Existence of Selfsimilar Shrinking Curves
for Anisotropic Curvature Flow Equations

C. Dohmen, Y. Giga and N. Mizoguchi

Series §233. March 1994



f 204:
f 205:
i 208:

§ 207:
§ 208:

§ 209:
4 210:
§211:
f212:
f 213:
i 214:
f 215:

§ 216:
f217:
f 218:

f 219:
i 220:
§ 221:
i 222:
f 223:
1 224:

f 225:

i 226:
§ 227

i 228:
f 229:

f 230:

§ 231:

§ 232

HOKKAIDO UNIVERSITY
PREPRINT SERIES IN MATHEMATICS

J. Wierzbicki, An estimation of the depth from an intermediate subfactor, 7 pages. 1993.

N. Honda, Vanishing theorem for the tempered distributions, 11 pages. 1993.

T. Hibi, Betti number sequences of simplicial complexes, Cohen-Macaulay types and Mdbius functions of
partially ordered sets, and related topics, 25 pages. 1993.

A. Inoue, Regularly varying correlations, 23 pages. 1993.

S. Izumiya, B. Li, Overdetermined systems of first order partial differential equations with singular solution,
9 pages. 1993.

T. Hibi, Hochster’s formula on Betti numbers and Buchsbaum complexes, 7 pages. 1993.

T. Hibi, Star-shaped complexes and Ehrhart polynomials, 5 pages. 1993.

S. Izumiya, G. T. Kossioris, Geometric singularities for solutions of single conservation laws, 28 pages. 1993.

A. Arai, On self-adjointness of Dirac operators in Boson-Fermion Fock spaces, 43 pages. 1993.

K. Sugano, Note on non-commutative local field, 3 pages. 1993.

A. Hoshiga, Blow-up of the radial solitions to the equations of vibrating membrane, 23 pages. 1993.

A. Arai, Scaling limit of anticommuting self-adjoint operators and nonrelativistic limit of Dirac operators,
35 pages. 1993.

Y. Giga, N. Mizoguchi, Existence of periodic solutions for equations of evolving curves, 45 pages. 1993.

T. Suwa, Indices holomorphic vector fields relative to invariant curves, 10 pages. 1993.

S. Izumiya, G. T. Kossioris, Realization theorems of geometric singularities for Hamilton-Jacobi equations,
14 pages. 1993.

Y. Giga, K. Yama-uchi, On instability of evolving hypersurfaces, 14 pages. 1993.

W. Bruns, T. Hibi, Cohen-Macaulay partially ordered sets with pure resolutions, 11 pages. 1993.

S. Jimbo, Y. Morita, Ginzburg Landau equation and stable solutions in a rotational domain, 32 pages. 1993.

T. Miyake, Y. Maeda, On a property of Fourier coefficients of cusp forms of half-integral weight, 12 pages.
1993.

I. Nakai, Notes on versal deformation of first order PDE and web structure, 3¢ pages. 1993.

I. Tsuda, Can stochastic renewal of maps be a model for cerebral cortex?, 30 pages. 1993.

H. Kubo, K. Kubota, Asymptotic behaviors of radial solutions to semilinear wave equations in odd space
dimensions, 47 pages. 1994.

T. Nakazi, K. Takahashi, Two dimensional representations of uniform algebras, 7 pages. 1994.

N. Hayashi, T. Ozawa, Global, small radially symmetric solutions to nonlinear Schrédinger equations and a
gauge transformation, 16 pages. 1994.

S. Izumiya, Characteristic vector fields for first order partial differential equations, 9 pages. 1994.

K. Tsut>aya., Lower bounds for the life span of solutions of semilinear wave equations with data of non
compact support, 14 pages. 1994.

H. Okuda, I. Tsuda, A coupled chaotic system with different time scales: Toward the implication of obser-
vation with dynamical systems, 31 pages. 1994.

A. Hoshiga, The asymptotic behaviour of radial solutions near the blow-up point to quasi-linear wave equa-
tions in two space dimensions, 8 pages. 1994.

Y. Giga, N. Mizoguchi, Existence of periodically evolving convex curves moved by anisotropic curvature, 12

pages. 1994,



Existence of Selfsimilar Shrinking Curves for Anisotropic
Curvature Flow Equations

Claus Dohmen
Department of Applied Mathematics, University of Bonn,
Wegelerstr.6, 53115 Bonn, Germany

Yoshikazu Giga
Department of Mathematics, Hokkaido University,
Sapporo 060, Japan

Noriko Mizoguchi
Department of Mathematics, Tokyo Gakugei University
Koganei, Tokyo 184, Japan

1 Introduction.

We consider a simple looking ordinary differential equation of the form

um+U—a—(u£2=0 in R (1.1)
with a given positive function a. This equation arises in describing a selfsimilar solution of
anisotropic curvature flow equations. Since z is the argument of the normal of the curve it is
natural to impose 27-periodicity for a in (1.1) and to ask for existence of 27-periodic solutions.

To simplify the notation we notice that a 2x-periodic function can be regarded as a function
on the flat torus T := R/2xZ. For example the space C™(T) is the space of all 2x-periodic
C™—functions on R. Let C?P(T) denote the set of all positive functions in C™(T). In particular

C3(T) = {u € C*(R)|u(z + 27) = u(z) for all z € R,u > 0}. (1.2)

Using this notation, we want to investigate the existence of solutions of (1.1) in C3(T). As to
this, we have the following

1.1 Main Existence Theorem. Assume that a is a positive, continuous function on T. Then
there is a function « € C%(T) solving (1.1).

The key step to prove this result is to derive a-priori bounds for solutions of (1.1):

1.2 Theorem on A-Priori Bounds. Let 0 < A; < A; be two constants. Then there are
two positive constants m and M, depending only on A; and As, such that if u € CZ(T) solves
(1.1) on T with

Ay < a < A (1.3)

then
m<u<M onT. (1.4)

The proof of this a-priori estimate actually shows that the continuity of a is not needed.



1.3 Corollary on existence. Let a € L*(T) and satisfy (1.3). Then there is a function
u € C}(T) solving (1.1).

Here Ci’l(T) denotes the space of all positive, 27 —periodic functions whose derivative is Lipschitz-
continuous. The differential equation is solved in the sense of distributions and almost every-
where.

To prove Corollary 1.3, we approximate a by continuous functions a;, keeping the bounds (1.3)
and a; — a in I} -sense for p > 1 as §j — oo.

Let u; be the solution of (1.1) taking a; instead of a. By the a-priori bounds (1.4) and the
equation (1.1) the sequence u; is bounded in L™ along with u;, and u;;,. Thus a subsequence
of the u; converges to some function % in CL(T); it is not difficult to show u € CYY(T) and
that u solves (1.1).

1.4 Generalizations. To get a better understanding of the mechanisms we will carry out the
proof of the a-priori bounds considering the slightly more general equation

Uzge + 8 — a(z)g(x) = 0 inICR (1.5)

instead of (1.1). Here again a satisfies (1.3) on the interval I and g is assumed to be a positive,
continuous, nonincreasing function on (0, 00). Defining

6® = [ o9)ds, (1.6)

we moreover impose the following conditions on g:

lim G(p) = —o0, lim G(p)p~2 = 0, (1.7)
p—0 p—oo
G(p)p _
prtrgoo g(g)? O (1.8)
Jim g(p) = 0. (1.9)

(Note that condition (1.7), is automatically satisfied by (1.6) and the nonincreasing property of
g.) Examples for functions satisfying these conditions are given by

g(p) =p°, 1Zo<2 (1.10)

1.5 Selfsimilar Shrinking Our main existence theorem has an application for evolution
equations for embedded closed curves {I's};50 in R? derived in [Gu):
Let V be the inward velocity of I'; in the direction of its unit inward normal vector

n(8) = (cos¥d,sinb).

Let k be the inward curvature of I'; and let f and S be positive functions on R, which are
2m-periodic. We consider an equation for I'; of the form

V= a(0)k,  a(6) = BO)TIF(0) + £(6)).

Here f" + f is assumed to be positive, so that the equation is parabolic. Such an equation arises
in a model describing the motion of phase boundaries in an anisotropic medium (see [Gu]). The



function f is called the surface energy density and f is called the cinetic coefficient.

If a(9) is constant, the equation becomes the curvature flow equation and the evolution of T,
is well studied: No matter what initial curve is given, the solution stays smooth and embedded
and eventually becomes convex ([Gr]). It then stays convex and shrinks to a point in finite time
([GH]). The type of shrinking is asymptotically similar to that of a shrinking circle {C:} ([Gal],
[Ga2)], [GH]), which is self-similar in the sense that

C: = (t. - )% C,

where C denotes the unit circle centered at the origin, the time ¢, is the extinction time and
AC denotes the dilatation of C with multiplier A. Selfsimilar solutions are classified even for
immersed curves ([AL]) and the asymptotic shape of singularities of this type is classified ([A]).
We are interested in finding such selfsimilar solutions

T, = (t.— YT

for general a(f). Such solutions exist in the case that §(§)~! equals a constant multiple of f£(9).
Then T is the boundary of the so-called Wulff-shape W of f, i.e.

W = {z € R?|z-n(0) < f(6) forall 0 € R}.

This is explicitely stated in [Son], including the multidimensional case where # and the second
differential f are assumed continuous, so also a is continuous. It is not difficult to see that
such results extend to f € C1!, provided that f” + f is still bounded away from zero and if the
definition of a solution is given in some appropriate sense.

Our main existence theorem yields the existence of selfsimilar solutions for arbitrary bounded a
(see 1.3). Indeed, every equation V' = a(@)k can be rewritten as

V = (v +u)k,
where u is a solution of (1.1) with @ replacing z.

We would like to note that our existence theorem is not included in the available theory of
singular Lagrangian systems developed in [AC], [C], [Sol] and [T}:
Equation (1.1) can be written as

+ 8V(z )=20
Uzx o 1 U) =

with potential
V(z,u) = %uz — a(z)log u.

Although the existing theory includes existence of periodic solutions for potentials having a
singularity near u = 0, our V here violates the assumptions the theory requires: The logarithmic
singularity near « = 0 is too weak — a singularity like v=2 or stronger is required — and the growth
near infinity is also not included. _

We thank Professor Kazunaga Tanaka for informing us about the above references concerning
the variational approach. According to him the method used in [T] may lead a way to weaken
the strong singularity condition. In any case it would be interesting to study (1.1) from the
variational point of view. ‘



‘ After this work was completed, we were informed of a recent work of Matano and Taniyama

closely related to ours. They claimed that if a(#) is a smooth, even function, i.e. () = a(—9),
a general solution I'; of V' = a(0)k becomes convex after some finite time ¢y and shrinks to a
point at some time ¢, > ?p in a way that the curvature of

V St = (t,. —-1)1/2 I‘t

is bounded from above and away from zero for all ¢ > 1y. This yields the existence of selfsimilar
solutions by applying the theory of dynamical systems for parabolic equations. However, our
proof is more direct and does not assume any symmetry or regularity of a.

2 A-Priori-Estimates

Our main estimate (1.4) follows from the results we will prove in section 3 and section 4. To
simplify the terminology let us define the following terms:

Definition: A solution » € C2(T) of (1.1) or (1.5) is called a singlepeak-solution, if the set
of points not being local extrema consists of two connected components in T. Otherwise u is
called a multipeak-solution.

To prove the a-priori bounds these two types of solutions need essentially different techniques.
Thus let us state the results separately:

2.1 Peak-Bound Lemma for Multipeak-Solutions. Let u € C%() be a solution of (1.5)
on some open interval I and let (1.3) be satisfied. If u attains local minimain o, €I, o <
and u; changes its sign only once in (@, §), then there is a positive constant My, depending only
on A;,As and g, such that

v < Mo in(e,pB) (2.1)

provided that § —a < =.

2.2 Peak-Bound Lemma for Singlepeak-Solutions. Let u € C%(T) be a singlepeak-
solution of (1.5) and let (1.3) be satisfied. Then there is a positive constant M;, depending only
on Ay, Az and g, such that

v < M; inT. (2.2)

2.3 Proposition on Equivalence of Upper and Lower Bounds. Letu € C3(T) be a
solution of (1.5) and let (1.3) be satisfied.
(i) If there is a constant M, depending only on A;, A; and g, such that one local maximum
u(7) is estimated by u(y) < M, then there are two other constants 0 < m < M, also depending
only on A;, As and g, such that

m<u<M onT.

(ii) The conclusion in (i) also holds, if there is a constant 7 > 0, depending only on A4;, A5 and
g, such that one local minimum u(e) is estimated by u(a) > m.



Theorem 1.2 is an immediate consequence of Lemma 2.1, 2.2 and Proposition 2.3, as can be
seen as follows: If u is a multipeak solution, there exists at least one pair of local mimima with
a distance less or equal 7. On these intervals Lemma 2.1 can be applied and due to Proposition
2.3 all extrema are estimated in terms of one extremum. The situation needed to apply Lemma
2.1 fails to exist only if u has exactly one local minimum, i.e. is a singlepeak solution. But in
this case Lemma 2.2 yields the upper bound and due to Proposition 2.3 we again have a lower
bound; thus the theorem is proved.

The results above also show, that the set of all 2x-periodic solutions of (1.1) or (1.5) is bounded
uniformly in the set of all ¢ that satisfy (1.3).

3 Nonexistence of Large Multipeak-Solutions

This chapter is devoted to the proof of Lemma 2.1 and Proposition 2.3. For later use let us
define

By := min{v|v — A, g(v) > 0} >0, (3.1)
- By := max{v|v — A29(v) < 0} < co. (3.2)

3.1 Lemma on Estimates of Local Extrema. Let u € C2(J) solve (1.5) with (1.3) on I,
and assume that « takes a local maximum at 4 € I, a local minimum at @ € I and is monotone
between o and 4. Then

wa) < B, (3.3)

u(y) > B, (3.4)
w(7)? - 24:G(u(7)) < u(a)? - 24,G(u(a)) (3.5)
u(@)® - 24,G(u(a)) < u(7)? - 24,G(u(7)) (3.6)

Proof: We may assume o < 7. Since
Ugz + U — A2g(u) <0 in I’

multiplying u,. yields

d (1, 1, } .
—_ = — — < .
o {2um+2u AG(u)p €0 inJ

Integrating this inequality on (e, v) yields (3.5), since u.(@) = u.(v) = 0. If we start with
Uz + 4 — A1g(u) > 0 in [

and proceed as above, we obtain (3.6).
The other two inequalities are simple consequences from the maximum principle and the mono-
tonicity of g. O

3.2 Proof of Proposition 2.3. We consider the local situation given in Lemma 3.1. So if u
has a maximum 7 satisfying u(y) < M, then the neighboured minimum « is estimated using
(3.6) by |

. -4;G(u(a)) < M?—-24,G(u(y)) < M2



This gives a lower bound u(a) > m due to the unboundedness of G in a neighbourhood of zero
stated in (1.7). Note that m only depends on A;,g and M.
Conversely, if u(a) > m then (3.5) and (3.3) lead to

u(7)® = 24:G(u(7)) < B3 - 243G(m)

As the conditions on g also include that G(p)p~? tends to zero as p tends to infinity, this in-
equality gives a bound u(y) < M, where M only depends on Ay, g and m. |

Remark: Please note that in the proof of Proposition 2.3 only the conditions (1.7) are used.
. The stronger conditions (1.8) will only be needed below in the proof of Lemma 2.1. ‘

3.3 A Technical Lemma. Let (1.7)2 and (1.8) hold. Then for every A > 0 there exist positive
constants ro = (A, Ag, g) and Ry = Rg(), As, g), such that if 0 < r < R satisfy

R? —24,G(R) < 1% —24,G(r), (3.7)
r
— > A 3.8
9(R) ~ (3.8)
then either r > rg > 0 or R < Ry.

Proof: Suppose that there exist sequences r; — 0 and R; — oo, if j — oo, satisfying
r;/9(R;) > A and
R? — 24:G(R;) < 17— 242G(r;).

Multiplying this inequality by Rfr'jﬁf we obtain
M5

2
rj —2_ T G(r;)rj
1-2AG(R;)R;" — =5 | < —24,——1—
9(R;) ( 2GE)E; R?) = *9(R;)R?
Invoking the conditions (1.7)3, (1.8) on g this implies
| rj G(rj)rs
< —24,—2—
9(R;) ~ *9(R;)R?
< A
for sufficiently large j, which contradicts the assumption. 0O

3.4 Lemma on the Distance of Critical Points. Let u € C3(I) solve (1.5) with (1.3) on
I'and let o, 8 € I, & < B be critical points of u, i.e. uz(a)= u;(8) =0. Then
A, 8
Afa s S g max{ u(a), u(6)} (3.9)
Jau
implies § — a > =.

The easy, but fundamental observation needed to prove this lemma is the validity of the
following integral identity, which is obtained from (1.5) by multyplying with « and integrating
by parts:



3.5 Lemma. Let u € C1(I) solve (1.5) on I and let @,f € I, @ < # and u,(a) = u,(8) = 0.

Then 5 p 5
/ ul = / u? - / a(z)ug(u). (3.10)
Proof of Lemma 3.4. Let I(z) be an affine function defined by u(a) = I(a) and »(8) = I(8),
ie.
I(z) = pz+ u(a), B o= u(ﬂ}_;:t(al.

Applying Lemma 3.5 and setting v(z) = u(z) — I(z), we have

a

B 8
/ (va: + ”)2 > / 'UZ
a a

B 8
/ v < / v? - 7, (3.11)

Since v(a) = v(8) = 0,

holds. We thus derive

[+ a

J = ./(xﬁa(z)ug(u)—ZLﬂvl—Lﬂlz.

But estimating the integrals on the right hand side of this definition we see

8 ] ]
2/ vl+/12 < 2/ ul
« a «

< amax{u(@), o(®)} [ v (3.12)

where J is given by

which implies J > 0 by using (3.9). But then, assuming § —a < 7 and estimating the left hand
side of (3.11) from below by the Wirtinger Inequality gives

B B B
[ [z [ -7
o «@ [43

which is clearly a contradiction. Thus § — a > . O

3.6 Proof of Lemma 2.1. Since z is a multipeak solution, there exist local minima «, 8 of
v satisfying # — o < 7, thus Lemma 3.4 implies

A ff g(u)u
[u

Let u('y)xbe a maximum of % in (a, 8). As g is monotone,

L > Aig(u(v)),

L= < 2max{u(a),v(8) }

so that ‘
max{ u(a),u(@)} | 1,

9(u(7)) K




As the estimate on the local maximum (3.5) holds, applying the technical lemma 3.3 yields
either
max{u(a),u(f)} > 10 >0 or u(y) £ Ro.

By Proposition 2.3, proved earlier in this section, we conclude that if one of the above bounds
hold, we automatically have an upper bound for %, eventually replacing Ry by another constant
M.

This completes the proof of Lemma 2.1. : m]

4 Nonexistence of Large Singlepeak-Solutions

In this chapter we will consider singlepeak solutions of (1.5), i.e. solutions that without loss of
generality can be assumed to have exactly one local maximum and one local minimum in T, as
nonstrict extrema can only appear in a finite range of positive values of u.

The starting point is again a local property of the solution; here we will examine the distance of
inflection points next to the local maximum and the scaled limit of u if this maximum becomes
large.

4.1 Lemma on Inflection Points. Let {un}nerv € C3([pn,gn]) With g, — p, < 27 be a
sequence of solutions for

Ungz + Up — an(z)g(un) =0 in [pnyqnly (4°1)

a, satisfying (1.3) and u, satisfying %nzz(Pn) = %nzz(ga) = 0 and 4,z < 0 on [pp, ¢,]. Moreover
suppose
M, = max u,(z) — oo ifn— oo,
z€[pn.qn]
and the maximum is attained in (pn,gn). Then ¢, — pn — = and u.(z + pn)/M, — sinz
pointwise in (0,7), if n — oo .

Proof: By translation we may assume p, = 0. Rescaling

1 : o In
vp(2z) = Eun()«nz) with A, = =
yields
2 ’\?zan .
Vnzz + Anln — i g(un) = 0 in [0,7]. (4.2)

By the estimates 0 < v, < 1, ¥pzz < 0and vpzz+A20, > 0 we conclude that {v,}nerv is bounded
in C?([0,7]). Therefore the Arzela-Ascoli Theorem guarantuees the existence of a subsequence
— still denoted by v, — such that v, — v € C1([0, x]). Taking another subsequence if necessary
we have A2 — k € [0,2]. Since u, > By on [ps, ¢n] by the concavity of u,, passing to the limit
in (4.2) yields

Vzr + kv = 0 in [0, 7]

along with v(0) = v(x) = 0, v > 0 and maxv = 1. But the only solution to this problem is given
by
k=1 and wv(z) = sinz.



Thus ¢,/7 — 1 and using this we conclude

1
—1u,(z) — sinz.

M,
As the limit is independent of the choice of the subsequence, the proof is complete. |

4.2 Lemma on the Concave Part. Let u € C%([p, ¢]) be a concave solution of (1.5) on [p, ]
and #zz(p) = Uzz(g) = 0. Then for each ¢ > 0 there is a constant M, depending only on A;, A,
and ¢, such that

. .
|/ sin(z — p)a(z)g(u(z))dz| < € and [r—(¢g—-p)| < ¢ (4.3)
P
holds provided
max u(z) > M.
z€[p,q|

Proof: Ifnot, then thereisa o > 0 and a sequence {%y, Pn, gn, 8n }neav satisfying the assump-
tions of Lemma 4.1 and

/q.. sin(z — pn)an(2)g(un(z))dz| > € or |7 —(gn —pn)|l > €o- (4.4)

n

As (gn — pn) — 7w by Lemma 4.1, the integral expression has to be valid. Since u, > B; and g
is nonincreasing, the integrand is bounded. Moreover, by (1.9) and Lemma 4.1 we observe that
for each z € (0, %)

Jim sin 2 ax(z + pa)g(un(z + )| = 0

holds. Thus applying the dominate convergence theorem yields a contradiction to the integral
expression in (4.4). m

The next lemma quantifies the relation between the minimum value of z and the values of u at
points distant from the minimum point.

4.3 Lemma on a Lower Bound away from the Local Minimum. Let u € CZ(I) solve
(1.5) in an open interval I, where u, changes its sign only once, and let @ € I be the point,
where the minimum is attained. Moreover let u(a) < ¢ < B; and define

2._ 2¢
T A -¢
Then |z — a| > 6§ implies u(z) > (.

Proof: We may assume z > a; the case z < « is similar. Supposing u(z) < ¢, the monotonicity
of u on (z,a) yields
v 2

- Upe = a.q(u)_u > Alg(C)_C = ’6_2'
Integrating twice on (z, @) then gives
u(z) - wa) > Sz - a

which implies u(z) > ¢, if |2 — @] > §; a contradiction to our assumption. o



4.4 Proof of Lemma 2.2. Without loss of generality we may assume that
:= maxu(z) > Bs and = mi B
u(y) = maxu(z) > By and w(e) = mipu(z) < B,

so that both maximum and minimum are strict and thus 4 and a uniquely determined. Suppose
p and ¢ are two inflection points and %, < 0 in [p, ¢]. We distinguish two cases:

Case 1: ¢ — p < .
Maultiplying the differential equation (1.5) by sin(z — p) and integrating yields

0 = /p””"sin(z—p)a(z)y(u(z))ds

q pt+r p+27

— / +/ +/ sin(z — p)a(z)g(u(z))d=
P q p+1r

=: Io + Il + I2-

‘Now we know from Lemma 4.2, that for all € > O there exists an M > 0, such that if u(y) > M,
then
0<Ip<e and [r—(g—p)| < ¢

holds. Besides the estimate on I this result also allows a statement about where to locate the
minimumpoint a: Generally o has a distance greater or equal 7 /2 either from p or from g¢; here
we can conclude, that the distance either to p or p + x is larger than #/4, provided we choose
€< w/8. '

Suppose Ja — (p + #)] > x/4. Due to this minimal distance between o and p + = we derive a
lower bound for « on [¢,p + x]: Choosing ¢ in Lemma 4.3 in a way that § > 7 /4, the conclusion
of the lemma gives

v>( in[g,p+ 7]

(Please note that ¢ can be choosen independent of €.) Thus I; is estimated by

0 < 1 £ Ag(Q)(m—(g-p)) < A2g9(¢)e.

The case |o — x| > 7/4 is similar, so the above estimate on I; holds in general.

As to Iy, we have the estimate
I, < —2A19(By),

due to the bound u < B, on the possible values of « at inflection points, given by the differential
equation.
Collecting terms we arrive at

€ + Agg(C)E - 2A1_(](Bz) 2 0.

But this leads to a contradiction, if € is choosen small enough, i.e.

) € 1= min{%,%}.

So u(y) must be bounded by the constant M = M (A;, Az, ¢) in Lemma 4.2.
Case 2: ¢ — p > .
Using the notation from case 1, we see that I; does not occur here. Thus

0 = /pq+/qp+2rsin(z —p)a(z)g(u(z))dz =: Iy + I

10



must hold. Again we have an upper bound for I, by
p+27 .
I < —Aw(Bs) [ [sin(z=p)lds < ~Aig(Ba),
p+9x /8

provided € < #/8. The contradiction now follows immediately from lemma 4.2.
This completes the proof of lemma 2.2.
5 Existence of Solutions

In this chapter we will prove the existence of a solution of (1.1) using the Leray-Schauder degree.
Herein we make use of the uniform boundedness of solutions of (1.1) with respect to functions
a satisfying (1.3) stated in Theorem 1.2. We define

E = {vecg('m—’;‘- <v<2Min T}. (5.1)

5.1 Mappings. Let F be a continuous mapping from E X [0,1] into C{(T), defined by

ra(z) + (1 — 7)ay

F(u,7) == 2u - (5.2)
with a constant ag satisfying the bounds imposed on a in (1.3).
Let T denote a linear compact operator from Cg(T) into itself, given by w = T'(f), where w is
the unique solution of '

~Wee +w = f inT.

Setting Sy := S(.,7) := T o F(., T), we have a continuous, compact mapping from E into C(T).
Clearly u is a fixed point of S,, if and only if u € E solves

Ta(z) + (1 — 7)ap

Uge — U + 2u — =0 inT,

which is (1.1) in case of r = 1. The a-priori bounds in Theorem 1.2 now imply that S, has no
fixed point on the boundary of E, in other words

(I-5)u#0 ondE 0<r<l.

Thus the homotopy invariance of the Leray-Schauder degree yields

5.2 Proposition.
deg (I — S, E,0) = deg (I — Sy, E,0). (5.3)

To show the existence of a solution of (1.5) it now suffices to prove that this degree is not equal
zero.

5.3 Lemma. The number
deg (I — So, E,0) (5.4)

is not zero; in fact, it equals —1.
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Proof: As proved by Gage and Hamilton in [GH] (see also [AL], [EW]), there is a unique
solution u € E of .
‘ u,,,,+u—;°=0 in T,

which is given by the constant atl)/ 2, (Actually in [GH] the setting is ag = 1/2, but our problem
here reduces to theirs by changing from u to (2a0)'/2u.)
So ug := a(l,/2 is the only zero of I — Sy in F; thus

deg (I — So, F,0) = deg (I — Sp, Bs(u),0)

for some sufficiently small §. At ug the mapping I — Sp is nondegenerate in the sense that the
derivative I — Sj(uo) is injective. Indeed, suppose that

(I = So(uo))v = 0

Since Sg(uo) = T o F'(up,0), this implies
—Upe + ¥ = 2v+ﬁgv
Up
or, using the definition of ug
Vee + 20 = 0.

But this problem has no nontrivial 2#-periodic solution. This nondegeneracy enables us to apply
~ a standard degree theory result (see [N], theorem 2.8.1, p.66 or [D], example 2.8.3, p.65), which
states

deg (I — So, Bs(u0),0) = (~1)?
where § is the number of eigenvalues of S} (counting algebraic multiplicity) greater than one.

We show the elementary computation of §: -
A number A is an eigenvalue of Sy(uo), if and only if there is a nontrivial solution v € C3(T) of

Av = Sy(uo)v

or, equivalently :

3-2
A

Thus B equals the number of A > 1 (co’unted with multiplicity), that solve % = n? for some
integer n > 0. As these A are given by A = 3 and A = 3/2 with multiplicity 1 and 2, respectively,
we have

_'vzz = V.

deg (I-—-So,Bg('uo),O) = (—1)3 = -1.
O

Remark: Concerning the uniqueness of solutions of (1.1) in C2(T), the implicit function the-
orem implies that the zero of I — S; is unique provided 7 is small, since no bifurcation from
(u0,0) occurs due to the nondegeneracy of the unique zero ug of I — Sp.

We intend to discuss the general uniqueness problem in a forthcoming paper.

Acknowledgements: This work was done while the first author visited Hokkaido Univer-
sity, Sapporo during 1993/94, supported by a postdoctoral fellowship of the Japan Society for
the Promotion of Science, no. 93186. The second author was partly supported by the Japanese
Ministy of Education, Science and Culture through grant no. 05452009 for scientific research.

12



References

[A]

[AC]

[AL]

[€]

[D]

[EW]

[Gal]

[Ga2]

[GH]

[G1]

[Gu]

[N]

[So]]

[Son]

[T]

S. Angenent, On the Formation of Singularities in the Curve Shortening Flow, J. Dift.
Geometry 33 (1991), pp.601-633.

A. Ambrosetti, V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems,
Birkhauser, Ziirich (1993).

U. Abresch, J. Langer, The Normalized Curve Shortening Flow and Homothetic Solu-
tions, J. Diff. Geometry 23 (1986), pp.175-196.

V. Coti Zelati, Dynamical Systems with Effektive-like Potentials, Nonlin. Anal. Appl.
12 (1988), pp.209-222.

K. Deimling, Nonlinear Functional Analysis, Springer, Heidelberg, Berlin, New York
(1985).

C. Epstein, M. Weinstein, A Stable Manifold Theorem for the Curve Shortening Equa-
tion, Comm. Pure Appl. Math. 40 (1987), pp.119-139.

M. Gage, An Isopenmetrtc Inequality With Appltcatzon to Curve Shortening, Duke M.
J. 50 (1983), pp.1225-1229.

M. Gage, Curve Shortening Makes Conver Curves C:rcular, Inv. Math. 76 (1984),
pp.357-364.

M. Gage, R.S. Hamilton, The Heat Equation Shrinking Conver Plane Curves, J. Diff.
Geometry 23 (1986), pp.69-96.

M.Grayson, The Heat Equation Shrinks Embedded Plane Curves to Points, J. Diff. Ge-
ometry 26 (1987), pp.285-314.

M.E. Gurtin, Thermodynamics of Evolving Phase Boundaries in the Plane, Clarendon
Press, Oxford (1993).

'L.Nirenberg, Topics in Nonlinear Functional Analysis, Lecture Notes 1973/74, Courant

Inst. of Math. Sciences.

S. Solimini, On Forced Dynamical Systems With a Singularity of Repulsive Type, Nonlin.
Anal. Appl. 14 (1990), pp.485-500.

H.M. Soner, Motion of a Set By the Curvature of Its Boundary, J. Diff. Eq. 101 (1993),
pp.313-392.

S. Terracini, Remarks on Periodic Orbits of Dynamical Systems With Repulsive Singu-
larsty, J. Funct. Anal. 111 (1993), pp.213-238.

13



