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A Stable Difference Scheme for Computmg Motion of

Level Surfaces by the Mean Curvature

Yun-Gane CHEN V), YosHikazu GIGA?)
‘TosHio HITAKA?) anp MiTsuru HONMA?2)

Abstract. A difference scheme is introduced for computing the motion of level
surfaces moved by the mean curvature. This scheme is proved to be stable in the
maximum norm so that the computation can be completed without overflow.

§1. Introduction.

In the research fields of applied sciences like physics, engineering and biology, it is
important to track the evolution (motion) of a surface, such as the interface between
two kind of materials or two different phases of a certain kind of material. The problem
how to track and compute the motion of a surface with a curvature-dependent speed is
usually a key point in the studies. Here, we introduce a class of difference schemes for
computing evolving surfaces. Our scheme is based on a level set method. Such a method
is developed numerically by Osher and Sethian [OS]; [S] and analytically by Chen, Giga
and Goto [CGG1] and Evans and Spruck [ES]. See also [CGG2,3]. There are many works
now available on this method but we do not try to mention all of them for lack of spaces. If
the evolution depends on curvature, the scheme need not be monotone so the convergence
to the analytic solution (viscosity solution) is not at all clear (cf. [CL]). In fact as explained
later, some of the numerical solutions of the scheme in [OS] may not converge to analytic
solutlons in uniform topology.

In this paper, we introduce a little bit different scheme reflecting divergence structure
and prove its stablhty in maximum norm for mean curvature flow problems.

We consider the Cauchy problem of the mean curvature flow equation

. ( Vu
(E) uy =|Vul|div (lvul), (t,2) € @ = (0,00) x RN
(IV) " wu(0,2) =ug, z€RVN.

Let w = u(t,z) be a continuous viscosity solution of (E)—(IV) which takes a negative
constant for large [z|, which holds true if the initial value ug is assumed to have such
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property. If for each t € (0, o) there is a bounded open set D(t) in RV such that u(¢,z) > 0
for z € D(t) and u(t,z) < 0 for = ¢ D(t), then the O-level set I'; = {z; u(t,z) = 0} of
u(t,z) determines a closed surface which moves with a speed V = (n—1)H at each point
z € Ty where H(¢, 2) is the mean curvature vector at z € I'y, provided that Vu # 0 onT.
The global existence and uniqueness of the viscosity solution to (E)—(IV) have been proved
by Chen, Giga & Goto [CGG1] and Evans & Spruck [ES]. And more important thing is
that the level set T'; is uniquely determined by its initial data I'g which is independent of
the choice of its defining function wug, provided that ug is bounded, continuous and ug > 0
for € D(0), ug < 0 for z € D(0) and Ty = {z; uo(z) = 0}. Moreover, in [CGG1] these
results are proved for a general geometric evolution.

Here, we discuss the difference methods for computing u(¢,z), the viscosity solution
of (E)~(IV). To overcome the difficulty of taking 0 value in the denominator which will
cause errors in computers and stop the computation, we introduce a parameter § > 0 and

consider the difference approximation of a modified equation

Vu
(IVul|o + 8)te

(Es) v = |Vau|div ( )a (t,z) € @ = (0,00) x RY

with the same initial value (IV). Here, o 2 1 is fixed. It can be shown that the viscosity
solution of (Es) with (IV) tends to that of (E) when § — 0. Thus, it is reasonable to deal
with the computation of the solution of (Es) as an approximation of the solution of (E)
with the same initial value (IV), for a sufficiently small § > 0 (say, § = 10~5°).

There are several methods now available to compute evolving surfaces moved by mean
curvature. Using parametrization of surface a finite element method was studied by Deck-
elnick and Dziuk [DD]. See also [D]. Although the convergence of the scheme is proved, this
scheme does not track the evolution after it develops singularities. A finite element method
for level set equations was studied by Walkington [W] based on a co-volume method. An-
other way is to compute Allen-Cahn type reaction diffusion equation or its modification.
Such a calculation is done by Nochetto and his collaborators [NPV] and it is very good to
track the evolution after it experiences singularities. Another method related to the level
set method is introduced by Bence, Merriman and Osher [BMO] where heat equation is
used to study the motion by mean curvature. Its convergence is proved by Evans [E] and
others. |

We thank GARC for giving the opportunity for publication of this short note. The
main part of this paper was completed in 1991 but because of personal problems of first
two authors the completion of the paper had been delayed.

§2. Difference schemes for the mean curvature flow equation.

Now we introduce our difference scheme for (E;s), and for simplicity we interpret the
scheme here for the two dimensional case N = 2. Our difference equation for (E;) is given
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e > (. Ly
| s ((gp) + )7 )"
],k=0,i1,:&2,---;n=‘0,1,2,---;
'u,?k =uo(zj,ye), 4 k= 0,£1,£2,---.

(1)

Here, several notations have been introduced as below. Denoting by z and y the spatial
variables in R?, we use z; and y; for the spatial coordinates of the net points.

NOTATION:

7 = At > 0: increment of the time variable ¢;

t, = nrt: nth time step;

hi, ha: mesh sizes of  and y directions, respectively;
(25,yx) = (Jh1,kh2): net point in R?, j,k = 0,£1,%2,---;

uly: value of the;vdiﬁ'erence solution approximate to w(t,,®;,yz); |
Dyu}y, = (u;.‘_i_%’k — Uy 1 ,)/h1, Da2ufy = ('u, i T u}‘,k_%)/hzz the approximations to
Uy (tn, 2j,y%) and uy(tn, z;,yx) by central dlﬁ'erence approach, respectively;

95 = 9(Du}y,): discretization of |[Vu| at (£,,2;,3s), which is chosen positive definite for

{Di ul; ¢ =1,.. .y N}, where D" and D~ denote the standard forward and backward
differences, respectively. For instance, we may take

1Y . 1
of = (72 (IDF wjul +1D7 wfi)’)?,  or
i=1 ‘
giw = max {|DF ufil, | D} wjul}.

The notation u’ here denotes 6u™*! 4 (1 — @)u™ for a fixed parameter 8 € [0,1],
and the difference equation (1) is explicit for u™*1 if § =0, while implicit if 0 <6 = 1.

We can prove a sufficient condition for the L stability of maximum principle type
for the difference scheme (1), as the following :

THEOREM 1. The difference scheme (1) is stable in the sense of ||u"||eo < ||4°||eo if either
=1 or 4r(1/h? +1/R2) < 1/(1 —6) when 0=<6 <1, where Hu”Hoo = sup |4l

ik

It is sometimes convenient and economic to deal with a surface of rotation in a lower
dimension space. Here, to compute the motion of a surface with axisymmetry in R3, i.e.,
surfaces of rotation, we rewrite (E) into

(E,) w = |6u|5§,(|§“
U

|) Flu, (L) €Q = (0,00) x (0,00) xR



where » = /2% + 32 for (z,y,2) € R®, and the differential operators V and div are those
with respect to (r,z) € [0,0) x R.
For this equation, our difference scheme is constructed as

uﬁf ol Z D; ugt’ +2(’“"+9 ugt?)
= o [(g3,)7 + 877 % !

k=0 +1,%2,---; n=0,1,2,---;

n n n n 8 n [}

@ i ZD Diwji® 1wl
ng [(gjk)a + 5]1/a 7 hl )
k:O,:tl,:t2,---;j‘=1,2,---; n=0,1,2-;

u?k‘_‘uﬂ(zj’yk)’ k=0)i11ﬂ:21"';j=01152""'

where uJ, is the approximation of u(t,, 7;, k), (rj,21) = (jh1,kh;), and Dy and D, denote

the difference operators for 8, and §,. Here, the last term of the first equation is used

for the approximation of %r on the points of j = 0 so that »; = 0. The limit relation
P

Uy

hn:(x) — = %,, and the symmetricity «”, , = uf}, which follows from u(¢,r,z) = u(t, -7, 2)
r—0 7P ‘

and thus u,(¢,0,z) = 0 are also applied so that

0 e 0
uie g+ ulin 2w - )
2 2
hl hl

On the other hand, the last term of the second equation is derived by the upwind difference
Uy
approach (with forward difference a.pprox1ma.t1on here) to — for j > 0.

This type of difference approximation is also used in [C] in the discretization of the
Laplacian for the axisymmetric solutions.

In both cases, the schemes (1) and (2), the computation is carried out in a restricted
domain, say, a rectangular domain. When the initial value function has a negative constant
value —C for large ||, so dose the solution u(¢,z) with a same constant value. Then we
can use this convenient property in our computation to make the work simpler. We have
only to compute the value in a (sufficiently large) finite domain, on the boundary of which
the solution has a negative constant value. So, we can deal with the boundary condition
either as the Dirichlet condition or as the Neumann condition.

The stability condition for the difference scheme (2) is given by

- THEOREM 2. The difference equation (2) is stable if either

: 1
=1 or 6h—2+4h2§-1_—0 when 0 =6 < 1.

It can be seen from Theorems 1 and 2 that the “linearly” full implicit scheme (the
case when 6 = 1) is absolutely stable, with no restriction to the mesh size and the time
increment. :



§3. The proof for the stability of the difference scheme.

Here we give the proof of Theorem 2, and Theorem 1 can be proved in the same way.

The difference equations (2) can be rewritten as

n+1l

R 3
Yok Lok

T

3)

where the values of g

(4)

By introducing

n 1 173 23
Jixin = ‘2'(95k + i)

6 o +8 +8
_gn {i u;.LIj- — ug: + 1 ( ug,k-i-l - ugk
IOk 2 \ 1/eo 72 1/o
M (e7,) +877 R (g, )7 + 9]
ugt? —upt? o

2(urt? —u
1/«7)} + = h2 Uk'
[(g’o‘,k_ %)" + 6] 1

g {L( Wi~ ui up —uty,
—Jik) 12 N /e 1o
MM (971007 + 6] [(g7_ 4)7 +9]

+6 ) 8 n+8
(Rl
hg [( n )a.+6]1/6 - [( n )a.+6]1/a
gjvk'{"% ’ gjrk—é'
8 n<4-6
1 e v
] h]_

(n=0)1a2a"';j 1)27"';k=0)i1)i2a"')a

at the fraction points are defined by

3 1 3 n
Iirti = §(gik + Gfn1)-

T T
x Ea ,B Ea
e g
@ i T T T 1/
[(gj:tl,h) +6]
+ g+ _ B9
b= = bnik - 1/eo

[(g:k:h% )a + 6]



at each (tn,7;,2x), the equations (3) can be changed to

upt? —{1 - (1-0)(2a* +bT +0 + 2a)}u3k
+(1-0){ (26" + 20)u + b4 iy + 70T )
+0{ (20% + 20)uf? +bragtl, + b wils
— (2a* +b++b'+2a) g},
(n=10,1,2,--; k=0,%1,£2,--+),
(6) ul _{1 (1-0)(at+a” +bt +b + )}u}‘k

+ \ ]. —9){ a + —,')uj_}_l’k +a_'u]'_1’k +b+u;'t’k+1 +b~u;},k_1}
+o{ (et + Dafilaemup i H b, bt
—(a +a, +bT 407 + -J—)u?,j'l},

(n=0,1,2,--- 77 =1,2,---3 k=0,:t1,:t2,"°),

u?k =uo(rj,2zx) (3=0,1,2,---; k=0,4£1,42,--.).

Noting that g7 20 and § >0 we can get the following

LEMMA 1.

0Za* =a};, <2 O0Sb* =07,

< 28.
‘Thus, we can show the following maximum results as

LemMmA 2. If the values of §, a® = a::jk and b = bi ;1 satisfies
(7) 1-(1=0)(a*+a” +b" +b™ +2a) 20
then the difference solution of (2) satisfies

infu}, 2 1nfu
ik ik

maxukSmaxuok n=12---.
ik ik

ProoF oF LEMMA 2:  Rewriting the difference equations (6) and noting that at =a~

6



for j = 0, we get
{1+9(a+ +a” +bt +b7 + 2q) }ug,fl
={1 —(1=0)(a* +a" +bt +b” + 2a)}ug,,
+(1-0){(a* +a” + 20)ady +6Fu gy + DTGy}
+ 0{(a+ +a + 2a)u;‘:'1 + b+ug",t_1|_1 + b"ug'zl 1}
(n=0,1,2,--+; k=0,%1,42,---),
(8) {1+9 (et +a” +bt +b + 9.—)}@,;“
_{1—(1-—9)(0, +a” +bt+b + J)} Th
+(1- 9){(a+ + }-‘)u?-n,k +aTul_g, + b Ul + b—u;},k-—l}
[0 n - n n - n
+9{(a+ + -].—)uj;fll,, +aTultl 46Tl 4+ b Jjgll}
(n=0,1’21"';j=1121'°';k=0)i11i2’ )»

u;’,, =uo(r;,2x) (G=0,1,2,++; k=0,%£1,£2,---).

Note that we have done our computation in a certain finite domain and on the boundary of
the domain the value of the solution is a constant —C. Here, we claim that the maximum
and minimum value of the difference solution 7 7n are reached on the boundary, or the
initial plane (i.e. » = 0). This is shown in the followmg way. If j > 0, since a/j < 2¢,

we have {1 —(1-0)(a* +a” +bF+b" 4+ = } 2 0 and in a inner (mesh) point of the

domain, say (t,,7;,zs), the difference solut1on satisfies
{1+0(a* +a™+b* +b7+ -;)}u?,j’l
{1-(1-0)(a* +a~ +b* +b7 + ‘;‘—.)}uunn
+(1- e){ (o + )l + o~ o + B ]|+ 5™ ] |
Fo{ (o + D) 4+ a4 B b
=[lw*|| + 9(a +a” +bF+b7 + ;)Ilu”“ll |

(n=0,1,2,--+; 7=1,2,+++; k=0,£1,£2,---)

where || - || = || || here and hereafter. So, we get
{1 +0(at +a” +0 +b7 + -j—)}||u"+1|] |

«
Sllw*||+6(at +a + b +b7 + 3:)||u”+1||,



which leads to
lw* | £ [lu”]].

While if j = 0, then the estimates become

{1+002a* +b* +5™ + 20) Juzts
§{1 —(1-0)(2a* +b* +b” + 2a) }Hu"”
+ (1 = 0){ (20" + 20) [w]] + b* Ju™ | + b [[u]| }
+0{ (20 + 20 [+ + 5 ] 4 b+,

=|lu"|| + 6(2a* + bt +b™ + 2a) || 1]
(n= 0,1,2,++; k= 0,:*:1,:[‘:2,"‘)

which also leads to
[+ < [l

Here, if we take max instead of || - || in the above argument, then we can obtain

max uf; < maxuly,.
sk ik

And similarly we can show another inequality

inf u7y _mfu ik
ke ! ik

Thus we have completed the proof of Lemma 2. B

From Lemma 2, we can obtain our stability condition. Elther of the following condi-
tions leads to (7), the condition § =1 or

(9) —I—a +b++b +2CX<'11—8 if 0§9<1.

While in virtue of Lemma 1, (9) holds true if

1
<
ba+48 = 17
1s satisfied. This completes the proof for Theorem 2.
To prove Theorem 1, we have only to make a little change in the estimates: simply

omit the terms 2o and E. in the statements.
J



§4. For the case of generalized mean curvature flow equation.

With the above-mentioned methods, we can construct a stable difference scheme for
the so-called generalized mean curvature flow equation

(E") = |Vu|div (IV I) +v|Vau|, (t,2) € Q =(0,00) x RV
where v is a constant (see [CGGl]).

The difference scheme for (E') is constructed by the following two parts:

(1) the first part of the scheme is constructed as that for (E) in the previous section;

(2) the second part of the scheme is constructed in the way of any kind of stable
difference scheme with monotonicity for the Hamilton-Jacobi equation u; = v|Vu|, such
as Lax-Friedrichs scheme, Godunov scheme, etc. (see, for example [CL]).

Then, we can show that the obtained difference scheme is stable if the value of
7/h? (i =1,2) are taken sufficiently small ([CGH]).

§5. Some remarks.

1. Itis important to note that the stability conditions do not depend on §>0 and
o221

2. If g7} is not positive definite for {D:b 'u,;-‘k}, then the difference solution may not
converge to the solution of (Es), nor to that of (E) when § — 0.

Example. It is easy to see that
u(t, z) = max{l — (2t + [=|?), ~1}
is the uniqﬁe viscosity solution of the level set equation (E) with initial data
ug(z) = max{l — |2|?, ~1}.

Here, if g7}, in the scheme is replaced by a general central difference approximation,
then the value of numerical solution u}, at the origin is independent of = 2 0, because
the symmetry forces the central difference at the origin equal to zero.

1
However, the value of the analytic solution (¢, z) at the origin equals 1—2¢ (fort < 5)

which is smaller than 1 for £ > 0. Thus the numerical solution u};, does not pointwisely
converge to the viscosity solution. '

The same remark applies to the scheme in [OS]. Smce the central difference approx-
imation is used in [OS], the numerical solution there may not converge to the analytic
solution. In that paper, in order to avoid the problem they shifted the grids so that non

9



of the net points agrees with the center of symmetry, for the case when symmetric data
are started with.

3. Osher and Sethian discussed some difference schemes constructed in a different
way with level surface approach ([OS], [S]). They computed several interesting examples
including the torus and dumbbells without discussing the fundamental theory such as
stability, etc. In [S], an example of unstable computation of a torus was presented with a
quite large At but no condition for the stability was given there.

4. In [OS] and [S], the axisymmetric surfaces are computed under the rectilinear
coordinates instead of the cylindrical coordinates.

With our stable difference schemes and level surface approach, we investigated motions
of several typical surfaces, including the shrink of a torus (surface of a doughnut) and the
break of a dumbbell. With this method we can track motions of a surface even after the
time when a singularity occurs.

§6. Numerical results.

We present several computation results on the evolution of axisymmetric surfaces
here: the “fat torus” and “Hamilton’s dumbbell”. The computation is carried out by our
difference scheme (2) in its explicit form (with § = 0) while the “safety parameter” § is
taken 8§ = 107%% and o = 2. We restricted the domain to (r,z) € [0, 1.5] x [-1.5,1.5] which
is discreted into net points with the mesh sizes h; = hy = 0.015 and the time increment
7 = 0.00001125. On the axis of symmetry r = 0, the boundary condition is treated with
the symmetry property of the solution.

1. Fat Torus :

As the analytic theory predicts ([SS]), no fattening occurs for generalized solution
after it collapses. According to numerical simulation, it becomes convex and shrinks to a
point. If the torus is thin, it converges to a “marriage ring” ([AI]).

2. Hamilton’s Dumbbell
We consider the initial surface of the form

T) = {(z,9,2); 2? + 3% = (1 - 22)(1 = A+ Az%)?}
where 0 S A S 1 is a parameter. We take the initial data
up = (1= 22)(1 = A+ Az?)? — 2

and select the zero level surface to observe. If Ais close to 1, T'} pinches into two piecesin a
finite time. Then both pieces become convex. Actually, according to Altshuler, Angenent
and Giga [AAG]|, no fattening occurs and I'} becomes smooth instantaneously after it
pinches. At last each of the pieces shrinks to one point, respectively. See the cases A = 0.8

and X = 0.65.

10



From the numerical results we can see that I'} becomes convex and then shrinks to a
'single point for A = 0.63. ,

In between A = 0.63 and A = 0.65, there may exists a critical value of ) for which the
behavior of the shrinking dumbbell is exceptional. The surface does not become convex nor
does it pinch. It stays smooth and shrinks to a point. The existence of such a dumbbell is
proved analytically in [AAG] by topological argument. See the picture of the case A = 0.64,
which seems to be the critical value.

Recently, Nochetto et al. [NPV] calculated the evolution of T'} by a different method.
Their calculation suggests that the critical value be A = 0.654, which is very close to ours.
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