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Abstract. We consider the Cauchy problem for the nonlinear Schrddinger equation
with interaction described by the integral of the intensity with respect to one direction
in two space dimensions. Concerning the problem with finite initial time, we prove
the global well-posedness in the largest space L2(IR?). Concerning the problem with
infinite initial time, we prove the existence of modified wave operators on a dense set
of small and sufficiently regular asymptotic states.



§1 Introduction. In this paper we study the nonlinear Schrédinger equation
) 1
(1.1) i0su + §Au = f(u)

where u is a complex valued function of time and space variables denoted respectively
by ¢t € R and (z,y) € R?, 8, = 8/08t, A is the Laplacian in space R?, and f(u) is the
nonlinear interaction given by

(12) (F)t2) =X ol (6e )i utt,2,0)

with A € R. The equation (1.1) with integral type nonlinearity (1.2) appears as a
model of the propagation of laser beams under the influence of a steady transverse
wind along the z-axis [1,3,18] and as a special case of the Davey-Stewartson system
where the velocity potential is independent of the y-variable [2,5-7,12,16].

In spite of a large amount of literature on the nonlinear Schrédinger equations,
there is only a few result on the equation (1.1) with a special nonlinearity (1.2) [1,3].
In [1] Baillon, Cazenave and Figueira proved the global existence and uniqueness of
solutions of the Cauchy problem for (1.1) in the usual Sobolev spaces H™(R?) with
m > 1. In [3] Cazenave proved that for any initial data ¢€ L?(R?) N L?(R,; L' (R.))
(1.1) has a unique global solution » € C(R; L*(R?)) N L}, .(R; L= (Ry; L*(R.))). A
somewhat remarkable fact is that a smoothing effect takes place only on the y-variable
when measured by the space integrability properties. In view of these two results,
we have the questions whether the Cauchy problem for (1.1) is solvable with initial
data ¢ € L?(R?) and, if that is the case, whether the corresponding solution u
exhibits a smoothing effect anisotropic in space directions. Our first goal is to find
the function space largest possible where the Cauchy problem for (1.1) is globally
well-posed for the data in L?(R?). Our second goal is to find the asymptotic form
of global solutions of (1.1). To our knowledge there is no result available so far
on that problem except the observation in [12] on a close relation between (1.2)
and the cubic nonlinearity A|u|?u in one space dimension as regards the range of
nonlinear interaction. In fact, it is shown in [12] that both nonlinear terms have the
same decay rate of order O(|t|™!) in the corresponding L? space as t — +oo0. This
implies in particular that the nonlinearity (1.2) falls beyond the scope of the usual
framework of scattering and requires a special treatment within the theory of long
range scattering [8,9,11,13,17,20]. The question thus arises what modification ensures
the right comparison dynamics for the large time behavior of solutions of (1.1).

In order to state our result precisely, we introduce some notations.

Notation. LEL] = LP(R;; LY(Ry)), LIL? = LI(Ry; LP(R;)) with norms

o0

lullzzzg = ([ luo Mm@, Wolzgaz = ([ 90y 200

-0

2



Up(t) = exp(i(t/2)A) denotes the free propagator. F denotes the Fourier transform
given by

(Fu)(€,n) = 4(E,n) = / / exp(~ikz ~ inyyulz, y)dedy.

The basic existence and uniqueness result is the following.

THEOREM 1. For any to € R and ¢ € L2L? (1.1) with (1.2) has a unique solu-
tion v € C(R;LEL2) N L}, (R; LL2) with u(to) = ¢. That solution u satisfies
u € L] (R; L"Lz) for any q and r with 0 < 2/q = 1/2 —1/r < 1/2. Moreover,
lu(@rzzz = ||¢||L3L3 for any t € R.

Remark 1. Since (¢,r) = (4, 00) is admissible, the solution of (1.1) with L? data still
exhibits a smoothing effect similar to that of [3] without the assumption ¢ € L3L1.

Remark 2. By Theorem 1, the nonlinear propagator U(t) : u(0) — u(t) is well-
defined, where u is the solution of the Cauchy problem for (1.1) with (1.2) with data
u(0) in LZL? prescribed at initial time ¢t = 0. The nonlinear propagator U(t) forms
a group under composition and is an isometry in Lsz. The map ¢ — U(-)¢ is
well-defined from L2L2 to C(R; L2L2) N L}, (R; LAL2).

Moreover, we have :

THEOREM 2. For any T > 0 and ¢ € L2L2 there exists € > 0 such that the map
¥ — U(-)¥ is Lipschitz from

B(¢ie)={p € LIL% 1Y — llzars < ¢}

to «
=] . T272 LTrT2
L*(~T,T; LAL2) N LY(~T, T; L, L2)

for any q and r with 0 <2/g=1/2-1/r < 1/2.

For the existence of modified wave operators for (1.1), following [8,9,17], we intro-
duce the following three modified free dynamics

(1.3) vif(t) = Up(t) exp(—iSx(t, —iV))¢u,

(1.4) vy (t) = Uo(t) M (~t) exp(—iS(t, —iV))éu,
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(1.5) vi(t) = exp(—iSe(t, t 12,17 y))Uo(t) b,

where ¢4 are the data prescribed at ¢ = +o00, V = (8;,8,),

(1.6) S(t,2,y) = £ / 162 ?(2', y)da' log]t],
—00

(1.7) M(t) = exp(i(z?® +y*)/(2t)),
and exp(—iS+(t,—iV)) are realized by the Fourier multipliers.
THEOREM 3. Let ¢, € F(H?(R?)) with ||$+[|L;QL3 sufficiently small. Then (1.1)

with (1.2) has a unique solution u € C(R; LL2) N L, (R; L L2) such that for any
6 with1/4<6<1andanyj=1,2,3

(18) sup ¢ [u(t) - v (1223 < .

loc

That solution u satisfles u € L{, (R; L} L2) and

(19) sup tollu - v;'”Lq(t,oo;L"Lg) <00
t>1 v

for any q,7,0 with0<2/q=1/2-1/r<1/2,1/4<8<1andj=1,2,3. A similar
result holds for negative times.

Remark 3. By Theorem 3, the modified wave operators Q4 : ¢4+ — u(0) are
well-defined on the set

X, ={¢ e B nF(H); |dllopr2 < p}-

The free propagator Up(t) leaves X, invariant and therefore Theorem 3 applies to
any state on the flow {Uy(t)¥}>,, provided that ¢ € X, with p small enough.

We now state the intertwining property of the modified wave operators Q..

THEOREM 4. Let p satisfy the smallness condition of Theorem 3. Then for any
P € X, and anyt € R

(1.10) U0t = QuUo(2).
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This paper is organized as follows. In section 2 we prepare some basic estimates of
the free propagator Uy(t) and the nonlinear term f(u) in the anisotropic space LyL2.
In section 3 we prove Theorems 1 and 2. In section 4 we prove Theorems 3 and 4.

We conclude this section by giving some additional notations freely used in this
paper. For any r with 1 < r < oo we denote by 7’ the exponent dual to r defined by
1/r+1/r' = 1. For any s € R we denote by H* = H*(R?) the usual Sobolev space of
order s. For any interval I C R, possibly unbounded, we denote by I the closure of
I'in RU{-o0,+00} equipped with the natural topology. For any interval I C R and
any Banach space we denote by C(I; X) the space of strongly continuous functions u
from I to X and by L9(I; X) (resp. L] (I;X) ) the space of measurable functions u

loc

from I to X such that ||u(-)||x € L(I) (resp. L} (I)). Different positive constants
might be denoted by the same letter C.

§2. Preliminary Estimates. In this section we collect some basic estimates of
the free propagator Uy(t) and the nonlinear term f(u) in the anisotropic space.

LEMMA 2.1. Uj satisfies the following estimates : (1) Let r and § satisfy 2 < r <
00,6 =1/2 —1/r. Then fort # 0

(2-1) | 1To)dllzgzz < @)~y L2

(2) For any (g,v) with0<2/q=1/2-1/r <1/2,

(2.2) 1T ()l Lar;zz22) < ClidllLara.

(3) For any (q1,71) and (g2,72) with 0 <2/g; =1/2—1/r; < 1/2,j =1,2, for any

interval I C R which may be unbounded, and for any s € I the operator G defined
by

t
(2.3) (Gyu)(t) = / Us(t = 7)u(r)dr
satisfles the estimate

(2.4) 1Gsull pas (15271 12y < C”u“L"Iz(I;L;I’Li)

where C is independent of I and s.

Proof. By the decomposition
Uo(t) = [1 ® exp(i(/2)0; )][exp(i(t/2)83) ® 1],
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unitarity in L? of exp(é(t/2)d2), the representation of exp(i(t/2)8?) by the integral
kernel (27it)~2/2 exp(i(y — y')?/(2t)), Minkowski’s integral inequality, and the Riesz-
Thorin interpolation theorem, we obtain

1Va(®)dllzgz2
= /_ Z( /_ : |(2mit) ~/? /_ : exp(i(y — ¥')?/(2t))p(z, ¥ )dy’ |2 dz)" /2 dy)H/"
* ‘/Z(/Z [(2rit) /% /_ : exp(i(y — ¥/)*/(20))$(z, y')dy/|"dy)*/ " dz)*/?
<[ ([ el i

< ntty ([ ([ 16te)da) et = o) Nolsg

-0 —00

This proves (2.1). Given (2.1), the rest of the lemma is proved in the standard way
as in [4,10,14,15,21] if we replace complex valued functions by L2 valued functions.

QED

LEMMA 2.2. Let 75,0 < j < 3, satisfy 1 <7; < o0 and 1/rg = 1/ry +1/r3 +1/73.
Then '

. 3
(2.5) I|¢1/ (Y2¥3)(z',y)dz'| Lrora < 11 I13ll 275 ga -

Proof. The result follows from the Schwarz and Holder inequalities in = and y
variables, respectively, since

3

ll¢1/_ (¥293)(2', y)da"|| 22 < |I¢1/_ [Yall9slde’llzz < I 19sllza-

j=1
QED
LeMMA 2.3. There exists a constant C such that
(2.6) s [ Gave)(es0)de'lzz
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3 1/2 1/2
_ [ Clsllzzzs T I3l 10,5125
- 2 1/2 1/2
Cllbsllzazs iy 195115722 10,951 57

Proof. By Lemma 2.2, the left hand side of the last inequality is bounded by

1 llzazalivbell oo rall¥sll Lo 22

or
ll¥sllz2 22 191 )l 2o 2 [| P2l £go 2.

The result therefore follows from the inequality of Gagliardo and Nirenberg, since
|¥llzgezz < 1¥llzare

< ClIWIE 10,15 Iz < CHVIE s N0 Ies -

QED

§3. Proofs of Theorems 1 and 2. For T > 0 let I = [to — T,to + T and let

X(I) be the Banach space defined by X(I) = C(I; L3L2) N L8(I; LA L%) with norm

Wlulil = llull Lo (22 23) + llwll o228 22)-

For ¢ € L2L2 and u € X(I), we define

(3.1) (2(u))(t) = U(t — t0)¢ — (G (f(w)))(2)-
By Lemmas 2.1 and 2.2, we have for u,v € X(I)
(3.2) 12| < Cllgllzarz + C”f(u)”Ls/'r(I;L;“Li)

< Cllgllzazz + CT 2wl

(3:3) 12() = 2@)lll < CT(lllull + lell®) e - oI

This shows that for any ¢ € LZL? there exists T > 0 such that (3.1) has a unique
fixed point u € X(I). The rest of the theorems are proved in the standard way as
[4,15,19] if we replace complex valued functions by L? valued functions.

QED



§4. Proofs of Theorems 3 and 4. For definiteness we consider the case t > 0
only and the superscript and subscript + and the variable ¢ will often be omitted
when this causes no confusion. Let ¢ € F(H?) and define

(4.1) S(tz,y) =X [ |1°(«',y)de’ logt
-0

for t > 1. By a direct calculation, the Sobolev imbedding theorem, and Lemma 2.3,
(4.2) IIA(e""%)IILng < C(1+ (logt)*) (16l 2 + |81 32)-

We define v(t) = v,(t) by

(4.3) v(t) = Up(t)M(—t) exp(—iS(t, —iV))¢.

By the factorization
Uo(t) = M(t)D(t)FM(t)

with '
(D(t)d)(z) = (it) "9t =),

v(t) is rewrittben as
(4.4)  o(t) = M()D(t) exp(~iS())3,

where the variables (z,y) in S(t,z,y) are omitted. By the representation (4.4), we
have

1) =X D@3 n)as')y

—0

= A(ED()( / T B!, 1)) M()D(E) exp(~iS(6)

—o0

= M(t)D(t) exp(—z'.fw'(if))(/\l‘a__1 f(‘%))

In the same way as in [8,11,17], we obtain

(10 + 3 Ay = M(D()(3:S) + 7 A) exp(~iS(1))4.

Since (0,55)(,;5 = At_lf(qg), we have

R(v) = (i0, + %A)v — f(v) = MD(%A)e-%

8



and therefore, by (4.2)

(4.5) IR(v)l|zazz < Ct~2(1 + (log t)*) (I8l 2 + I ll3s)-

We now solve the integral equation

(4.6) ) =u(t) +i [ T Uo(t =) (f(w) - (8, + FAW)(r)dr

=v(t)+i [ Valt=1)(7() - 5) - RE)r)dr

For that purpose we regard (4.6) as an equation of w = v — v and consider the map

41 @@)O=i[ V- niw+) - £6) - R
on the function space
Yo(T) = {w € C([T, 00); LZL3) N L*(T, 00; LT L2);
ol = g (@) 2223 + s m 22)) < oo}

where 1/4 < § <1 and T > 0 is sufficiently large. We decompose f(w +v) — f(v) as

(4.8) F(w+v) = f(v) = f(w) + Q(w) + L(w),

where

T T

|w|?dz’ + 2)\w/ Re(tw)dz’,

—Q0

Qu) = |

—_0

T T
L(w) = )\w/ lv]?dz’ + 2/\1;/ Re(vw)dz'.
—c0 —00
For the cubic part of (4.8) we use Lemma 2.2 to obtain

I f(w)llzzzz < C”“’H%ng”w||L;°Lg-

By the Holder inequality in time, we have

1f (W)l zsr3t,00;21 £3) < Clllwlllz(/ (1wl pgo £z )*/*dr)*/
t

< CEH A w] %,

9



so that by Lemma 2.1
(4.9) G0 f(w)ll] < CT* 49| w]||>.
Similarly, for wy,ws € Yy(T)

(410)  [[IGeo(F(w1) = f(w2)lll < CT/4=°({[Jeoall|® + [[lw||*)|[ws — wall-

For the quadratic part of (4.8), we use Lemma 2.2 to obtain
1Q(w)llzz222 < Cllvllzge L2 lwll Lz zallwll Lo r2-

We note here that

(4.11) lollzgerz = 72l Lo ra-

By (4.11) and the Hélder inequality in time, we have
Q)| L1(t 0022 £2) < Cll&llL;oLglllwlllft 772w poe L2 dr

< G2 )| o gzl

so that by Lemma 2.1

(4.12) I1G@(w)|l] < CTY*~°|| || o 2 ll|wll .

Similarly, for wi, w; € Yy(T)

(413) [[|[Goo(Q(w1) — Q(w2))|| £ CT1/4—0”¢3”L3°L3(l“wllll +|llwz[[Dllwr — walll.

For the linear part of (4.8), we use Lemma 2.2 and (4.11) to obtain
”L(w)”L‘(t,oo;L:La) < C”&“Lr[& / T_]'”'LUHLile’dT
¢

< G0 @ll g zz I,
so that by Lemma 2.1
(4.14) G LIl < Cligll Lo ralllwlll-
Similarly, for wy,w; € Yo(T)
(4.15) 1Goo(L(w1) = L(wa))|I| < CllBllngo 2 ll[ws = wall].
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Finally, for the remainder R(v) we use Lemma 2.1 and (4.5) to obtain

(4.16) G RO)|I| < CT (1 + (log T)*)(I|l 22 + [ ll342)-
Combining (4.7)-(4.9), (4.12), (4.14), (4.16), we have.
(4.17) l12(w)lll < Clillzgezalllwlll + CT 4= (llwll] + lI¢ll cge £2 )| [o] |2

+CT™ (1 + (log T)*)(I1ll 2 + |6 372)-
Similarly, combining (4.10), (4.13), (4.15), we have for wy,w; € Y3(T)

(4.18) 18(ws) — Bwa)ll| < Cl1dllzg 2 llws — s
+CTYA (P + llwall2 + 191130 £2 Iz — sl

It follows from (4.17) and (4.18) that (4.7) has a unique fixed point w € Yy(T)
provided that ||¢|| Lee12 is sufficiently small and T is sufficiently large. By Theorem

1, the solution 4 = v 4+ w just defined on [T, 00) extends to the whole line R. We
now prove the uniqueness. Since we already know the uniqueness in the space Yp(7')
with 1/4 < 8 < 1 and T large enough, it suffices to prove that if v is a solution of
(4.6) with

u € O([T, 00 AL) N B, (T, 005 L LE)
and

supt?[u(t) - v(t)llz2z; = K < oo,
t>T

then u satisfies
supt®lu - U”L*(t,oo;L;oLg) < 0.
t>T

Let T <t <7T'. Then in the same way as above, we have
(4.19) lu ~ vllzage,zriz 12y < CE*470|u — 0| Lo v, 0 1)
+CK 40| @|| Lo L2 ||u = vl o (e, 7rs Lo 12) + CKt™°||§l| oo 12

+Ct7 (1 + (log 1)) (|11l 5 + 18]l 32)-
This implies ‘
(4.20) lu = vl|sqeamirger2y < CK°||@l| Lo 12

+CtH (1 + (log 1)) (|9 = + [|632)

provided that
: 1

CK(Illzprz + K)TH470 < 5.

Since the right hand side on (4.20) is independent of T, we have u—v € L*(T, 00; L°L2)

and we may replace the norm in L*(¢,T'; L°L2) of the left hand side on (4.20) by
that in L*(¢,00; LL2) . This proves the required uniqueness.
The rest of the proof proceeds in the same way as in [8,17].

QED
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