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Computation of Betti numbers of
monomial ideals associated with stacked
polytopes

Naoki Terai Takayuki Hibi

. Abstract

Let P(v,d) be a stacked d-polytope with v vertices, A(P(v,d))
the boundary complex of P(v,d), and k[A(P(v,d))] = A/Ia(p(v,q))
the Stanley—Reisner ring of A(P(v,d)) over a field k. We com-
pute the Betti numbers which appear in a minimal free resolution
of k[A(P(v,d))] over A, and show that every Betti number depends
only on v and d and is independent of the base field k.

Introduction

Let A be a simplicial complex on the vertex set V = {1, z2,...,2,}.
Thus A is a collection of subsets of V' such that (i) {z;} € A for every
1<:<wvand (i) 0 €A, 7 Co= 7 €A. Each element o of A is called
a face of A. Set d = max{f(c);o € A} and define the dimension of A to
be dim A = d — 1. Here §(o) is the cardinality of a finite set 0. A maximal
face of A is also called a facet of A.

Let A = k[z1,2,,...,2,] denote the polynomial ring in v-variables over
a field k with the standard grading, i.e., each degz; = 1. We identify each
z; € V with the indeterminate z; of A. Define I to be the ideal of A which
is generated by square-free monomials z;,z;, -2, 1 <4 < iy < -+ < 1, £
v, with {z;,2;,,---,2;,} € A. The quotient algebra k[A] := A/I, is called
the Stanley-Reisner ring of A over k. We may regard k[A] = @,5q(k[A]).
as a graded module over A with the quotient grading. We refer the reader
to [Bru-Her], [H], [Hoc], [Sta] for the detailed information about Stanley—
Reisner rings.

We are interested in a minimal free resolution of k[A] over A. Let
A(7), J € Z, denote the graded module A(j) = @cz[A(j)]n over A with
[A(j)]n := Ayyj. Here Z is the set of integers.
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A graded finite free resolution of k[A] over A is an exact sequence

0— PA(—j)™ . B DA E A B kAl — 0 (1)
J€Z j€2

of graded modules over A, where each @B;ez A(— j)ﬂ ' is a graded free module
of rank Y ;ez Bi; (< o0), and where every ¢; is degree-preserving. The
homological dimension hd 4(k[A]) of k[A] over A is the minimal k possible
in (1). It is known (see, e.g., [Bru-Her, Theorem (1.3.3), Corollary (2.2.14)))
that v — d < hda(k[A]) < v. A finite free resolution (1) is called minimal if
each f;; is smallest possible. A minimal free resolution of k[A] over A exists
and is essentially unique. See, e.g., [Bru-Her, p. 35]. When a finite free
resolution (1) is minimal with h = hd4(k[A]), we say that 8;; = B (k[A])
is the ¢;-th Betti number of k[A] over A. Let 8; = 82 (k[A]) denote the rank
of the i-th free module which appears in a minimal free resolution of k[A]
over A; viz, B; = ¥ ez Bi;.

In the paper [T-H], we give a combinatorial formula to compute the
Betti numbers of the Stanley—Reisner ring of the boundary complex of the
cyclic d-polytope C(v, d) with v vertices and show that these Betti numbers
do not depend on the base field. The purpose of the present paper is to
study the same problem for a stacked d-polytope P(v,d) with v vertices. In
the combinatorial theory of convex polytopes, the cyclic polytope appears
in the upper bound theorem and the stacked polytope appears in the lower
bound theorem. See, e.g., [Bay-Lee] for background information about
cyclic polytopes and stacked polytopes.

§1. Stacked polytopes and Betti numbers

We refer the reader to, e.g., [Brg] for foundations on convex polytopes.
Starting with a d-simplex, one can add new vertices by building shallow
pyramids over facets to obtain a simplicial convex d-polytope with v ver-
tices, called a stacked polytope. Recall that the boundary complex A(P)
of a simplicial d-polytope P C R¥ with the vertex set V is the simplicial
complex on V of dimension d —1 whose faces are those subsets o of V such
that the convex hull of ¢ in RV is a face of P.

Our main result in this paper is to present a combinatorial formula for
the computation of the Betti numbers of the Stanley-Reisner ring associated
with the boundary complex of a stacked d-polytope P(v,d) with v vertices.

(1.1) THEOREM. Fizv > d > 3. Let P(v,d) be a stacked d-polytope
with v vertices and A(P(v,d)) its boundary complex. Then, a minimal free
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resolution of the Stanley—Rezoner ring k[A(P(v,d))] = A/Iap(w,ay over A
is of the form

where

b,-.—.(v_d_l)(”“‘.l_l) ——fz(”)

foreachl <i:<v—-d-1.

When d = 2, A(P(v,2)) is the cycle C, with v vertices. A minimal free
resolution of k[C,] = A/Ic, over A is a pure resolution, which is discussed
in, e.g., [B-H;] and [B-H,).

(1.2) COROLLARY. Ewvery Betti number of k[A(P(v,d))] = A/Iap(.ay
over A is independent of the base field k and of the combinatorial type of
P(v,d).

§2. Proof of Theorem (1.1)

(2.1) Given a subset W of the vertex set V of a simplicial complex A,
the subcomplex Ay is defined to be Ay = {0 € A | o C W}. In particular,
Av = A and Ay = {0}. Let H;(A;k) denote the i-th reduced simplicial
homology group of A with the coefficient field k. Note that H_;(A,; k)y=0
if A# {0} and

0 (:20)

aoin={ §2%)

Suppose that a graded finite free resolution (1) of k[A] over A is min-
imal with A = hd4(k[A]). Then, Hochster’s formula [Hoc, Theorem (5.1)]

guarantees that

B, = > dimg Hjimi(Aw; k). (2)

WCv, {(W)=;

Thus, in particular,

BA(KIAD) = > dimy Hn(W) i-1(Aw; k).

wcv



(2.2) Let P = P(v,d) be a stacked d-polytope with the vertex set V,
§(V) = v, A = A(P) the boundary complex of P, and F a facet of P with
the vertex set X. Let P’ denote a stacked d-polytope with (v + 1)-vertices
which is obtained by building a shallow pyramid over F with a new vertex
a, and A’ the boundary complex of P’. Let V' = V |J{a} be the vertex set
of A’ and W a subset of V', We fix a base field k.

(2.2.1) LEMMA (a) Ifa € W and X ¢ W, then
A,”/ = AW.
) Ifad W, W £V and X C W, then

o y _  dimg Hi(Awi k) (1 #d-2)
dlmk HI(AW’ A) - { d]mk FI,'(Aw; k) +1 (2 =d-— 2)

(c) Ifa € W and XNW # 0, then, for each i, we have

~

Hi(Alys k) = Hi(Aw—(a; k).
(d) Ifae W, W # {a} and XO\W =0, then

aar oy dime Hi(Aw—qa; k) (1 #0)
dimy Hz(Aw, k) = { dimy, ﬁi(Aw-{a}; k) +1 (z = 0),

Proof. (a) In general, A’ = (A—{X})U{c C V' | o C X U{a},o # X}.
Hence, we have Aly = Ay if a ¢ W and X ¢ W.

(b) Let I' denote the set of all subsets of X and set 0T = I'—{X}. Then
A UT = Ay and A}y NI’ = OT. Since T is a simplicial (d — 1)-ball, T
is a simplicial (d — 2)-sphere and f{d_l(Aw; k) = 0, the required equalities
follow from the reduced Mayer-Vietoris exact sequence

e — ﬁ;.(al‘; k) — Hy(T; k) D Hi(Aiws k) — Hi(Aw;k)
— Hi_1(0T; k) — H (T3 k) D Hii (Al k) — Hiy(Aws k)

—_ e

(c) If X C W, then the geometric realization of Af, is homeomor-
phic to that of Ay _ay. Thus f{,-(A’W; k) = I:I,-(Aw_{a}; k) for each 7. On
the other hand, if XOW # X, then AW—{a}UA'Wn({a}ux) = A}y and
AW_{Q}ﬂA'Wn({a}u_\,) = Awnyx. Since both A'Wn({a}UX) and Awnx are
contractible, again the reduced Mayer—Vietoris exact sequence guarantees
the desired equalities.



(d) Since A}y is the disjoint union of Aw_¢.} and one point {a}, we
immediately have the required equalities. - Q. E.D.

(2.2.2) COROLLARY. Let A = A(P) denote the boundary complez of a
stacked d-polytope P = P(v,d) with the vertez set V, §(V) = v. Then, for
every non-empty subset W of V with W # V and for each i # 0,d — 2, we
have

~

H,'(Aw; k) = 0.

Proof. f v = d+ 1, i.e., P is a d-simplex, then Ay is contractible.
Hence, H;(Aw;k) = 0 for each i. We now work with the same situation
as in the above Lemma (2.2.1) and suppose that H;(Aw;k) = 0 for every
non-empty subset W of V with W # V and for each ¢ # 0,d — 2. Let W
be a non-empty subset of V! with W # V. If W = V' — {a}, then A},
is a simplicial (d — 1)-ball. Hence, H;(Aw;k) = 0 for each i. Moreover,
if W = {a}, then H;(Aw;k) = 0 for each 7. On the other hand, if W is
a non-empty subset of V' with W # V' such that W # V and W # {«a},
and if § # 0,d — 2, then dimy H;(Aly; k) = dimg Hi(Aw-(a}; k) by Lemma

(2.2.1). Hence, H;(Aw; k) = 0 as desired. Q. E. D.

(2.3) Fix d > 3, and keep the notation P, P/, A and A’ in (2.2). Let §;,
be the i;-th Betti number of k[A] and B, the i;-th Betti number of k[A/].

(2.3.1) LEMMA. For eacht > 1 we have

/ v—d
£i+] = IBi;+1 +:Bi—1,‘ + ( i ).

Proof. By virtue of Eq. (2) as well as Lemma (2.2.1), we have

131{;‘4.1 = Z dimk '[:‘IO(AIW; k) *
A Wevr, J(W)=i+1

= > dimy Ho(Aly; k) + > dimy Ho(Aly; k)

agWCV!, i(W)=i+1 aeWCV/, {(W)=i+1

. F - i 2 ~ d
_ Z dlm[; H()(AH’; k.) + Z dlmk HO(AW; k) + ('U z )

WV, §(W)=i+1 wcev, (W)=:
v—d
= ﬁi,’.{.l + ;Bi-—l,' + ( 2 )

as desired. ) Q. E.D.



(2.3.2) COROLLARY. Let A = A(P) denote the boundary complez of
a stacked d-polytope P = P(v,d), d > 3, with v vertices. Then, for each
1<i<v-—d-1, thei;y;-th Betti number of k[A] = A/I5 over A is

AL (kA = (v—-d— 1)(v—c{— 1) R (J)

? j=i 7

Proof. In this proof, we set (g) = ( for every integer @ > 0. Thanks to
Lemma (2.3.1), we have

£,0H) = (v—d-_--z)(”‘f”)_”gs(g)
some-a( )T () ()
= et () () (1)
(- )“?5,3(%(’)
i
)+ Z 0
- =0 (7))
as required. Q. E. D.

(2.4) We are now in the position to give a proof of Theorem (1.1).
- Since A = A(P(v,d)) is a simplicial (d — 1)-sphere with v vertices, we know
that the homological dimension of k[A] = A/Ia over A is hds(k[A]) =
v — d and that g (k[A]) B{,*__d_lu_ (k[A]) for every ¢ and j. By Corollary
(2.2.2), we have ﬂ J(K[A]) = 0 for each 1 <4 < v—d~1 and for each
JF i+ 1,i+d - 1. On the other hand, Corollary (2.3.2) enables us to
compute b; = ﬁl““( :[A]) = B d"lv—l—l(k[A]) foreach1 <i<v—-d-1.
Hence, we obtain a desired minimal free resolution of k[A] over A.



§3. Unimodality of Betti number sequences

Let 8;, 0 < 1 < v — d, denote the rank of the i-th free module which
appears in a minimal free resolution of k[A(P(v,d))] = A/Ia(p(v,q) over A.
Then, Bo = By-¢ =1 and B; = b; + by_q-; for each 1 <71 < v ~—d—1 with
the notation of Theorem (1.1). The sequence (8o, 81, -+, Bv_q) is called the
Betti number sequence of k[A(P(v,d))] over A. This sequence is symmetric,
ie., B; = By—g-; for every 0 <1 < v — d. We now show that the symmetric
sequence (8o, B1,° - -, By-a) is unimodal, ie., fo < B < -+ < Bw-a)/2)-

The following Lemma (3.1) follows from a simple combinatorial argu-
ment based on Lemma (2.3.1).

(3.1) LEMMA. (a) Ifv —d is even, then

byg > by—a_, > bv;d+1 > 2by 2 by_g_q.

2 2

(b) Ifv —d is odd, then

bu—;i—l > bv—;l—1+1 > bu—g—l_l > 2by 2 by_g_1.

(3.2) COROLLARY. Fizv >d > 3. Let P = P(v,d) a stacked d-polytope
with v vertices and A = A(P) its boundary complez. Then, the Betti number
sequence (fo, P1, -+, Bu—d) of k[A] = AJIa over A is unimodal.

Proof. By Lemma (3.1), we have
1<b;<b <0 & b[v%‘] 2 b[vz;d].H > 2byg1 2 1

Hence, the Betti number sequence (8o, B1,- -+, Bu-d) of k[A] = A/I over A
is unimodal. Q. E. D.
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