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Finite free resolutions and 1-skeletons of
simplicial (d — 1)-spheres

Naoki Terai Takayuki Hibi

A simplicial complex A on the vertex set V is a collection of subsets of
V such that (i) {vt} € Aforeveryz € Vand (i) c € A, 7 Co = 1€ A.
The 1-skeleton A of A is a graph on V whose edges are all 2-element
subsets {z,y} of V with {z,y} € A. We say that a simplicial complex A is
a stmplicial (d—1)-sphere if the geometric realization of A is homeomorphic
to the (d — 1)-sphere.

The purpose of the present paper is to give a ring-theoretical short proof
of the following result, which was first proved by Barnette [1].

THEOREM. The 1-skeleton of a simplicial (d — 1)-sphere is d-connected.

Given a subset W of the vertex set V = {z,,z,,...,2,} of a simplicial
complex A, the restriction of A to W is the subcomplex Ay = {0 € A |
o C W} of A. Let H;(A;k) denote the i-th reduced simplicial homology
group of A with the coefficient field k. Note that H_;(A;k) = 0 if A # {0},

H_1({0}; k) = k, and H;({0}; k) = 0 for each 7 > 0.

Let A = k[a:l,:l,g, ,Z,] be the polynomial ring in v-variables over a
field k. Here, we 1dent1fy each z; € V with the indeterminate z; of A.
Define I to be the ideal of A which is generated by square-free monomials
TiTip e Tipy 1 <8 <4 < --- <4, <o, with {z;, 24, ,2:.} € A We
say that the quotient algebra k[A] := A/I is the Stanley-Reisner ring
of A over k. In what follows, we consider A to be the graded algebra
A = @,5¢ A, with the standard grading, i.e., each degz; = 1, and may
regard k[{A] = @,50(k[A]). as a graded module over A with the quotient
grading. Let Z denote the set of integers. We write A(j), j € Z, for the
graded module A(j) = @,cz[A(j)]n over A with [A(J)], == Ansj-



We study a graded minimal free resolution

0 — P A(=5)" £ o 2 (P A(—§)P 5 A S KAl — 0
Jj€Z ' j€Z ‘

of k[{A] over A. Here h = hd4(k[A]) is the homological dimension of k[A]
over A. It is known [3, Theorem (5.1)] that

,3,’1. = Z dimkﬂ-_,-_l(Aw; k), (1)

wcv, §(W)=j

where §(W) is the cardinality of a finite set W.

Now, suppose that A is a simplicial (d — 1)-sphere on the vertex set V
with §(V) = v. Then k[A] is Cohen-Macaulay, i.e., hd4(k[A]) = v — d.
Moreover, since k[A] is Gorenstein, 84, = 0if j # v and S, = 1. In partic-
ular, Bv-a),_4_,, = 0. Hence, it follows from Eq. (1) that Ho(Aw; k) = 0
for every subset W of V with (W) = v — (d —1). Thus | Ay_w | is con-
nected for every subset W of V with §(W) = d — 1. Hence, the 1-skeleton
AW of A is d-connected.

The above ring-theoretical technique enables us to show that the 1-
skeleton of a level complex A ([3], [6]) of dimension d — 1 with v vertices is
d-connected if f({c € A | (o) =d}) £ v—-d+1.

We refer the reader to [2], [4], [5] and (7] for the detailed information
about algebra and combinatorics on Stanley~Reisner rings.
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