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Alexander duality theorem and second
Betti numbers of Stanley—Reisner rings

- Naoki Terai Takayuki Hibi

A simplicial complex A on the vertex set V = {z;,z,,...,2,} is a col-
lection of subsets of V' such that (i) {z;} € A for every 1 <1 < v and (ii)
c €A, 7Co=r71¢€A. Given a subset W of V, the restriction of A to
W is the subcomplex Aw = {0 € A| o C W} of A. Let H;(A; k) denote
the i-th reduced simplicial homology group of A with the coefficient field .
Note that A_;(A;k) = 0if A # {0}, H_,({0}; k) = k, and H;({0};k) =0
for each 7 > 0. We write | A | for the geometric realization of A.

Let A = k[z,zs,...,2,] be the polynomial ring in v-variables over a
field k. Here, we identify each z; € V with the indeterminate z; of A.
Define I to be the ideal of A which is generated by square-free monomials
Ty Ty 1 <4y < iy < oo- < 4 < v, with {&,,25,---,2,.} € AL
We say that the quotient algebra k[A]:= A/I, is the Stanley-Reisner ring
of A over k. In what follows, we consider A to be the graded algebra
A = @,59 A, with the standard grading, i.e., each degz; = 1, and may
regard k[A] = @,s0(k[A])n as a graded module over A with the quotient
grading. Let Z denote the set of integers. We write A(j), j € Z, for the
graded module A(j) = @,cz[A(j)]» over A with [A(j)]n := Ang;-

We study a graded minimal free resolution

0 — @ A(=)" 2o 22 (P A(—5)P 25 A2 K[A] — 0
JEZ JEZ

of k[A] over A. Here h is the homological dimension of k[A] over A and
Bi = BA(K[A]) := Tjez B, is the i-th Betti number of k[A] over A. It is
known [2, Theorem (5.1)] that

Bi; = S dimpHoimi(Aws k),

WCV, §(W)=j

where f(W) is the cardinality of a finite set W. Thus, in particular,

,BZA(HA]) = Z climk ﬁn(w);_i_l(Aw; k) (1)
wcv



LEMMA. Let A be a simplicial complez on the vertez set V with§(V) = v
and k a field. Then dimy H,_3(A; k) is independent of k.

Proof. Let 2V denote the set of all subsets of V. Thus, the geometric
realization X of the simplicial complex 2V — {V'} is the (v — 2)-sphere. We
may assume that V € A; in particular, | A | is a subspace of X. Note that
H,5(| A|;k) 2 H""3(] A |;k) since k is a field. Now, the Alexander duality
theorem of topology guarantees that H*=3(| A |;k) & Ho(X— | A |;k). On
the other hand, dimy Ho(X — | A |; k)+1 is equal to the number of connected
components of X— | A |. Thus, dimy H,_3(A; k) = dimg Ho(X~ | A |; k) is
independent of the base field & as required. Q. E.D.

THEOREM. The second Betti number of the Stanley—Reisner ring of a
stmplicial complex is independent of the base field. :

Proof. By virtue of Eq. (1), the second Betti number g (k[A]) of k[A]
over A is equal to Yy cy dimg Hyw)-3(Aw; k), which is independent of k
by the above Lemma. Q. E. D.

A ring-theoretical proof of the above Theorem is also given in [1].
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