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Eyraud-Farlie-Gumbel-Morgenstern Processes *

by
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ABSTRACT
Let {X,}32, be a Eyraud-Farlie-Gumbel-Morgenstern process. Put S,, =
> k=1 X&. In this paper we prove the large deviations theorem for S, /n,

and the central limit theorem for S,,/n'/?, as n — oo.

1. Introduction.

Let (2, B, P) be a probability space and {X,}32; be a sequence of real
valued random variables on (2, B, P). Put

an. ' (L.1).
n=1

In this paper we prove the large deviations theorem for S, /n, and the
central limit theorem for S,/n'/?, as n — oo, when {X,}%, is a Eyraud-
Farlie-Gumbel-Morgenstern (EFGM) process.

Let us give the definition of EFGM random process.

Definition 1.1(see [1], [2], [7]). A sequence {X,,}32; of real valued random
variables on a probability space (£2, B, P) is called a Eyraud-Farlie-Gumbel-
Morgenstern (EFGM) process if there exists a sequence {au; }1<k<j<co Stich
that for any n € N and any z;,--+,z, € R,

Sn

I

P(Xl lea"',anwn) (12)
=L Fie)(1+ Y ar(l— Fi(ar) (1 - Fi(a3))),
1<k<j<n

where we put Fj(2;) = P(X; < z;) (1 <i < n), and where

1+ > akjene; >0 (1.3).
1<k<j<n

for all

* Key words and phrases; Eyraud-Farlie-Gumbel-Morgenstern process,
weak low of large numbers, large deviations theorem, central limit theorem.
AMS classification numbers; primary 62H10, secondary 60 F 05, 60 F 10.
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—sup{{Fi(z);z € R}\{0,1}}, or
" { 1 jullf)lﬁ{l’(jw)wm € 1%}{{0, 11} | (1.4).

(z: 1,2,'--,11).

In this paper we restrict our attention to the following EFGM process.
(A.0). {X,}>2, is a EFGM process for which (1.3) holds for all ¢; = 1 or
—1,and E[X,,]=0for alln € N.

Remark 1.1. If {Fi(z)}1<i<n are continuous, then ¢; = 1 or —1 in (1.4).
For any m < n, putting z; = oo for 7 # m,n in (1.2)-(1.4), we get

[0mn| <1 (1.5).

under (A.0)(see [2], p. 208).
Let us consider the weak low of large numbers for S,,/n. By the Cheby-
chef’s inequality,

P(|Sn/n| > 6) | (L1.6).
< E[|Sa/n|2)/8? -
= _EXA+2 Y E[XiX;])/(ns)?
i=1 1<k<j<n
B2 Y awEXe(l - Filw) - Fu(eem))
i=1 1<k<j<n

x B[X;(1 - Fj(z;) = Fj(2;-))])/ (né)*.

This is true, since from (1.2),

E[Xka] = /R2 :vka;j(l + akj(l - Fk(xk) — Fk(l‘k—-)) (1.7).
x (1 - Fj(z;) — Fj(z;—)) T dF(z),

and since E[Xy] = 0 for 1 < k from (A.0).
If {X.}32, is identically distributed, then the last quantity in (1.6)
converges to 0 if and only if

nlLI&( Z aki/n?) = 0. (1.8).

1<k<j<n

From (1.6)-(1.8), it might seem that the dependence of {X,,}32; con-
trols the weak low of large numbers for S,, /n. But this is not true. This fact
can be shown by proving the upper bound of the large deviations theorem
for Sp/n.

In section 2, we prove the large deviations theorem for EFGM processes
under the assumptions only on marginal distributions {P(X,, € dx)}°%,.

In section 3, we prove the central limit theorem for S, /n!/2.
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2. Large deviations theorem for S,/n.

In this section we prove the large deviations theorem for S,/n. As an
application of the upper bound on large deviations for S,/n, we show the
weak low of large numbers for S, /n.

Let us give the assumptions on {P(X,, € dz)}32;.
(A.1). For 2z € R, put

H(z) = lim sup{z log(E[exp(2X;)])}/n. (2.1).

— :
n—oo i=1

Then H(z) is finite in some neighborhood of z = 0.
Let us also give the notations;

L(u) = sup(zu — H(z)), (2.2).
zER

®(s) = {u € R; L{u) < s}. (2.3).

Remark 2.1. If {X,}52; are independent, then

log(Elexp(25,)]) = ) _ log(Elexp(2Xy))), (2.4).

i=1

which implies that (A.1) is a reasonable assumption(see [4] and [6], Chap.
5, section 1). L(u) is lower semicontinuous from (2.2), and converges to
400 as |u] — oo from (A.1)(see [8]).

The following result can be obtained almost in the same way as in
[6](see also [4]).

Theorem 2.1.

Suppose that (A;O)-(A.l) hold. Then the following holds.
(O). For any s > 0, ®(s) is compact in R.
(I). For any § > 0, and any s > 0,

lim sup{log[P(dist(Sn/n, ®(s)) > 6)]}/n < —s. (2.5).
TL—+0C0
(Proof). From the last part of Remark 2.1, (O) can be proved (see [6],
Chap. 5, section 1).
From [6], pp. 138-139(see also [8]), we only have to show the following;
for z € R,

n

limsup{log(E[exp(zZXi)])}/n < H(z). (2.6).

n—0o0 i=1

Let us prove (2.6). From (1.2) and Remark 1.1,

3



E[exp(zZXi)] (2.7).

1<k<j<n

x (1 = Fj(z5) - Fi(z;—))]exp(z »_ z)IE dF(xs)
o 4=1

g/"u+4n—1mm}  exp(za;)dFi(;)
Rn
= [1+ (n — 1)n/2JI}, Elexp(2X;)].
QED.

Before we prove the lower bound on large deviations for S, /n, let us
show the weak low of large numbers for S, / n.

From (A.0), by Jensen’s inequality, it is easy to see that the following
holds(see [6], Chap. 5, section 1 and [8));

>0, ifzeR,
f””{:m if 2 = 0. (2.8).

From (2.2) and (2.8),

L(u){zo, ifueR,

=0, ifu=0. (2.9).

To prove the weak low of large numbers for S, /n, we need the following
assumption.
(A.2). The convex function L(u) = 0 if and only if u = 0.

The following result can be proved from Theorem 2.1 in the routine
manner, and hence we only state the outline of proof(see [6], Chap. 5,
section 1).

Theorem 2.2.
Suppose that (A.0)-(A.2) hold. Then for any § > 0,

nllrrolo P(|S,/n| > 6) =0. (2.10).

(Proof). We only have to show that (2.10) is true for sufficiently small
6 > 0, and that, from Theorem 2.1, for any § > 0

= inf L( 0 11).
S5 Qgs(”> ; (2.11)

which is true from the last part of Remark 2.1, and from (A.2)(sce [8]).
In fact



P(S,jnl>8) (2.12).
< P(dist(Sn/n,®(ss/2)) > dist(®(3ss/4)°, B(ss/2))).

From Theorem 2.1 and from the following which can be shown by (2.11),
we get (2.10); for sufficiently small § > 0,

dist(®(3s5/4)°, B(35/2)) > 0. (2.13).
QED.

Before we finally prove the lower bound on large deviations for S, /n,
let us give the following strong assumption.
(A.3). For any 2z € R, the following limit exists including infinity;

lim {3 " log(Elexp(2X:)])}/n = H(2), (2.14).

i=1

and H(z) is finite in some neighborhood of z = 0. L(u) is strictly convex
in a dense subset of the set {u € R; L(u) < oo}
(A.4). For any z for which H(z) < oo,

{log(min Elexp(2X:)(Fi(X:) + Fi(X:-))] (2.15).
x Elexp(2X:)(2 — Fi(Xs) — Fy(Xi—))) Elexp(2X:)]2)}/n
—0 as n — oo,

and for any z for which H(z) = oo,

Jim {3 log(Blexp(=X.)) (2.16).

+ log(rz_rgilll Elexp(2X;)(Fi(X;) + Fi(X;—))]

x Elexp(2X:)(2 — Fy(X;) ~ Fi(Xi=))|Elexp(2X:)] %)} /n
= Q.

Remark 2.2. The right hand side of (2.15) is nonpositive for each n > 1 (see
the last part of (2.19) below).

~ The following result can be obtained in the same way as in [6], Chap.
5, section 1(see also [4]). "
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Theorem 2.3.

Suppose that (A.0), (A.3) and (A.4) hold. Then
(II). Forany 6 >0, and u € R,

lin]:gi@gf{log[P(.lSn/n —u}| < 8)]}/n > —L(u). | (2.17).

(Proof). From [5], Chap. 5, Theorem 1.2, it is enough to show the following;
for all z € R,

Jim {log(Blexp(2S0)))}/n = H(2). (218).

Let us prove (2.18) from (A.4). In the same way as in (2.7),

Elexp(z EX,)] ‘ (2.19).

= ‘/Rn [1 4+ Z akj(l - Fk(ﬂf’k) - Fk(xk"'))

1<k<ji<n
x (1 — Fj(2;) — Fj(z;—))}., exp(zz;)dF;(x;)
= II7; Elexp(2.X;)](1

— (el { Blexp(eX:) (1 - Fi(X:) = Fi(X;-))]/ Elexp(:X:))}?)
+ (mc{ Elexp(:X:)(1 — F(X:) — Fi(X:-)))/ Elexp(2 X))

x (1+ Z Okj

1<k<ji<n

x (Elexp(2X2)(1 — Fo(Xk) = Fu(Xx—))]/Elexp(sX)))

X (I?Ef( |Elexp(2X:)(1 — Fi(X;) — Fi(X;—))]/Elexp(2X;)]])*

x (Elexp(2X;)(1 — F;(X;) — F3(X;=))}/ Elexp(2X;)])

x (mix | Elexp(2X:)(1 — Fi(X:) ~ Fi(Xi-))]/ Elexp(=X:)])) ™
> 117 Efexp(2X;){1 — (I?Ef{E[eXP(ZXi)(l - Fi(X;) ~ Fi(Xi—))]

/Elexp(2X)]}))}  (from (1.3))
= IT7_, Blexp(=X,)] min{ Elexp(2 X:) (Fi(Xs) + Fi(X;—))]

x Elexp(2X;)(2 — Fi(X;) — Fi(X:—))| Elexp(2X:)] 7%}

From (2.6), and (A.3)-(A.4), the proof is over.
Q. E. D.

~ Let us give the following assumption to state the corollary to Theorems
2.1-2.3.



(A.5). {X,}<, is identically distributed and for all z € R,

Elexp(2X1)] < o0, (2:20).
E[|X1)?] > 0. (2.21).

Remark 2.3. (A.3) is stronger than (A.1). (A.5) implies (A.2)-(A.4).
Corollary 2.4.

Suppose that (A.0) and (A.5) holds. Then (O), (I) in Theorem 2.1, and
(II) in Theorem 2.3 holds. In particular (2.10) in Theorem 2.2 holds.

3. Central Limit Theorem for S,/n'/2.

In this section we prove the central limit theorem for S,/n!/2. In this
section we assume the following.

(A.6). {X,.}32, is an identically distributed EFGM process such that
E[X,] = 0 for all n € N, and such that 0 < s, = (RE[X?)? < x
(n > 1), and such that the following holds;

lim ( > ag)/n=0. (3.1).

1<k<j<n

In the same way as in (2.7), for any z € R,

Elexp((—1)"/?2Sp/sn)] (3.2).
— I Blep(-1)Y X1+ Y ag

1<k<j<n
x Elexp((—1)"22Xk/3n)(1 = Fi(Xi) — Fe(Xi—)))
x Elexp((—1)"22Xx/sa)] "
Blexp((~1)"22X;/s2)(1 — Fj(X;) — F;(X;—))]
x Elexp((=1)"%2X;/s,)] ™!
= ()n X (I1),.

In (3.2), (I)n is a characteristic function of >\~ | Y;/s,, where {¥;},
are independent, real valued random variables such that

P(Y; € dz) = P(X; € dz), (3.3).

forali=1,---,n.
The following result is well known (see [5], p. 259, Theorem 1).
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Theorem 3.1.

Suppose that {Y,,}52 is identically distributed, and that 0 < E[Y}] < cc.
Then Y, Yi/s, converges to the normal distribution N(0,1) with zero
expection and unit variance, as n — oo, in distribution, that is, for any
ZE€R,

Jm Bleo(-)V2 Y Vs =en(—2/2). (4)
i=1

By Theorem 3.1 above, we get the following result.
Theorem 3.2.

Suppose that (A.6) holds. Then S,,/s,, converges, as n — 0o, to the normal
distribution N(0,1) with zero expection and unit variance in distribution.
(Proof). Since {X,}%2, is identically distributed, (II), in (3.2) behaves,
as n — 00, as follows;

IDa=14( > o) (Elexp((~1)"22X1/sx) (3.5).
1<k<j<n
x (1 — F1(X1) — F1(X1-)))/Elexp((=1)*22X1/50)])?
—1 as n — oo.

Here we used the following;

B~ R(0) - R(G-) =1- [ dFidg) =0, (36)
and '
| Elexp((~1)Y22X1/50)(1 — Fi(X1) — Fy(X1-)))] - 3.
= |E[(exp((—1)22X1/5,) — 1)(1 — Fy(X1) — F1(X1-))]|
< 2| E[|X1]]/5n.
From (3.5) and Theorem 3.1 above, the proof is over. ,
Q.E.D.
Remark 3.1. Suppose that (A.6) holds. Then the following is true;
hrgo(E[SfL]/sfl) =1. (3.8).
This is true, since
E[S?]/s2 (3.9).
=(sn+2( > a)EXi(1 - Fi(X) - F(X:-))/sn
- 1<k<j<n
— 1 as n — oo.
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