wo = 0 on Q(T(;,Tl’) \U

Let U|U € X, i.e.

ve H*'(V);Ppuv=0 inV, 0.

v =
(T§,To)

Then, by (3.5.7),

(v, fo) L2y = / (vPjwo — woPyv) dx dt = / (wodyv — vI,wp) do dt = 0.
U

.U

23

(3.5.7)

(3.5.8)

(3.5.9)



Chapter 4

Numerical Realization

4.1 Realization in 1 Dimensional Time-independent Case

In this section, we consider the case of 1 dimensional time-independent case for simplicity. i.e
Q = (a1,a0) and D(t) = (d1,dy) with a3 < dy < dy < ao.
And we assume y € (dg,ag) and s,s" € (0,T) meeting s’ > s. Now we will construct open set
V =V(y,s;y,s) C Qr of Runge’s approximation theorem (Theorem 3.1.3 and 3.1.4) in a very
simple way. V (y, s;v’, s") needs to satisfy these following conditions.
(H1): D C V(y,s;9,5").
(H2): (y,9), (¢, 8") € Qr \ V(y, 539/, 8").

From these conditions, we can choose V (y, s;v’, s') as
V(y) := (v1,v0(y))r satisfying v < di < dp < vo(y) <y (4.1.1)

since we will set ¢/ =y +¢,s' = s + &2 for small € > 0 in our argument. The configuration of V (y)
depends only on y. Moreover, when we approximate do by y € (vo(y),ap) with vo(y) independent
of s.

Firstly, we consider the Runge’s approximation function v{w)(x, t) to Gy s (2, t) = G(z,t;y,5)
in V(y).

For this purpose the potential expression

/ / Gl t:€,7)g(€.7) ds(€) dr
o Jr (4.1.2)

t t
- / G(a, t;a0, 7)g(an, 7) dr + / G, tra1,7)glar, 7) dr = H(G)(x, 1)
0 JO

54
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for (z,t) € Qr, where §(7) = (gay (), ga, (7))T and g, (), gu, (1) are density functions in z = ag, a1,
respectively.
It is easy to see that H(g)(z,t) for any continuous density § satisfies Pp- = 0 in Qp and

G y,s)(x, 1) solves heat equation in V'(y). If we require that
H(G)(z,t) = Gyo)(2,t), (x,t) € V(y), (4.1.3)
then the well-posedness of direct heat problem will generate
H(G)(z,t) = Gy,o)(x,t), (x,t) € V(y). (4.1.4)
Noticing Gy, (z,t) = 0 for ¢ € [0, 5], so we choose the density functions
9ao (T) = 9a, (7) =0, T €0, 9], (4.1.5)
then (4.1.3) holds for ¢ € [0, s] obviously. Therefore it is enough to require that
H(G)(x,1) = Gys)(x,1),  (2,1) € {v1,v0(y) }s,1) (4.1.6)
with the expression
t t
H(G)(x,t) z/S G(z,t;a0,T)gao (T) dT-I—/S G(z,t;a1,7)ga, (T)dr, t€ (s,T) (4.1.7)

due to (4.1.2) and (4.1.6). We can write (4.1.7) explicitly as the following matrix form

t
A(G)(t) == / At —71)g(r)dr = b(t—s), te(s,T) (4.1.8)
S
with
(ag—vo(y)? vo(y)—ay)?
A(t) 1 - o= E(t) 1 ( _<y—v£f<y>>2 _<yv41f<y)>2>T
= — N o —a s = — e t , € t
\/E e_w e_% \/E

due to (4.1.7) for given vo(y), v1, ¥, s.
Once upon we determine gq,(7), ga, (7) for 7 € (s,T') from (4.1.8), we can approximate G, ) (z,t)
in V(y) by
v(x,t) ==H(G)(x, 1), (x,t)€ Qp.
Noticing (4.1.6), we in fact have H(g)(z,t) = Gy (z,t) = 0 for t € (0,s) and H(g)(x,t) ~
Gy, (x,t) for t € (s,T). Noticing the infinite differentiability of H(g), it of course meets the heat

equation in V (y).
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One possible choice of § such that (4.1.8) holds is the minimum norm solution to

—

A(G)()=b(t—s), te(sT) (4.1.9)

with discrepancy 1/j. That is, there exists a unique ¢’ (t) defined in (s,T) such that

| —

1571l = inf{lﬁll HIA@)() =B —s) < }

<

which can be determined uniquely by

1A@) () = b(- = 8)l| = 5

ag + A*A(g) = A*(b),

(4.1.10)

where both the norm and the adjoint operator A* depend on the choice of function space. The
theoretical issue is we should prove the denseness of Range(A) so that the approximation in the
boundary is possible.

Now we denote by

v (x,t) = vgy)s)(x,t) =H(F)(x,t), (2,t)€Qp (4.1.11)

clearly to express the dependence on (y, s), noticing v’(z,t) — Gy ¢ (x,t) in V(y). Now we can

write the boundary value of v/ is

J t t .
u(‘y,s)(% )|x:a0 :/ B(t —7)§ (1) dr (4.1.12)
Ugy,S) (@, t)| °

r=aq
with the matrix

_ (ag—a1)?
1t

1 1
Vart \ et ’

B(t) :=

where we define B(0) = 0. To compute the indicator function, it follows that the boundary deriva-

: Vi
tives &,v(y

) _ i
v,5) ’FT7 is also needed, excepted for Viy.s

. We compute &,vgy S)’ . from (4.1.12) directly

)}FT r

using the density function, rather than by the differential procedure from U{y 5) itself, due the ill-
posedness of differential computation from discrete data. A simple computation from (4.1.8) and

(4.1.12) generates that

7
b0y 5
(

0 : |
| o= | = / Bo(t — ) (r) dr (4.1.13)
ay’UJ s

z, t)‘
Y,8) (1) }ac=a1
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with the matrix

—a; oo (01
Bo(t) i= — 0 Lo eat .
4\/Tt2 10

We also define By(0) = 0.

On the other hand, it is obvious that
G?y/7s/)($, t) = G(yl’T,S/)(JZ, T — t)

From this relation, if we construct the same approximate domain for two points (y, s), (y/,s'), as
done in this paper, we get that the Runge approximation function qﬁgy, &y can be chosen easily, that
is,

) _ ]

(y,7s,)(x, t) = v(y,7T_S,)(x, T—1t) (4.1.14)

is an approximation function to G*y/ ) In this way, the Runge’s approximation functions vgy s) (z,t), gp{y, o)

J

vy 0Py o) Iy that

Tr’

are constructed. Finally we use (4.1.14) to determine the Cauchy data go{y, s
is,
J — _
Ao @ Dl = i (&7 =Dl @i
B0y oy (@ 0| = 0], oo (@, T = )],
Finally we conclude at the end of this section that (4.1.10)-(4.1.13) provide a implementable way

J

to the construction of Runge approximation functions {v(y 5

go{y, S,)}. In this way, we can compute
the indicator function, since the map IIp is given. In our realization, we simulate IIp (8yv€y 5) ’FT)
by solving direct problem. In this way the right-hand boundary, that is the value x = dy can be

identify by taking y — dy.

4.2 Discrete Scheme for Indicator Function

In this section, we give the details for the discretization of computing pre-indicator function
I(y',s';y,s). As stated previously, we begin with (4.1.10)-(4.1.13). It is easy to see that A :
L2(s,T) x L2(s,T) — L*(s,T) x L2(s,T) defined in (4.1.8) mapping A(§) = ¢ has the adjoint
operator

N T -
A (@)(t) = /t AT (r — 1)0(r) dr. (4.2.1)



Therefore the regularizing equation in (4.1.11) for given « > 0 becomes

/ATT—t/AT—g dng—/ AT (7 — t)b(r — 5) dr,

which can be written as

/th dq*/ AT(r —t)b(r —s)dr, te(

with the kernel
/ AT(r —t)A(T —<)dr, s<¢<t,
/ AT(T—t)A(r —¢)dr t<¢<T.

Denote by g, (t) the solution to this equation, then for a > 0 satisfying

IA@)a () = B = )l L2(s.1)x L2(s.1) = =

28

€(s,T), (4.2.2)

s,T), (4.2.3)

(4.2.4)

(4.2.5)

we obtain the corresponding density function g;(7) := Ja(j)(7) € L?(s,T) x L?(s,T). The existence

of this solution is standard if Range(A) is dense in L?(s,T) x L?(s,T). We give the denseness by

the following result.

Theorem 4.2.1. The range of operator A is dense in L?(s,T) x L%(s,T).

Proof Let E C )(_oo,1) be an approximation domain with C? lateral boundary 8965 . For safety

we assume E N {t =0} and BN {t = T} are bounded domains with C? boundary if n > 2. Moreover,

for any t' € [0,T], EN {t'} cQx{t'}.
We define the single layer potential S¢ with density ¢ € L2(8mE) by
()0 = [ Glastip9)ol0,) do(w) ds.
I'r

Claim
L%(0. B)

If (y, s) ¢E, then G(z,t;y,s) € R(S)

Proof L2(0,E) = R(S) ® N(S*) with N(S*) := {¢ € L2(8,E); S*¢) = 0}.

Hence it is enough to prove G(xz,t;y,s) € N(S*)*.

(4.2.6)

(4.2.7)



First of all, we note that S* is given by

SWW@J%=6EG@m%$¢@ﬁdd@ﬂ~
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(4.2.8)

Let ¢ = tp(z,t) € N(S*) be such that ¢ € C°(9,E) and ¢|t:0 = 0. Note that such 1’s are dense in

N(S*) and S* : L2(0,E) — L2 (I'(~oo,7)) is a bounded operator. We continuously extend ¢ to t < 0

and use the same 1 for the extended . (Of course for this, we need to extend E to t < 0 without

destroying the regularity of its lateral boundary. Let

w(y,s) == i EG(x,t;y,s)z/)(x,t) do(z) dt.

Then, we have
P;)‘w =0 in (R" \ Q)(foo,T)
w=0 on I'_w 1) ,
w|s:T =0

since

T
w(y,s) = / dt/ G(z,t;y, s)Y(z,t)do(x) = w(y,0) if s<O0.
0 8. B(t)

where &E(t) is cross section of 9, F at t.

Fort > s,z # vy,

1 Iw—yj
G 4y, 8) = —F—— -
(=559, 5) (VAr(t —s))™ exp{ 4(t — s)
[ —-n |£C—y|2 “ 2_—a, —T
=T 2|:E—y\ m T? e

2\ @ 5«
- —n x_y n Ry (L —
<7n 2|z —y (L(t—l)) (2_a) e~ (3—a)

with 0 < a0 < g (cf. (9.18) in [22]). Therefore
Gz, t;y,s) < M(t — s)"%a —y| "2
for some M > 0 with 0 < o < g Similary,
IV, G, t;y,s)| < M'(t — ) Ple —y| "+

forsomeM’>0with0<ﬁ<1+g.

(4.2.9)

(4.2.10)

(4.2.11)

(4.2.12)

(4.2.13)

(4.2.14)
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TakeO<a<§<ﬁ<1,a+,3<1,

T
|w(y,s)| < M”’(/)HLOC(azE)(diSt(awE’F))-n-‘r?a'Ql/ (t . S)a dt
= M| oo o, ) (dist(D2 B, T) ™" P20 (1 — ) ~H(T — )"~

We clearly see O(|s|~%) (s — —oc). (Of course we also have O(|s|~2) (s — —c0).)

Taking account of the behavior for large |y|, we also have

_ { O((T = 5)"=)O(ly] ") (s — T Jy| > 1)
O([s|=)O(y|~"+2%) (s — o0, Iyl > 1),

Therefore, summing up all the behaviors, we have

w= { O(T =5)=2) (s = 1), O((T = 5)'"*)O(yl "*%) (s = T'ly| > 1)
O(Js|=) (s = =00), O(s|~)O(Jg]™+>%) (s = ~oc.ly| > 1).
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(4.2.15)

(4.2.16)

(4.2.17)

Similarly we have the same estimate for V,w by replacing a to 3. Now, let Kg := (R"\ Q)N Bpg

with Bg := {|y| < R} for large R > 0. Then

0 :/ wPjw dy ds :/ |V w|? dy ds —/ wo,w do(y) ds,
KR(—co,T) KR(—o0,m)

OBR(—oo,T)

because

(- DLy = (', —00)Z2(xc) =0

and
w=0 on F(foo,T)-
Therefore
lim |V, w|?dyds = 0
- JKp
due to

/ woyw do(y) ds
aBR<,OO7T)

T T
< L{/ (T — 5)2—(a+ﬁ) ds + / 2 |8|—%—5 ds}/ R-2n+2(a+B)+n—1 jgn-1
Sn—l

T —
5] o]

_ L/R—n—1+2(a+ﬁ)|sn—l| =0 (R N OO)

From (4.2.21) and w = 0 on I'_ 1), we obtain

w=01in (Rn \ﬁ)(—oo,T)~

(4.2.18)

(4.2.19)

(4.2.20)

(4.2.21)

(4.2.22)

(4.2.23)
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Therefore, by the unique continuation,

w(y,s) =0 i.e. /a . G(z,t;y, s)Y(z,t)dx dt = 0. (4.2.24)
for ¢ € N(S*). O
The numerical procedure is as follows. For given j, the possible lower and upper bounds for the
regularizing parameter can be given based on ||A|, ||A*||,j. Then we compute the solution to (4.2.3)
for different « in this interval respectively and compare their norms. The one with the minimum
norm is gj.
This is a linear integral equations with unknowns g(t;) = (ga, (t5), ga, (t;))T for j =1,2,--- /| N.
Now we state how to simulate I for given Neumann data f is I't by finite element method.

For fixed t € (s,T), we denote u”(x,t) the approximation to u(z,t). The weak form of equation in

(3.1.2) is
d
pn Quh(x,t)¢(x) dx — /F'y(x,t)&,uh(m,t)ﬂa:) dx—i—/ﬁv(x,t)Vuh(x,t) -Voé(x)de =0

for test function ¢ € H'(Q). We require the approximate solution to satisfy the boundary condition,

then the above relation is

% ul(x, x)dx — / flz,t)o dcc—!—/ y(z, t)Vu' (z,t) - Vé(z) dx = 0.

Now we expand u"(-,t) by base functions {¢;(z)}}L, as

) = Zuj (1)9;() (4.2.25)
§=0

and take test function as ¢;(x), we get

du(t) _ s
C— = +D(tu(t) = f(),t € (s, T), (4.2.26)
u(s) =0

with € i= (¢;7).D(t) = (di (1) ut) = (uo(t), - uns(t)™ and £(8) = (folt). . far(H)”,
where the elements are

o= [ 0a)os@)dadiy) = [ 2(0.090)V0,(0) da, fil6) = [ Fla)6(a) dila)
fori,j=0,---,M. (4.2.26) can be solved by 1 order implicit scheme recursively from

(C+ mD)u(t;) = Cu(t;—1) + 7f(t1),
u(ty) :=u(s) =0

(4.2.27)
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M
T _
forl =1,---,N with step 7 = 2 % In 1 dimensional case, define [a1,ap] = U[xj,l,xj], h =
i=1

Ty — T
% with zg = a1, xy = ag and the base function can be taken as the standard tent-like shape

- T—x S (z € [0, 71])
— L (relx T 2
do(z) = o EEle ) ay  m a)
0 (z € [z1,2Mm]), h
0 (x € [z, 20])s
_O . (fﬂ c [Zo,xj_l})

( € [zj-1,75])

(bj(m) = _% (x c [xj,$j+1])

0 (.’E € [x]'+17wM])

0 (.’L‘ € [.1'0,33]\/[,2]) . ( . [ D

drm-1(z) = Lo (x € [tpm—2,zm-1]) and dai(z) = . xMi L0, TM—1
T oM T (z € [zm-1,2M]).
_ N (I € [IZ\/I—la‘TMD
We also take

M.

vi—1 :=7(xj—1+,t)on [zj_1,z;] j=1,---,

Introduce step size (M + 1) x (M + 1) standard tridiagonal matrix

2 1 o --- 0 1 -1 0
1 4 1 0 -1 2 -1
J_ 0 1 4 0 0 K= 0o -1 2
4 1 0 0 2 -1
2 0 0 -1 1

1
then we get C = —hJ. For matrix D(t), we can also compute to obtain

Yo 70 0 0 0
Y% Yt+tn M 0 0
D— 1 0 -1 Y+ ’
h
0 0 0 o YM-2+FYM-1 —YM-1
0 0 0 e —YM-1 YM-1
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here we omit the parameter ¢. Notice, the function values at nodal are defined as the right limitation
of function so that we can treat the discontinuous coefficient v(x,t). Especially, if y(z,t) =79 # 1

1
for some positive constant, then D = E%K' It is easy to see that (4.2.27) has the form

67

<J+h2

hD)u(tl) = Ju(t;_y) + %u(tl)

with matrix J, hD independent of h, 7. Therefore the equation at each [ is solvable for % small
J

enough. From this simulation procedure for IIp and the construction of Viy.s)

,ap{y,’s,), we can finally

compute the indicator function.
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