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1. INTRODUCTION

It is important to measure the energy of jump discontinuities of a unit length gradient field
Ve in a bounded Lipschitz domain in R”.

Such problems arise in the modelling of smectic liquid crystals [SK], [AG1] or of the blistering
of thin films {0G]. The quantity measuring the energy of the jump discontinuities, the defect of

Vo, is
() = / Vet — Vo [PdH™ !
>
where 8 > 0; we call it a defect energy. Here ¥ is the set of jump discontinuities of V¢ and Ve

is the trace of V¢ of each side of ¥; H"~! is the n — 1 dimensional Hausdorff measure which is

the surface element when ¥ is smooth.
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There may be a lot of Lipschitz solutions of the eikonal equation
[Ve|=1 in © with ¢=0 on 09,
but the distance function
d = d(z,89) = inf{je — 3|; y € 69)

is the unique viscosity solution of the problem [CIL]. In other words the theory of viscosity
solutions selects a éoluﬁion of the eikonal equation. There is a fundamental question whether
the distance function minimizes J? among all nonnegt.ztive.solutions of the eikonal equation.

If the space dimension n equals one, J? just measures a constant multiple of the number of
jumps of V. There is no solution of the eikonal equation having no defect satisfying the zero
boundary condition. Thus, the distance function is a (unique) minimizer of J# since it has only
one jump of the derivative of ¢. However, for multidimensional case, the situation is different.

In this paper, we focus on the case 8 = 1 because of independent interest related to the total

variation of the Hessian
10)= [ IV%l.
o)

This integral is closely related to J!. Indeed, if ¢ is piecewise linear, more precisely, V3¢ = 0

(as a measure) outside T, then
I(p) = / [VZe| = / [V*e-v = Vo~ - p|dH™
> >

where v is the appfoximate normal of ¥ [G]. Since the tangential component of V¢ is approx-
imately continuous, |Ve* - v — Ve~ - v| = |Ve* ~ Vo~ | if [Vg| = 1. Thus, I(p) = J'(¢) for
piecewise linear . Our principal results are |

(i) the distance function is the unique minimizer of I(¢) among all nonnegative (Lipschitz)

solutions of the eikonal equation |V¢| = 1 in Q with ¢ = 0 on 9 provided that Q is

convex and n = 2. The values of minimum equals H"~!(3%).
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(ii) there is a simply connected nonconvex domain Q in R* such that the distance function

is not a minimizer of J! nor I.

This suggests that the selection mechanism of the ground state by I or J! is different from that
in the theory of viscosity solutions, in general.
To show (i) we first observe that

|Ap] = Ve

~ as measures if ¢ solves |V¢| = 1 and n = 2. This depends on the fact that V?¢ has rank one

which is easy to observe heuristically. Differentiating |[V¢| = 1 implies that one of eigenvalues of
V2¢ always equal zero. To carry out this idea we appeal to the theory of functions of bounded
variation [G]. Note that the singular part (w.r.t. the Lebesgue measure) of V¢ always has rank

one [Al], [AG2]. Another key observation is

[18¢> [ —ap=nm1(00)
Y] 9]

if |[Vo| = 1, ¢ > 0 in Q with ¢ = 0. The last equality formally follows from integration by
parts and the fact that V| agrees with inward normal derivative of ¢ on 9. In section 2 we
state these observations in a rigorous way allowing that V3¢ is a measure. If § is convex, the

distance function d is concave in Q so that —Ad > 0 in Q2 (in the distribution senese). Thus

/'|Ad|=/-—Ad=H"“(8§2)
Y] L]

so that d minimizes I as well as [, |A¢p|. It turns out that d is a unique minimizer among all ¢,

Vel =1, ¢ > 0in Q with ¢ = 0 on 9Q. The inequality

/IAsol Z/—Aw
[ Q

is not sharp unless Q is convex. In other words the minimum of I is strictly greater than
H"*~1(99) (Theorem 2.5.) The proof of (ii) depends on an explicit construction of the domain

Q.

As a corollary of (i) we get: if d is piecewise linear, m_ore'precisely, V3d = 0 outside the
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defect as a measure, then d also minimizes J' (among all nonnegative solutions of the eikonal
equations) provided that the domain is convex. Note that such d exist if and only if the domain
in a convex polygon as shown in Remark in §2.1.

Our counterexamples are interesting for the study of minimizers of singular perturbed varia-

tional problem

Ee)= [ W(Te)+e [1v%el, W)= -1k, o>0

in a plane domain £ with ¢ = 0 on 6. Since the Eulef-Lagrange equation is fourth order, we
are entitled to impose another boundary condition. The natural choice seems to be Ju/0v = — 1,
where v is the unit outward normal of Q. We divide E. by ¢ so that we hope that the energy
has a nonzero limit as € — 0.

Formal analysis for o = 2 done by [AG1], [0G] suggests that this problem has Gamma-limit
=2 [ (9t v Ve [ 1= @4 T, = (Ve b= (1),
b -b

where (V). denotes the tangential component of Vet (or V™). Since [Vi| = 1, we see
J is a positive constant times J°+1. This J (or J°*1) is to be minimized subject to the same
boundary condition as for E., and the interior condition [V¢| = 1 a.e. in .

It is fempting to think that the minimizer ¢, of E. tends to
wo(2) = d(z,0%0).

as € — 0. Similarly, it is tempting to think that this function might by a mininizer of J (or
Jo*1). These conjectures are more or less explicit in [OG] (cf. [AG1] for o = 2).

An extended version of our examples (Theorem 3.5) says that the second conjecture is false
for some nonconvex domain at least for o < By —1 with some §; > 1 close to one. Unfortunately
in our examples 3, is less than 3 so they do not solve the original conjecture for o = 2. However,
they are important because they show some possible pitfalls. In particular, they show that

if these conjectures are true for ¢ = 2, then the reasons must be subtle since other equally
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reasonable-sounding statements are false.

The limiting process of E, as ¢ — 0 is not at all clear compared with the case when Ve isa
scalar function. Such a convefgence problem is studied in [KM1], [KM2] for V¢ when W has
isolated equal minimums.

The authors are grateful to Professor Robert Kohn for his interest and valuable comments on
this paper. Much of this work was done while the second author visited the J apan-Ameﬁcan
Mathematics Institute of the Johns Hopkins University. It hospitality is gratefully acknowledged,
as is support from Japan Society for the Promotion of Science. This work is partly supported

by THE SUHARA MEMORIAL FOUNDATION and YAMADA SCIENCE FOUNDATION.

2. ESTIMATE OF TOTAL VARIATIONS OF GRADIENT FIELD OF LENGTH ONE

We are concerned with total variation of V2% in a bounded two dimensional domain § when
V4| =1, ¢ > 0 on Q and % = 0 on the boundary 92. Our principal result in this section is
that the minimum of the total variation is attained (uniquely) at the distance function provided

that  is convex.

2.1. Notation. Let Qbea bbunded domain in R® with Lipschitz boundary 9. For a Lebesgue
integrable function ¢, i.e. ¢ € LY(Q), let Vo = (8;¢)%, and V¢ = (8;0;¢) (1 < 4,j < n)a
distributional gradient and Hessian of ¢, respectively. Let X be the space of ¢ € L'(Q) such
that ;0 € L'(R) (1 < i < n) and §;9;¢ is a finite Radon measure on Q (1 < 4,7 < n). In other
words, ;¢ is a funcﬁon of (essentially) bounded variation, i.e. 8;¢p € BV({). Let us recall
fundamental decomposition of V¢ for ¢ € X; see e.g. [AGQ]. Let Q, be the largest subset ixbl‘
) such that V2 is absolutely continuous in Qp and let ¥ be the set of jump discontinuities of

V. Then

V2(P = V’“’(pl_Qo + V:'(p[(Q —H-D)+ v (V<P+ -V~ )Hn—t [E-
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Here for a set Z and measure p we associate a new measure p|Z by
(ulZ)(B)=u(ZnB),BCQ

The vector field v is the approximate unit normal of £ and V¥ is the trace of Vi on I in the
direction of +v; H* denotes the k-dimensional Hausdorff nieasure. The first term (V¢)® =
V2| Qy is often called the absolutely continuous part of V3p. We always identify (VZ¢p)®® with
corresponding locally Lebesgue integrable function in Q. The second term is often called the
mild part and it lies on a non rectifiable set @ — Qy — T of Lebesgue measure zero. The sum of
last two terms is called fche singular part of V2p. Let Y be the space of ¢ € X such that V¢

has no absolute continuous part and no mild part. In other words
Y ={peX;Vip=v@ Vet — Ve )K" !|Z}.

Let A be the space of ¢ € X such that [Vyp| =1 a.e. in Q with ¢ = 0 on 2. We needs three

subclasses of A
Ar={p€Ap>0inQ}, A'=ANnY, Al=A4,nA4A"

We consider two integrals for ¢ € X which measure jumps of Ve.

1p) = [ 19%l,

JP(p) = /; Vot — Vo~ |PdH™ ! for [ > 0.

Since VZp is a finite Radon measure, in the representation

/QIV2¢I=8up{ > /(10""8;3&;210.-;'!"'3 1}
£

1<i,j<n

the test function 6;; is allowed to be 6;; € C'(R) not necessarily compactly supported.

Remark. The set A% and even A° may be empty. In fact, A} (and A°) is empty if 9Q has a

‘curved’ part. Conversely, AY is nonempty if Q is a polygon. The proof is by the induction of
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numbers of verteces of . If Q is a triangle, the distance function d is certainly piecewise linear.

If Q is a polygon of m (> 3) verteces, we set

p(z,0Q) = min{d(z, L(S)); L(S) is a straight line containing an edge S of 90}
d, = inf{p(z, ON); there is at least three edges 5y, 52,93 of IN

such that p(z,89Q) = d(z, L(S:)),t = 1,2,3 and z € Q}.
It is easy to see that p is piecewise linear in
Q. ={z € Q,d(z) < ds}.

By the choice of d, the set K = Q — §, is a closed polygon with at most m — 1 verteces; it may
have no interior so that K is a set of points or segments. Let ' be the interior of K so that it
is a polygon with at most m — 1 verteces. By the induction the function p(z,8Q’) is piecewise

linear in €. Since

e

! p(2,00) = p(z,dQ) +d, in @,

and p = p(z,dN) is piecewise linear in Q,, we see p is piecewise linear in 2. This shows that
'p € AY so that AY is nonempty.

Note that p is the distance function d if and only if  is a convex polygon. If Q is nonconvex,
Vd ‘is not piecewise linear, so d € A} if and only if Q is a convex polygon.

We conclude this remark by poihting out that there is a domain £ whose boundary is piecewise

linear with infinite verteces such that p € AS. For example if we consider

Q= {(z,y)]z] < 1,1 >y > h(z)}

|2 — g

h(z)=4¢ ~
' 0 <0

=2
IN
'l‘...
(22N
-
—
}\)

1 .
¢ <

then p € A}. See figure 1.
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2.2. Comparison Lemma of Hessian and Laplacian measure. Assume t)mt n = 2. Then
foro e A,

|Ap| = |V3¢| (as measures).

This is formally true since V¢ is rank one. Indeed, differentiating [Vi|* = 1 yields

> (8:8;)05¢0 = 0.
i=1

We shall justify this observation for general Hessian measure Vip of ¢ € A. We say that for

¢ € X the rank of matrix of the Radon-Nikodym derivative
F(z) = lim V*¢(B.(2))/IV*¢|(B:(2))

is the rank of V2¢p, where B,(z) denotes the closed ball of radius r centered at 2 € Q. The rank
of Vi is defined for |[V2¢|-almost every point z of Q. Since V3¢ is absolutely continuous with

respect to |V2¢|,
1861(2) = [ Itrace Fld, [V%l(2) = [ |Fidn

with u = |V?p|, where |F| is the Hilbert-Schmidt norm of F, i.e., |F|* = ;| F;|°. If F is rank
1, then

ltrace F| = |F|
so that |A¢| = |V2p|. Lemma 2.2 rigorously follows from the following two lemmas.

Lemma [Af]. If ¢ € X, then the rank of the singular part of V¢ (i.e. Vip—(V3¢)?) is one.

This is clear if ¢ € Y because of representation of VZp. Such property was proved for an
important subset of the singular part by the authors [AG2] and conjectured there for all singular

part. This difficult problem was solved by Alberti [Al]. We do not need to assume |Vep| = 1.

Lemma. If ¢ € A, then rank of the absolutely continuous part (V) is less than or equal to

n— 1.
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Proof. For ¢ € X and j, 1 < j < n there is a representative of u = V¢ (L" — a.e.) so that the

pointwise derivative u/0z; exists L"-a.e. and
Ou ) ab . ) .
L) = (0,V0) @) R (L' —ae) (1<5<n)
J

where L" is the Lebesgues measure; see [AG3]. Note that the choice of u may depend on j.
Differentiating |V¢|? = 1 in the j-th direction yields

=23 20 = 23 (0,20 (o)

= 2.zn:(8j(6;<p)(z))“b(8;<,9)(m) for L"-a.e. z € Qp,

=1

where u = (u;),. Since |[V¢| # 0 for a.e. z, this implies that (V@) has a kernel for a.e. z

so that rank of (V2@)® is less than or equal ton— 1. O

2.3. A key lemma. For ¢ € X assume that |Vo| =1 in Q (L™ — a.e.) and ¢ > 0 in Q with

@=00n09Q, ie, o€ AL. Then

(~2¢)(@) = [ -0 211 (59).

If p(z) = dist(z, ) near 02, then the equality holds.
This is easy if ¢ is regular so that ¢ is a distance function d(z,08) near 02. Indeed, integrating

by parts yields

/ (~AQ)dL” = — / 9% gpn-1,
o) d

an ov

where v is the unit outward normal of 9. Since ¢ = 0 on 90 and |A¢| = 1 so that v =

~V/|V|, the derivative —0¢/0v = 1. Thus, the equality
/(——Acp)dﬁ" = H*1(09)
a
is proved.

Proof. 1. For ¢ € X set

Eo={2 € Q0(z) > a},a>0.
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Since ¢ > 0 near 9, U,y Ea = @ and E, is decreasing in a. Since ¢ is continuous, F, is

closed for small & > 0. Since Aw is a finite Radon measure in §2, we obtain

[op=tn [ o0
fy) alld E.
In particular ,
1 &
~a¢) =lip - [ da [ (-00)
/ﬂ( p)=lim= | da | (=50)
2. We shall prove the identity
/ da/ (-Ap) = LM(Q —- E,) forsmall ¢ > 0. (2.1)
0 Ea ‘
Let ¢ € C?(2) with bounded gradient in Q. Since ¢ is Lipschitz near 99, the co-area formula
[G, S] yields
/ V- Vedl® =/ (w, oL |)d 1 with Ly = {z € Qe(z) = a}. (2.2)
Q-E.
Since ¢ is differentiable and |Vgo(a:)| = 1 for L"-a.e.  (near IN), by Fubini’s theorem, for small

(C‘-)a.e. a >0,

[Vo(z0)] =1 for H" '-a.e. 2o of L.
For such @ > 0 we may assume that the level set L, is countably n — 1 rectifiable so that at 2,
the approximate c.>u,ter unit normal v,(2) = —Vgé(a:o). We may also assume that E, is a set of
finite parameter so that the gradient Vxg, of the characteristic function xe, of E, is a finite

Radon measure and that

. VXEa = —l/aH"—ll.La-

For these properties the reader is referred to the monographs [G, S]. For the above selected

a > 0 we observe that

/ (Vo- W g = = [V Vxe, = [ (~Ap)dL”

by integration by parts. This together with (2.2) yields

/Q_E, VY- Vedl” = /0 da /E (=Ag)dLr. | (2.3)
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We would like to take ¥ = . Since ¢ is not C'?, we need to approximate. Mollifying @ by a

standard approximation as in [G, 1.17] we see that there is a sequence ¥; € C*() such that
lim / |V — VldL™ = 0, supsup|Vy;| < oo
j=c Jo i21
tim [ 18w51dc” = [ |agl
i—o Jo Q
since |V¢| is bounded. In particular, Vi; — Vo for L"-a.e. z by taking a subsequence if

necessary. Moreover,
|AY;| — |Dg|, Ap; — A weakly as measures.

We shall prove that [, (—A¢p) is approximated by [ (—Aw;)dL". Since —A¢ is a nonnegative

finite Radon mesure and since L,, and L,, is disjoint for o, # a2, we see
(~2¢)(Lar) = 0
except at most countably many values of &’ > 0. For the above selected o
H*"Y(OFEs — La) =0

since E, is a set of finite perimeter [G].

Since —A¢ is absolutely continuous with respect to H"~! [G,S] we see
(=Q@)(0FE, — Lo) = 0.
Since E, is closed so that OF, contains L,, we may assume
(~80)0E) = [, o =0

for the above selected a by excluding the values of o’ with (—Ap)(La) > 0. We now apply [G,

Appendix Al] to get

J=oo

tim [ (~au)dc” = [ (-a0)

Since supg |V4;]| is bounded and V; — V4 a.e., we now obtain

j=—eo Ja_E,

lim [ (Vy, - Vo)L = / IVoPdL” = LM(Q - E,).
Q-E,
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Since

sup | A
En

a,)

is finite, the Lebesgue convergence theorem yields

tim [“do [ (~aupaen = [ dafim [ (-awacr
0 E. ) 0 J—=® JE,.

j=oo

=/0£ da Ea(—A(p).

Plugging ¢ = 1; in (2.3) and letting j — co now yields (2.1).

3. Since |V¢| = 1 in , the set

Q- E. ={z€0<p(z)< ¢}
includes

F. = {z € Q;dist(z,00) < ¢}.
Since 0 is Lipschitz, we see
lim LM(F.) /e = H*1(0Q).
By step 1 and 2,
/n (—Ap) =lim £2(2 = E)/s > lim £"(F)/ = H*1(59).

The equality hold”s when ¢(z) = d(2,00) near 9Q. O

2.4. Theorem on total variation of the Laplacian. Let Q be a bounded domain in R® with

Lipschitz boundary.
(i) folAgl > HP=1(09) for allp € Ay
(ii) If Q is convex, the minimum of [ |D¢| over Ay is attained at py(z) = dist(z,0Q) and

the minimal value is H"~(0Q).

Proof. (i) This is a direct consequence of Lemma 2.3.

(ii) If © is convex, then ¢y is a concave function in Q. This is easy; similar result is proved in
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[C, p.53 Lemma). In particular, —A¢ = |A¢| as a measure. Thus, Lemma 2.3 yields

- [ Ape=H"00)
ol
80 (pg is a minimizer of [ over A.. O

2.5. Theorem on total variation of the Hessian. Let Q be a bounded domain in R* with
Lipschitz boundary.
() I(p) = fo|V?p|dz > Hﬂ—l(aQ)for all o € Ay withn <2 or for all o € AY for arbitrary '
n.
(it) If Q is convez, the minimum of I over Ay (withn < 2) or over AS is uniquely attained

at (po(z) = dist(z,00) and
I(o) = H"~1(09).
(iii) If Q is not convez, I(¢) > H* 1 (9Q) for all p € Ay, (withn < 2) or for all p € AS.
Proof. (i) By Lemma 2.2 we see
[Ap| = |V%p| forpe A withn=2;

this equality is also true for ¢ € A = ANY or for ¢ € A with n = 1, since V3¢ is rank one,
Theorem 2.4 (i) now yields (i).
(ii) Since |A¢| = |V2¢p|, this follows from Theorem 2.4 (ii) except the uniqueness of the mini-

mizer. Suppose that I(¢) = H"~1(dQ), then

[ 173l = [1a¢)= [ -se.
(2] (Y] 0

In particular —A¢p > 0 as a measure. Since V3¢ is rank 1, this means that ¢ is concave. A
concave function ¢ in A, is a viscosity solution of |V¢| = 1; see e.g. [L] so it is the distance
function ¢y.

(iii) If there is ¢ such that I(¢) = H"~1(9N), we see ¢ is a concave distance function ¢, as in
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(ii). However, such a distance function ¢ is concave in Q if and only if © is convex. Thus, the

strict inequality holds for a nonconvex domain. O

Remark. The uniqueness of minimizers of Theorem 2.4 (ii) would be true if ¢ € A, satisfying
—Ap > 0 would be a viscosity solutions of [V¢| = 1 (without assuming that ¢ is concave.)

However, we do not attempt to discuss this problem here.

3. COUNTEREXAMPLE

We shall construct a simply connected but nonconvex domain € in R? such that the distance
ply

function does not minimize neither J! nor I among the classes A, A, A%, A defined in § 2.2.

3.1. Choice of Domain. For a positive constant £ let Dg’ be a square of the form
D= {(z,y);ly] < £,0 < z < 2¢}.
Let D be a unit square of the form
D = {(z,y);ly| <1/2,-1 < 2 < 0}.

Let €, be the interior of the union of D and D,, where the bar denotes the closure. We shall

always assume that £ > 1/2. Clearly, Q is a bounded simply connected but nonconvex domain.

3.2. Defects. We consider three solutions of the eikonal equation
IVol=1 inQ, withe=0 on dQ,
of the form:
wo(z) = dist(x,aﬂc}
—dist(z,dD) forz € D

ei(z) =
dist(z,0D,) for 2 € D,

v
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dist(z,0D) forz € D
pa(z) =
dist(z,8D,) for z € D,.

The set of jump discontinuities of V¢, consists of
Li:y=£—-2,0<2 <24, Ly:y=2—-£0<2 <2
1 1
Ls=y=—-2-—a:,—1<:c<0, L4:y=§+$,—1<a:<0.
The magnitude of jumps
j= |Vt = Ve|

on each defects are /2. For later convenience we decompose defects of ¢;:

2f = L;N Ry, YT =LNR
St = Ly0 Ry, ST =LzNR,
TF =L, NR;, X, =L.NR3
S+ = LN Ry, Sy =LaN Ry
33 = LyNR;, s =LiNRs

with
Ri={-1<2<-1/2}, Ra={-1/2<2<0}
Ry={0<a2<£-1/2}, Ry={{—-1/2<2< ¥}
Ry = {{ <2 < 24}.

The defect of ¢, consists of
of i=1,2,3 and
= {y:O}ﬂRg, Iy ={y=0}n(R3U Ry),

1.,
F*={w2+(y—5)'=(€—y)2,y>0}ﬂR4

15
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L
I"={’+(+35)’°=(¢+y)"y<0}nR.

see figure 2. The defect of @, consists of F (i = 1,2,3) SF (i =1,2) and

C={e=0,lyl <1/2}

with jump j=2on C.

3.3. Computation of defect energy. We shall estimate the difference J#(¢g) — J#(¢0,). By

symmetry with respect to y = 0 we observe that

3 2
TP (o) =2 I (0, BF) + Zﬂ(%s I;) + 2% (o, I'")

i=1 i=1 )

3 2
Jﬁ(%) :22*]'@(5@1,2?)4‘22Jp(§01,3?)
i=1

1=1
where

J?(p,B) = /EnBj”dH"“ with j = |Vt = Ve|.

Since jump j is the same both for ¢, and ¢, on T},

I (@0, TF) = (@1, BF) i=1,2,3.

Thus

T8 (o) = JP(01) = 3 T8(00, Ti) + 277 (00, T*) = 237 I (1, 57).

=1 i=1

Proposition. (i) JP(@o,Ty) = 2871,
(ii) Jim J?(00,T2) = [y~ Gagisaprs 2 52’ for B> 1.
For 8 < 1, llim JP(po,T3) = c0.
(iii) JP(o,[*t) — 20P-V/2 g5 £ — oo.

(iv) JP(1, SF) = 20-D02, i = 1,2,

Proof. (i) Clearly, j = 2 on I';. Since the length of T'; is 1/2, J# = 2°-1,

(ii) Since the level curve of ¢, intersecting (2,0) (0 < z < £) is the circle centered (0,1/2) for
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y > 0, the normal component of Vi equals

1 1
2(2? + 1/4)1/7

Thus

¢ dz ¢ dz 1 1
g = —_— > = 4 —)i-#0
J"(¢0,T2) /0 (22 + 1/4)8/2 = ,/0 (z+1/2) pB- 1(a, * 2) L

and letting £ — oo completes the proof.

(iii) Recall that I't is a set of points whose distance to (0,1/2) equals the distance to the line

y = £. The curve I'* is a parabola given by
(20— 1)y = —2% + £2 — 1/4.

The jump
1
Wy + )7

and the length element equals (y'(z)? + 1)/2dz. If p is the largest zero of y(z), i.e.

j(z) =2

p= (fz _ 1/4)1/2’

then

Peot= [ gm0+ 0

[4

Notice that

-2z

21{_1)2-{-1, £—1/2‘<m<£v

y'(z)?+1=(

—2 as £— o

-2/t
(= 1/4)17% + £

p—(E=1/2)= (€~ 1/4)7 —(E=1/2) = 3 +
—+% as. £ -— oo.

We thus conclude that

P 1-
J?(o,T) = / 2((y)? + 1) 7 dz — 2°20-8)/2. % =200-V/2 a5 £ — 0.
1 .

(iv) Since j = v/2 and the length of S7 equal 1/v/2, the result follows immediately. 0
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3.4. Proposition. Let  be the domain Q, defined in §3.1. Let oo be the distance function of

0 and let ¢, and @, be solutions of the eikonal equation defined in §3.2.

(i) llingo(Jp(goo) ~JP(py)) =00 for0< B < 1.
(i) Jim (J2(g0) = J(¢2)) = 00 for 0 < < 1.
(iii) lerglo(Jf”(goo) — JP(¢1)) > 0 for all g > 0.

(iv) lim (J2(po) — JP(2)) > 0 for all 0 < B < By with some By > 4/3.
Proof. Applying the previous Proposition to the formula J#(¢o) — J#(401) yields
T = lim (JP(po) = JP(y)) = 281 + Jim JP (0o, Ta) + 2 200-1)/2

— 9(206-1/2 4 o6-1)12)

=201 9.90-1/2 4 Jim J? (0, T2).
If B <1, then this formula yield (i). Note that
J?(@2) = JP(1) + JP(2,C) with C = DN D;.

“Since J?(@3,C) = 127, the proof of (ii) is now complete.

To show (iii) we may assume 3 > 1 and use the estimate

1
lim J? (o, Ty) > ——2°-1,
dim J%(¢o,Ta) 2 55

to get

T >2-207%(f(8) - 1)
with f(8) = 2(/"3)/25%. An elementary calculation shows that f takes the only minimum at
B = B, over all 8 > 0. The number S, is the solution of

1 1
—ﬁl_—l + §(log2),81 =0 sothat 8, > 1.



THE DISTANCE FUNCTION AND DEFECT ENERGY 19
Since log2 > 1/2, (81 — 1)B: £ 1/4 so that 8, — 1 < 1/2. Since §; > 1 we now obtain
1
f(B) 2 f(B1) = 207911 + 57
-
> 2711 4 2).
We thus conclude
I (o) > JP (1) +2-2¥-D2 1/,
It remains to prove (iv). We may assume 8 > 1. Notice that J?(¢s,C) = 27 to get
T> _@__2/3—1 —9.98-1){2 _ of

251

=9. 2(3—1)/2(( — 1)2(ﬁ—3)/'-’ -1).

L
g-1
The right hand side is positive if 3 < 4/3. O
3.5. Theorem. Assume that = Q,.

(i) (B < 1) For each M > 0, there is a constant £y = £y(B) such that if £ > £5(8) then

JP(@0) 2 JP(p2) + M 2 JP(1) + M.

Moreover, ¢, does not minimize neither I nor J# in A, A.
(ii) (B > 1) There is a constant £, = £,(B) such that ¢, does not minimize J? in A for

£> £,(B). Moreover, if 3 < 4/3 (or B < Bo), then @, does not minimize J? in A,.
Proof. (i) The first inequality follows from Proposition 3.4 (ii) and
I (@s) = JP (1) + 2°
for sufficiently large £. Since ¢ € A, C A, ¢ € A% and ¢, € A%, we now observe that
Hp0) 2 o) > I(ga) = '(g2) > L) = 7' ().

and
J?(0) > JP(p2) > JP(¢1) for B<1.

(ii) Since o € AL, ¢, € A% and ¢, € AY, Proposition 3.4 yields the desired conclusion. [J
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