Computation of Betti
numbers of monomial ideals
~associated with cyclic polytopes

N. Terai and T. Hibi
Series #§277. January 1995



HOKKAIDO UNIVERSITY
PREPRINT SERIES IN MATHEMATICS

f 251 H. Kubo, K. Kubota, Asymptotic behaviors of radially symmetric solutions of Ou = |u|P for super critical
values p in odd space dimensions, 51 pages. 1994.

252 T.Mikami, Large Deviations and Central Limit Theorems for Eyraud-Farlie-Gumbel-Morgenstern Processes,
9 pages. 1994,

§ 263  T. Nishimori, Some remarks in a qualitative theory of similarity pseudogroups, 19 pages. 1994.

f 2564 T. Suwa, Residues of complex analytic foliations relative to singular invariant subvarieties, 15 pages. 1994.

f 265 T. Tsujishita, On Triple Mutual Information, 7 pages. 1994.

f 256  T. Tsujishita, Construction of Universal Modal World based on Hyperset Theory, 15 pages. 1994.

§ 257  A. Arai, Trace Formulas, a Golden-Thompson Inequality and Classical Limit in Boson Fock Space, 35 pages.
1994.

§ 258 Y-G. Chen, Y. Giga, T. Hitaka and M. Honma, A Stable Difference Scheme for Computing Motion of Level
Surfaces by the Mean Curvature, 18 pages. 1994. '

§ 259 K. Iwata, J. Schéfer, Markov property and cokernels of local operators, 7 pages. 1994.

f 260 T. Mikami, Copula fields and its applications, 14 pages. 1994.

§ 261 A, Inoue, An Abel-Tauber theorem for Fourier sine transforms, 6 pages. 1994.

f 262 N. Kawazumi, Homology of hyperelliptic mapping class groups for surfaces, 13 pages. 1994.

i 23 Y. Giga, M. E. Gurtin, A comparison theorem for crystalline evolution in the plane, 14 pages. 1994.

f 264 J. Wierzbicki, On Commutativity of Diagrams of Type II; Factors, 26 pages. 1994.

§ 265 N. Hayashi, T. Ozawa, Schrodinger Equations with nonlinearity of integral type, 12 pages. 1994.

f 266 T. Ozawa, On the resonance equations of long and short waves, 8 pages. 1994.

f 267 T. Mikami, A sufficient condition for the uniqueness of solutions to a class of integro-differential equations,
9 pages. 1994,

i 268 Y. Giga, Evolving curves with boundary conditions, 10 pages. 1994,

§ 269 A. Arai, Operator-theoretical analysis of represénta.tion of a supersymmetry algebra in Hilbert space, 12
pages. 1994. | ‘

§ 270  A. Arai, Gauge theory on a non-simply-connected domain and representations of canonical commutation
relations, 18 pages. 1994.

§ 271 8. Jimbo, Y. Morita and J. Zhai, Ginzburg landau equé.tion and stable steady state solutions in a non-trivial
domain, 17 pages. 1994.

#1272 8. Izumiya, A. Takiyama, A time-like surface in Minkowski 3-space which contains light-like lines, 7 pages.
1994. _

§ 273 K. Tsutaya, Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations, 11
pages. 1994, 7

{ 274  H. Kubo, On the critical decay and power for semilinear wa.v; equations in odd space dimensions, 22 pages.
1994,

# 275 N. Terai, T. Hibi, Alexander duality theorem and second Betti numbers of Stanley-Reisner rings, 2 pages.
1995. .

f 276  N. Terai, T. Hibi, Stanley-Reisner rings whose Betti numbers are independent of the base field, 12 pages.
1995.



Computation of Betti numbers of
monomial ideals associated with cyclic
polytopes

Naoki Terai Takayuki Hibi

Abstract

We give a combinatorial formula for the Betti numbers which ap-
pear in a minimal free resolution of the Stanley-Reisner ring k[A(P)]=
A/Ixpy of the boundary complex A(P) of an odd-dimensional cyclic
polytope P over a field k. A corollary to the formula is that the Betti
number sequence of k[A(P))] is unimodal and does not depend on the
base field k.

Introduction

Let A = k[zy,z2,...,,] denote the polynomial ring in v variables over
a field &, which will be considered to be the graded algebra A = @,5¢ Ax
over k with the standard grading, i.e., each degz; = 1. Let Z (resp. Q)
denote the set of integers (resp. rational numbers). We write A(5), j € Z,
for the graded module A(j) = @,¢z[A(j)]n over A with [A(f)]n 1= Ansj.
Let I be an ideal of A generated by homogeneous polynomials and R the
quotient algebra A/I. When R is regarded as a graded module over A with
the quotient grading, it has a graded finite free resolution

0__)@14(_]-);6;5 __‘fﬁ),.._i?_,@A(_j)ﬁlj LAER—0; (1)
JEZ JEZ

where each @cz A(=7)%, 1 <4 < h, is a graded free module of rank
0 # Xjez Bi; < oo, and where every ¢; is degree-preserving. Moreover, there
exists a unique such resolution which minimizes each f;;; such a resolution is
called minimal. If a finite free resolution (1) is minimal, then the homological
dimension hd4(R) of R over A is the non-negative integer h and B; =
BA(R) = > jez B, is called the i-th Betti number of R over A.
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When R is a Stanley-Reisner ring, i.e., R = A/I where I is generated
by square-free monomials, its Betti numbers can be studied not only from
an algebraic view point but also from topological and combinatorial one. It
is an interesting problem to determine all the Betti numbers of the Stanley-
Reisner rings for a good class of simplicial complexes.

In this paper, we give a combinatorial formula for the Betti numbers of
the Stanley-Reisner ring of the boundary complex of an odd-dimensional
cyclic polytope. Cyclic polytopes are important in combinatorics and have
many good properties. For an even-dimensional cyclic polytope, its associ-
ated Stanley-Reisner ring has a pure minimal free resolution. Thus its Betti
numbers can be easily computed from its Hilbert function. See [Sch]. On
the other hand, when a cyclic polytope has an odd dimension, its associated
Stanley-Reisner ring does not have a pure minimal free resolution. We need
much deeper analysis to calculate the Betti numbers.

§1. Simplicial complexes and Hochster’s formula

We first recall some notation on simplicial complexes and Hochster’s
topological formula on Betti numbers of Stanley-Reisner rings. We refer the
reader to, e.g., [Bru-Her], [H;], [Hoc] and [Sta] for the detailed 1nformat10n
about combinatorial and algebraic background.

(1.1) A simplicial complex A on the vertez set V = {z;,2,,...,2,} is
a collection of subsets of V such that (i) {2;} € A for every 1 <i < v and
(ii) o € A, 7 Co = 7 € A. Each element ¢ of A is called a face of A. Let
#(o) denote the cardinality of a finite set . We set d = max{}(c) | o € A}
and define the dimension of A to be dimA =d — 1.
"~ Given a subset W of V, the restriction of A to W is the subcomplex

Aw={0’€.ﬁ|0‘CI’V}

of A. In particular, Ay = A and Ap = {0}.
Let H;(A; k) denote the i-th reduced simplicial homology group of A with
the coefficient field k. Note that H_{(A; k) = 0 if A # {0} and

aorn={ (2%,

(1.2) Let A = k[z1,22,...,2,] be thevpolynomial ring in v variables over
a field k. Here, we identify each z; € V with the indeterminate z; of A.
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Define I5 to be the ideal of A which is generated by square-free monomials
T Tiyc 0 Tiyy 1 <4 < <+-- < i, < v, with {2!,'1,27,'2,--',27;,,} ¢ A.
We say that the quotient algebra k[A] := A/I, is the Stanley-Reisner ring
of A over k. In what follows, we consider A to be the graded algebra
A = @.>0 An with the standard grading, i.e., each degz; = 1, and may
regard k[A] = Brxo(k[A])n as a graded module over A with the quotient

grading.

(1.8) Let A = hd4(k[A]) denote the homological dimension of k[A] over

A and consider a graded minimal free resolution _

0 — P A(=j)" o B P A(-7) 25 A KA — 0

i€Z i€z
of k[A] over A. It is known that v —d < h < v.

We say that a simplicial complex A (or a Stanley-Reisner ring k[A]) is
Cohen-Macaulay (resp. Gorenstein) over a field k if h = v—d (resp. h = v—d
and fB,_q = 1). Hochster’s formula [Hoc, Theorem (5.1)] guarantees that

,Bij = Z din‘lkf{j_i_l(Aw; k)

WcV, §(W)=j

Thus, in particular,
BAK[A]D = > dimy Hyw)-i-1(Aw; k).
wcv '

Some combinatorial and algebraic applications of Hochster’s formula
have been studied. See, e.g., [Bac], [B~H;], [B-Hz], [Mun], [Hz], [Ha], [Hd),
and [T-H).

§2. Cyclic polytopes

In this section we briefly summarize the definition and basic facts of
cyclic polytopes according to [Bil-Lee] and [Brg]. See those references for
the detailed information.

(2.1) Let R denote the set of real numbers. For any subset M of the
d-dimensional Euclidean space R, there is a smallest convex set containing
M. We call this convex set the convexr hull of M and denote it by convM.
For d > 2 the moment curve in R? is the curve parametrized by

t e 2(t) = (¢,1%,--+,t%), teR.
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By a cyclic polytope C(v,d) , where v > d + 1 and d > 2, we mean a poly-
tope P of the form P = conv{z(t;),---,z(t,)}, where t,,---,t, are distinct
‘real numbers. It is well known that C(v,d) is a simplicial d-polytope with
the vertex set {z(t;),---,z(t,)}, and its face lattice is independent of the
particular values of t. Therefore its boundary complex is a simplicial com-
plex and has the same combinatorial structure for any choices of vertices.
We denote it by A(C(v,d)).

Let V = {x1,---,z,} be the vertex set of C(v,d). Let W be a proper
subset of V. A subset X of W of the form X = {z;,ziy1,--- ,Z;} is said to
be a contiguous subset of W if i > 1,j < v,ziy ¢ W, and z;4; ¢ W. The
set X is a left end-set of W if ¢ = 1 and z;41 ¢ W, and a right end-set of
Wif j =vand 2;_, ¢ W. We say that X is a component of W if X is a
contiguous subset or an end-set of W. A subset X of W is said to be even
(resp. odd) if the number of elements in X is even (resp. odd). The set W
~ can be written uniquely in the fom W = UX, U---U X, U Y2, where
Xi, 1 £ < n,is a contiguous subset of W, and Y;, ¢ = 1,2, is an end-set of
W or an empty set. We quote two facts which are necessary later. We may
abuse notation and call a subset W of V itself a face of C(v, d) if convW is
a face of C(v,d).

(2.2) LEMMA ([Brg, Corollary 13.7]). Let W be an m-element subset
of V, where m < d. Then W is an (m —1)-face of C(v,d) if and only if the
number of odd contiguous subsets of W is at most d — m.

(2.3) LEMMA ([Brg, Corollary 13.8]). Let m be an integer such that
1 <m < [4]. Then all m-element subsets of V are (m — 1)-faces of C(v, d).

§3. Betti numbers of Stanley—Reisner rings
associated with cyclic polytopes

In this section we compute the Betti numbers of a minimal free reso-
lution of the Stanley-Reisner ring k[A(C(v,d))] of the boundary complex
A(C(v, d)) of the cyclic polytope C(v,d).

We fix a field & .

If the dimension d is even, a minimal free resolution of k[A] is pure and
the Betti numbers can be easily computed from the Hilbert function of £[A].

(3.1) PROPOSITION ([Sch]). Let A be the boundary complez A(C (v, d))
of the cyclic polytope C(v,d), where d > 2 is even. Then a minimal free
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resolution of k[A] over A is of the form:

0— A(-—-‘U) —_— A(—v + g + 1)51/—4-—1 —_
ce — A(_g. _2)[32 —_— A(_g _ l)ﬁl —m A k[A] — 0,

4 4

where for 1 <i<v—-d-1,
ﬂi=<v—%—1)<%+i—1)+(v—%— )(v—-g—i—l).
shi JU g i1 )\

Our formula on f; in Proposition 3.1. is, in fact, a little bit different
from the one in [Sch]. But it is easy to show that they are coincident.

If the dimension d is odd, the minimal free resolution of k[A] is not pure,
and the situation is much more complicated.

Now we state the main theorem in this paper.

(3.2) THEOREM. Let A be the boundary complez A(C(v,d)) of the
cyclic polytope C(v,d), where d > 3 is odd. Then a minimal free resolution
of k[A] over A is of the form:

‘ d by—dw1 d b1
0———>A(—v)——->A(—v+[;>-]+2) @A(—v+[§]'+l) —
bo by_d-2 b1
- =) ea - ) T =2 ()
- [d by—d—1 '
G}A(— 3]—2) — A — k[A] — 0,
where for 1 <1 <v—-d-1,

= ()

Even if the geometric realization |A] of a simplicial complex A is a
sphere, a Betti number of the Stanley-Reisner ring k[{A] may depend on the
base field & in general. See [T-H, Example 3.3]. But as for the boundary
complexes of cyclic polytopes we have the following result:
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(3.3) COROLLARY. Let A be the boundary complez A(C(v,d)) of
the cyclic polytope C(v,d), where d > 2. Then all the Betti numbers of the
Stanley-Reisner ring k[A] are independent of the base field k.

We prepare several lemmas to prove the theorem. We put A = A(C(v, d))
and V = {1,2,...,v} for simplicity, and fix an odd integer d > 3.

(3.4) LEMMA. Ifv is odd and W = {1,3,5,---,v}, then
Hygy(Aw; k) = 0. |

Proof. We have f[lg_]_l(Aw; k) = fl[g](Av_w; k) by the Alexander du-
ality theorem (see, e.g.,[Sta, p76]). Since V-W = {2,4,...,v—1},if o is
a subset of V — W with §(c) > [£], then o does not belong to A by Lemma
2.2. Thus we have H[g](Av_w; k) =0. Q.E.D.

(3.5) LEMMA. Ifv is even and W = {1,3,5,---,v — 1}, then
FI[‘—;]-—I(A”/; k) = 0.

Proof. All the maximal faces of Ay are of the form {1} U o, where
1¢ 0,0 CW, #(c) = [£]. Thus Aw is a cone with apex {1}. Hence we
have H[g]_l(Aw; k) =0. Q.E.D.

(3.6) LEMMA. Ifv is even and W = {2,4,6,---,v}, then

' H[%]—I(AW; ]\T) =0.

_ Proof. As in Lemma 3.5, Aw is a cone with apex {v}. Hence we have
H[g]_l(APV; k) =0. Q.E.D.

(3.7) LEMMA. Ifv is odd and W = {2,4,6,---,v — 1}, then
.- o (Bl-1
Cllnlk H[g]_l(Aw, l») = [é] .
2
Proof. Let
0—=Cy—-»Cy_y—=--=C1—=Cog—C_1—0
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be the augmented chain ‘cornplex of the simplicial complex A over k. Then
we have C[%] = 0 and, for j < [§], all the (j+1)-subsets of W form a basis of

C; as a vector space by Lemmas 2.2 and 2.3. Thus we have H;(Aw;k) =0
for all j < [¢] — 1. Hence, the Euler-Poincaré formula (see, e.g.,[Bru-Her,
p223]) gives

dimy, f{[g]_I(AW; k)
-l )
Ch)

51/

(3.8) LEMMA. Let W be a non-empty proper subset of V with a unique
decomposition

)=t (g)

v
2
d
2

D e

Q.E.D.

W=¥Y,UX;UX,U...UX, UY;

for some n > 0, where X;,1 < i < n, is a contiguous subset and Y;,1 =1,2,
is an end-set or an empty set. Then

n—1 . . -
dimy Hyg)_,(Aw; k) = ([%‘])’ i “.0 and Y; =0,
? ‘ 0, otherwise,

where we define (”'1) =0if n—-1<[4].

(5

Proof. We prove the lemma by induction on the number v of vertices.
First let v = d + 1. Then C(v,d) is a d-simplex. Thus H[g]_l(AW;k) =0
for every subset W C V. Since n < [%51] = [£], the lemma holds.

Next let v > d + 1. Let

V-W=XuX;u.--UX,

be a unique decomposition, where X!;1 < ¢ < n + 1, is a component of
V — W. Suppose there exists X! (1 < i <n+1) with §(X}) > 2. Let j be
an element of X. Put V' =V — {j}. Note that W C V'." We consider the
simplicial complex A’ = A(C(v —1,d)) on the vertex set V’. Then we have
A}y = Aw by Lemma 2.2. Thus we have H;(Aw; k) = Hj(Aly; k). By the
induction hypothesis, we are done in this case.
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We put Xp := Y1, Xp41 1= Y2. Next suppose there exists X; (0 < ¢ <
n + 1) with §(X;) > 2. Let j be an element of X;. Put V' =V - {j}. We
consider the simplicial complex A’ := A(C(v — 1,d)) on the vertex set V'.
Then we have A}, _y = Av_w by Lemma 2.2. By Alexander duality, we
have

i{[-‘il—l(AW; k)= I:-’[i](Av-w; k) = ﬁ[g](A'v-w; k) = g[g]q(A'w; k).

Thus we are done in this case.

In the remaining case we may assume ]:I(X J=1lforl <i<n,f(X])=1
for1 £:<n+1and §(Y;) £1for¢=1,2. But in this case we have the
desired result by Lemmas 3.4, 3.5, 3.6, and 3.7. Q.E.D.

Proof of Theorem 3.2. Since k[A] is Gorenstein (see, e.g., [Bru-Her,
Corollary 5.5.6]), we have hd4k[A] = v — d. Let

0> Fpg— - = FK > F—-A->kA]l—-0

be a minimal free resolution of k[A] A/l over A. By Lemma 2.3, we
have min{a € Z;(Ia)a # 0} = [§] + 1. Then F; has a direct summand of
the form A( [¢] — 1) with &, > 0 and F;,1 < i < v —d — 1, may have
A(—[§] — i) W1th b; > 0 as a direct summand. We have F,,_d = A(-v)
and F;,1 < i < v—d—1, may have A(—v + [§] + (v — d — §))bo-d~i =
A(—[£4]—i—1)bv-¢-i as a direct summand by the self-duality of the minimal
free resolution (see, e.g., [Sta, p59]). By [B-Hz, Proposition 1.1] we can
easily check that other shiftings do not appear, since k[A] is Gorenstein.
Thus we obtain the desired form of the minimal free resolution of k[A].

We now determine the graded Betti numbers ;,1 <7 < v-—d—1. By
Hochster’s formula we have

=Big = > dim iy, (Aw; k).
Wwcv, y(w)=[g]+i

Let ¢;(n) denote the number of ([2] + 7)-subsets W of V such that W has
a unique decomposition W = X; U X,---U X,, where X;,1 < i < n,is
a contiguous subset of W. Then ¢;(n) is the number of positive integer
solutions of the system of the equations :

Tt T+t =[] 41
ntyt+t Yngr = 'U—'[] .

o= (H125) (=1 =5-1)

8
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By Lemma 3.8 and combinatorial identities in [Brg, Appendix 3] we have

w = o'y

n>1

- 2RI
- ST )

()0

Q.E.D.

§4. Unimodality of Betti number sequences

In this section we show unimodality of the Betti number sequence
(Bo, Bis- -+, By—a) of the Stanley-Reisner ring k[A(C(v, d))] associated with
the cyclic polytope C(v,d). Since this sequence is symmetric, i.e., 8; =
By—g-i for every 0 < i < v — d, the unimodality means fp < 5 < -+ <
Bito-ay/21-

(4.1) LEMMA. Suppose d is odd. With the same situation as in The-
orem (3.2) we have the following.
(1) If v —d is even, then

by < by <o < by_gysa > bu—dray2 > > by_aoy.
(2) Ifv—d is odd, then

by < by < <bpymg-1yjz > btz > > bumdor

Proof. This lemma is clear from the following observation.
b i(i +1+[4])
M ([l - 2[5 -2 - 1)

& v—-z[f] —2—i<i('—[%]+i+l)

(8] +1

>1
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Q.E.D.

(4.2) COROLLARY. Let A be the boundary complex A(C(v,d)) of
the cyclic polytope C(v,d). Then, the Betti number sequence
(Bo(K[A)), Bi(k[A)),---, Bu-a(k[A])) of the Stanley-Reisner ring k[A] over

A is untmodal.

Proof. Suppose d is odd. Then B; = b; + by—y—; for 1 <i <v-—d - 1.
Now the corollary is clear from the above lemma.

Suppoqe d is even. By Proposition 3.1 and Theorem 3.2, we will see
Bi(k[A]) = Bi(k[A(C(v+1,d +1))]) for 0 £ ¢ £ v —d. Thus we can reduce
this case to the odd-dimensional case. Q.E.D.
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