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1 Introduction.

This note reports our recent results [2] on the existence of time-periodic solution of
curvature flow equations in the plane. The present paper includes a natural extension
of results in [2).

Let {T,} be a smooth one parameter family of closed embedded curves bounding a
domain in the plane. Let # be the argument of the inward unit normal n of T';. The
normal velocity of T'; in the direction of n denotes V. We consider an equation of I'; of

the form
V= a(g)k - Q(gat)) (1)

where k is the inward curvature of I’y and a and @ are given functions. Since 8 is
argument, a and Q are assumed to be 27 -periodic in 4, i.e., a(§ + 27) = a(f) and

Q6 + 2m,t) = Q(4,1). We assume that a is strictly positive so that our problem is



parabolic.

Existence Theorem. Assume that Q is T-periodic in time, i.e., Q(6,T + 1) =
Q(8,1) for all 0 < 6 < 2m,t € R. Assume that a > 0 and @ > 0 is continuous with

partial derivatives Qgp, @Q:, Qpo¢. Assume that
Qs +Q >0 forall § andt. (2)
Then there are a constant vector ¢ € R? and a closed evolving curve T, solving (1) and
Teyr=Ti+c forallt € R. (3)

The curvature of T, is always positive and the quantities in (1) is continuous. If Q is

smooth, so is T.

This shows the existence of time-periodic solution of (1) when @ is time-pereiodic.
Several exmples of (1) are provided in [3] where a standard form of (1) for thermody-

namics is derived. A general motion by anisotropic curvature is described as

=L
- A8)

where 8 > 0 is called a kinetic coefficient and o > 0 is called the surface energy density

|4 (("(8) + o(6))k — c(2)) (4)

of material; ¢(t) is the temperature difference. Since the condition (2 ) is equivalent to
say that the Frank diagram of Q(-,?) has a positive curvature everywhere for Q > 0,

our Existence Theorem yields:

Corollary.  Assume that 8 > 0,0 > 0 and ¢ are continuous with the second
derivative o”. Assume that ¢ is T-periodic and that the Frank diagram of ¢ and 1/
has a positive curvature everywhere. Then there is a closed evolving curve T solving

(4) which is T-periodic in the sense of (3). The curvature of T, is always positives.
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In our previous paper [2] these existence results are proved only for (1) with a = 1.

It turns out the method applies to general (1) with a small modification.

Curvature evolution equations. Since a solution I'; we seek is convex, we may
use 6 as a coordinate to represent I';. In 6 -coordinate evolution of curvature is described
by |

ke = E2(Vae + V)

as in [3]. If Ty evolves by (1), k fulfills

ke = k*((ak)os + ak — (Qop + Q)) (5)

Since T, is closed, k fulfills the constraint

o e =0 (8)

Of course, since 8§ is the argument of a normal, k is 27 -periodic in §. As in 2] to show

Existence Theorem it suffices to find a positive T-periodic solution k of (5), (6) with 27
-periodicity in 8. To simplify the notation we set

T=R/27Z and K =T x (R/TZ).

By h € C(K) we mean that h is continuous in R? and that A(z,t) is 27 -periodic in z
and T-periodic in time ¢. As in [2], the following existence result implies the existence
of k satisfying (5), (6) by setting Qgs + Q = f,6 = z,k = w and it yields our Existence

Theorem.

Theorem 1. Assume that a € C(T) is positive. Assume that f € C(K) with f > 0
and f; € C(K) satisfies

/”" f(z,0)e'*dz =0 forall € R. (7)
0
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Then there is a positive solution w € C(K) ( with aw € [ W2(K) )

>l
w = w?((aw);e +aw— f) in K (8)
satisfying .
2x e'z
/0 spde=0 fradlteR. (9)

Here W2 denotes L? - Sobolev space of order 2 in 2, 1in ¢.
If we set u = aw, u solves
au; = ¥ (Upe + u — f).

The outline of the proof of Theorem 1 is the same as that of the Main Existence Theorem
in [2] where a is assumed to equal one. Instead of presenting a whole proof, we point
out necessary alternations when a depends on space variable z.

The main idea is to get a priori lower and upper bounds for approximate penalized
equations admitting a solution. The penalty method applies to recover constraint (9).

The biography of [2] includes many references to recent work on equations of form
up = u¥(uz: + g(y, 2,1), 21

where g¢is a given function. We do not repeat it again here.

2 Harnack type inequalities.
In this section, we consider the equation
au; = v {uz. + g(y,z,t)} in K, (10)

where v € R and a is a continuous positive function on K with a; € C(KX).

Putting z = u;/u, we have
Uy UUy

u u?’



_ Uzt zuzzz Uz U
2z2 = -

u u u?

Differentiating az = u""!(u,, + g) in ¢ yields
azy = w2, + 20" U,z + vaz? + {0 (guu — g) — ar}z + u”’"ig,.
Let (zo,%o) be a minimizer of z over K. Then we have
vaz? + {v" (guu — g) — as}z + wlg, <0 at (20,%)

and hence
@uu—g)s  (a)s  am |ge'?
z > —yr 1228 os ~ —u3 (a7 at (zo,%0)-

Such differential identity is obtained for (8) with a =1, f = 0 by Gage [1]. Inequalities

of Harnack type in time direction (Lemmal) and in space direction (Lemma2) follow

from this estimate of 11}1;n z as in [2,§2].

Lemma 1. Assume that v > 1 and @ > 0. Suppose that there are positive constants

Co, €1, C2 such that
v9.(v, 2,1) — g(v,2,1) < co, |ge(v, 2, 1)1 < e (11)

for all (v,2,t) € (@,00) x K and maxu 2 ¢ for each positive solution u of (10). Then
there exists C = C(¢q, c1, 3, max a, n}x%n a,m}g.xlatl, v) > 0 such that for each solution u
of (10) with u > «

u(z,t) < u(z, s) exp(—C M7}t — 5)) (12)

for all (z,1),(z,s) € K with s — T <t < s, where M = maxu.

Lemma 2. Assume that v > 1, > 0 and (11) for g. If u is a solution of (10) with

u > o, then

c
u(z, t0)" > MY~ 1 Lz -20) in K,



where

Cne =~ Spr-t oy max(“‘)" + c‘(mafff)mM"—‘ + M gy

gum = max{(g(v, z t))+,a< v < M (z,t) € K}.

M= max u = u(Zo,%0),

3 Upper bounds.

We shall obtain an a priori upper bound for positive smooth solutions of
aus = u'{u,, + o(u)(v + ¥(z,u) — f(z,?))} in K, (13)

where ¢, ¥ are smooth functions on (0, c0), T x (0, o), respectively. Hear and hearafter,
a € C(K) is assumed to be time independent. This equation corresponds to the equation
(3.1) in [2], in which ¢ is independent of z. The dependence of % on z has no effect on
proofs in the rest of this paper.

Lemma 3. Suppose that ¥ > 0,f > 0and 0 < ¢ < ¢3,v — ¢(v)v < ¢4 on (@, 00)
with & > 0 for some positive constants c3 and ¢4. Then for each solution v € C*(K) of

(13) with u > ¢
// udzdt _<_ 27I'T(C3”f”°° + 64) = C]_

// utd dt < C3 lllft“w E
KU mlna

Proof. The first inequality is obtained in the same way as the proof of Lemma 3.1

in [2]). Multiplying u;/u” with (13) and integrating over K yields

//K Y gedt = —// w)u fdedt = // (u) fudadt,

where

B(s) = /O o(r)dr for s € R.



We thus have
2
[ [ aZdzdt < esCill il

This implies the second inequality. O
Lemmas 2 - 3 yield the following theorem.

Theorem 2. Suppose that 1 <+ < 3 and a > 0. In addition to the hypotheses in

Lemma 3, assume that
o'(v)(%(z,v) — ) + (v)¥'(v) L0,

0 < ¢'(v)0” < e5,90(v)(¥(z,v) — min f) < es(v +1)

on T x (a,00) for some constants cs,cs > 0. Then there is a positive constant M,
depending only on ¢;(3 < j < 6), T, ||flloos || felloos > n’lli‘n a such that maxu < M, for each
solution v € C®(K) with 4 > a.

4 Lower bounds.

We consider the equation

ate = 6t + 0. (W)(u + Yu(2,8) — £)} in K (14)

in this section. To get a positive lower bound for positive smooth solutions of (14), we

investigate the stationary problem
U, +U=F inT. (15)

The coefficient a clearly gives no effect when we treat the stationary problem.

The following lemma is a key as in [2].

Lemma 4. Let b € R and d > 0. Suppose that V. > 0on (5,0 +d), V £ 0and V,
is Lipschitz continuous on [b,b 4 d]. If V., +V > 0 on (b,b+ d) with V() = V.(b) = 0
and V(b+d) =0, then d > .



Let {y¥}.>0 be a sequence of positive functions on T x (0,00) such that p*(z,)
is nonincreasing for each z € T and p* — pF in T x (0,00) as ¢ — 0. Suppose that
p; — po uniformly in every conpact subset of T x (0,00) as € — 0. Let {h]}.5¢ be
a sequence in L*®(0,00) with 0 < A7 < 1 such that A7 — hy = 1 uniformly in every
compact subset in T x (0,00) as € — 0. Put A} =1 for all € > 0. For a positive function

UonTande>0, we set
2x
AXCU) = /0 sina(z — Ot (z, U)RE(U)dz  for ¢ € R,

where siny z = max(sin z,0) and sin_. z = — min(sin z, 0).
The following lemma is the same as Lemma 4.2 in [2] except for the dependence of

pE on z € T, which does not affect the proof.

Lemma 5. Assume that there are positive constants k;(0 < j < 4) such that for

each positive solution U € C*(T)
i) 0<F<ky,where F=U,. +U
i) k < maxU < ky,
i) A7(C,U) < k3AF(C,U)+ ks forall ¢ €R.

Suppose that
1
/ ¢y (2%)dz = oo.
0
Then there are positive constants &, ey depending only on k; ’s and {pF}, {h:} such
that mri"n U > 6 for each positive solution U € C*(T) of (15) and 0 < € < &.

The following is the same as Lemma 4.4 in [2].

Lemma 6. If u € C(K) satisfies (12), then there are A\, A > 0 depending only on
C,v, M, T such that

Au(z,t) < U(z) < Au(z,t) for (z,1) € K,
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here U(z) = . t)dt
where U(z) = /0 u(z,1)dt.
Lemma 5.3 in [2] remains valid even if ¢,(u) is replaced by . (z, u) as stated below.

Lemma 7. Assume that f, € C*(K) satisfies (7). If 0 < ¢, <1 and 1 —¢,(v) <

cre?v™! for v > €? with some positive constant c7, then

l//K{go,(u)qb,(z, u)+ (1 - go,(u))f,} sin(z — ¢)dzdt] < 4T ¢ze? (16)
for each solution u € C*(K) of (14) with u > ¢® and ( € R.

Using Lemmas 5-7, we can prove our lower bound theorem in the same way as the

proof of Theorem 5.7 in [2].

Theorem 3. Assume that f, € C®(K) satisfies (7) with f, > 0 and that ¢,
fulfill
0L @e(v) £1,0< 9e0(2,0) 2,6 S 20(1— . (v)) 2° <2 forv>e®
%gm}%n(fc - ¢¢(m’v)) >0, ¢¢v(z)v) <0, forv> 62,3: €T.

Then there are positive constants ¢q, 6o depending only on T, || f|[co, || fell o> IIII(i,n fes m%n o, maxa

such that minu > 8o for each solution u € C*(K) of (14) with u > €% and 0 < € < &,.

5 Existence of periodic solutions.

We start with approximate equations

2 £a

m—f)} in I, (17)

aw, = (w + e2)*{w,. + 5(w+

v
(w+€?)
where a € C°(T), f € C®(K), & : T x (0,00) — (0, 00) is a smooth function such that

&.(z,+) is nondecreasing for every z € T,

€(z,v) =v forv> mea,z €T,

9



vV (mea) < &(z,v) <l(vV (mea)) forv>0,z€T

with some 1 <1< 2 and
. 1 .
gzt
To solve (17), we need the following fact, in which the coefficient a(v) of v, in
Lemma 6.1 in [2] is replaced by a(v,z,t) and we can prove in the same way as the proof

of Lemma 6.1

Lemma 8. Assume that §is a positive constant and that a is a continuous function
on R x K such that a(z, z,t) > ao for all ¢ € R on K with some positive constant aq.

Then for each h € C(K) there exists a unique solution v € [ W2*(K) C C(K) of
q>1

v = a(v,2,1) (Ve —bv + k) in K.

Moreover the solution operator A + v is a continuous, compact operator from C(K)

into itself. There are positive constants 6y, Co depending only on ao, |A|e, 8, T, sup a

such that » *
lollyas < Collbllo for 2 < p <2+ 0, € C(K).

Take b > 0 such ‘that

ea
€. (z,aw + €2)

$(w,2,1) = buy + — (0, 4

(wy +€?)? —f)z0

for all w € R, (z,t) € K and ¢ > 0if w > 0. For this b let S be the solution operator of
avy = (v4 +€%)?(vze — bv+h) in K,
which is well-defined by Lemma 8. Lemma 8 also yields;

i} Sis a continuous compact operator from C(K) into itself,

ii) S(h) is Holder continuous on K for h € C(K).
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By standard regularity theory and maximum principle, we see that each fixed point of
So ¢ in C(K) is a positive smooth solution of (17).
We can calculate values of the Leray-Schauder degree in a large and a small ball in

C(K) in the same way as in Lemmas 6.3, 6.4 in [2].

Lemma 9. There is 7o > 0 such that the degree of I — S o ¢ of the value zero in
B,(0) equals one , i.e.,
deg (T — S0, B,(0),0) =1

for 0 < r < .
Lemma 10. There is Ry > 0 such that
deg (I — So ¢,Bg(0),0) =0 for R > R,.

We sketch proof of Theorem 1.
Proof of Theorem 1. Choose an approximate sequence {a.} € C®(T) and
{f.} € C=(K) satisfying (7) such that

a. = ain C(T), f. = f,fee — fiin C(K) as € — 0.

From Lemmas 9, 10, for each € > 0 there exists a positive solution v, € C*(K) of (17)
with a = a. and f = f. for each ¢ > 0. Putting u, = v, + €%, u, satisfies

2)2

u—¢ ea, .
a v = u*{u,, + —(—T(u + o uted) fe—¢*)} in K. (18)
Setti
ng (v 7 ca,
<Pc(v) = T’¢¢(x;v) = 65(2:)2) +€2);

©e, Y. satisfy the assumptions of Theorems 2, 3, so there are positive constants My, 6o, €0

such that 6 < u, < My on K for 0 < € < 9. Then we obtain a positive solution u of

au, = u(Uze +u— f) (19)
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as the limit of a subsequence of {v.} in W2!(K) with p > 2. It remains to prove the
constraint (9) for w = u/a. Multiplying sin(z — ¢)/u? with (19) and integrating over
(0,27) yields

-5 / sm(z —()dz = -—/ fsin(z = ¢)dz =0
for all £, € R. Letting € — 0 in (16), it follows that
/ / 2 sin(z — ¢)dzdt =0 for all ¢ € R.
K u

" These imply that w = u/a satisfies the constraint (9). Therefore u is our desired solution

of (19). O
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