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1. Introduction.
Consider the Cauchy problem:

ugy — (e, ty ) (Upr +%ur) = %u,G(ut,u,), (ryt) € (0,00) x (0,T%), (1.1)
u(r,0) =ef(r), u(r,0) =eg(r), r€(0,00), (1.2)
where
(e, ur) =1+ Zouf + oy, + Ful + O(wif + Ju, ),
G(ut, ur) =O(u] +uf),
near u; = u, = 0. Equation (1.1) is a radially symmetric form of quasi-linear

wave equation in two space dimensions which involves the equation of vibrating
membrane. In [4], we obtained the following blow up result:

1
limsupe?log(1+T2) £ —,
e—0 H
where T, is the lifespan of the radial solution of the Cauchy problem (1.1), (1.2)

and H is a constant depending only on f, g and 82¢(0,0). More precisely, the blow
up occurs as follows. If we set

C(ut, ur)vrr — Urt
i) =
w(r?) 2c(uy, u,)

with  v(r,t) = r%u(r,t),
then we find that
|w(r )] — 0 as e?log(l+1t) — %

along a pseudo-characteristic curve for sufficiently small e.
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2 ASYMPTOTIC BEHAVIOUR

In this paper, we investigate the asymptotic behaviour of w(r,t) when €2 log(1-+1%)
tends to %.

2. Statement of Results.

As we did in [3], we assume f,g € C(R?), |f| +|g| Z 0 and f(r) = g(r) = 0
for r 2 M. Moreover we assume a; — a2 + a3 = a # 0 which means (1.1) does not
satisfy the null-condition. Then we can define a positive constant H by

H =I,§1€a§c(—a7:'(/’)7""(/’))
= —aF'(po)F"(po),

where F(p) is the Friedlander radiation field which is constructed by f and g (see
[4]). We introduce a variable s = £?log(1 + t) and we write { = tx when s = X,
i.e.,

X = e?log(1l +tx).

To state our results, we have to recall the facts which are obtained in [4].
Firstly, for any B > H we consider the Burgers equation:

a 1
Ups + E(Up)zUpp =0, (P, 5) €R x [0» _]a

Uy(p,0) = F'(p), p ER,

then, there exists an ¢(B) > 0 such that the Cauchy problem (1.1), (1.2) has a
smooth solution in 0 £ ¢ < ¢ 1 and the following holds.

1

5 m m 1 Te—3
10107 u(r, 83 ) —er™H(—1)m 0T (r — ty, 2)| S Cigm,petr™d o

1
for r-—-t%>—§ and [+m#0

for € < e(B). Moreover, U satisfies

U(p(s),5) =F'(po),
~ -7:"(130) _ ]_-//(p) (2.2)
U,,p(0(5),5) e aF'(po)F"(po)s T 1—Hs'’

for 0 £ s £ & along the curve A, defined by

d
;i—g: g(UP)2 for s20, p=po for s=0.
These facts are proved in section 3 of [4] by using the energy inequality and the
Klainerman inequality.
Secondly, we define a pseudo-characteristic curve Z by

dr

1
zl—t-=c(ut,u,) for t21ty4, r=p(—§)+t71§ for t=14
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and a function w by

CUry — Upt

. 1
» with  o(r,t) = r2u(r,?).

w(r,t) =

Then, for any A < H there exists an &(A4) > 0 such that if ¢ < £(A4), then w should
satisfy '

w' (1) = ap(t)w(t)? + a1 () w(t) + aa(t) for ty StSt, (2.3)
wlty) = Uyp(o(5), 5) + O(ed), (2.4
where
w(t) = w(r(t),t) for (r(t),t) € Z
and

ao(t) = — acF (po) (1 + 1)~ + O(e3 (1 +4)1),

a1(t) =0(e*(1 + )" +2(1 + 1) 72), (2.5)
aalt) =O(e(1 +)7), |

as long as u exists. Here X = O(Y’) means |X| £ CY with constant c depending
only on B, f, g, po,a and M. This fact is proved in section 4 and 5 of [4] by using

(2.1), (2.2) and a priori estimats of u.
Now we state our results.

Theorem. For any 6 > 0 there exists an €5 > 0 such that w(t) is well-defind in
ty §t§t11?_5 for € < €5 and at thepointt=t71?_5,

.1 2 w(t) 1 F
holds.

However, since we are interested in the behaviour of w when e?log(1 +¢) tends
to 711-, we reduce the above result into

Corollary.

. 1 w(t) 1
1 = —ellog(l + 1)) —=~ = —F" .
o, egl;g(l”t)_’ﬁ(ﬂ e“log(1 +1)) " 7 (o)

In three space dimensions, for the radial solution of the Cauchy problem:

2
upe — 2 (ue)(urr + ;ur) =0,

u(r,0) = ef(r), w(r,0) =eg(r),
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with ¢(u:) = 1 + au; + O(u?) and a # 0, F. John [5] and L. Hormander [2] have
shown a blow up result

1
. < T TTAT)
h?j(t]lpelog(l +T.) £ max(aF"(p))

In this case, if we set H = max(aF"(p)) = aF"(po), we also expect

. 1 w(t) 1
lim — —¢elog(1+1¢))—~* = =F"(po
ol (g —elog1+ )22 = £ (),
which would be obtained in parallel.

For the non radially symmetric case, S. Alinhac [1] studies the Cauchy problem

2
fu— Au= Z gfjakua,?ju, (z,t) € R? x (0,T.),

i,,k=0
u(z,0) = uo(z;e), ug(z,0) = ul(z;€), S Rz’

where 8y = 9; and g,-kj are constants. Note that this problem differs from ours in
the power of Jyu. If 4%, u! and gf; satisfy the non degenerate condition (ND), he
finds the asymptotic lifespan T® which satisfies the following: For any N € N,
there exists an exy > 0 such that if € < ey, then

T¢>Te"—eN

and

1
@ -0ulip SO for 5 SESTE -

holds for some constant C. Since he estimates 8%u not along a pseud-characteristic
curve but in whole space R?, it seems difficult to determine the constant C.
In the rest of this paper, we concentrate on the proof of Theorem.

3. Proof of Theorem.
In [3], we have proved that there exists an £;(§) > 0 such that for € < &; the
Cauchy problem (1.1), (1.2) has a smooth solution uin 0 £ ¢ £ t1 _s and therefore

w(t) is well-defined in ¢ 3 St t3 5. Thus we have only to prove that for any
n > 0 there exists an £9(8,7) > 0 such that

1 w(t 1
(g —s _i‘l — g7 (po)l <7
for ¢ < go and s = % — 6. If we take 4 = 77 + 6 in the argument in section

2, there exist an €;(6) > 0 such that if € < €3, w({) should satisfy the ordinary
differential equation (2.3), (2.4) inty St St .5 as long as u exists. Thus we find
that for € < min(ey,e2) the ordinary differential equation (2.3), (2.4) make sence
inty St<ta e

y: "

Now the following lemma is useful.
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Lemma. Let w(t) be a solution of the ordinary differential equation
w'(t) = ao()w(t)® + a1 (H)w(t) + aa(t) for t, StST

and assume
ap(t)20 for tStET,

'w(to) > K
where
T ¢
K= Iag(t)lexp(—/ ay(7)dr)dt.
to to

Then w(t) satisfies

w(to) - K
1— (w(to) — K) f;, cno(7) exp(f} a1 (€)d€)dr

w(t) exp(— /t oy (r)dr) 2

and

o w(te) + K )
w(t)exp(— | ai{(7)dr) < - ~ .
Oexp(= [ oxt) S T 0l0) T E) I aolr) expJ. en (€))7

Proof of Lemma. At first we consider the case 1(t) = 0. Let w1(¢) be a
solution of

wi (1) = eo(t) (wr(t) - K)?, (3.1)
w1 (to) = w(tp) (3.2)
and set .
wy(t) = 5 laa(7)|dr.

Since ag(t) 2 0, we find that
wi(t) 2 w(to) > K = wy(T) 2 w(?)

and that
(w1(2) — w2(t)) =ao(t)(wi(t) — K)? — |aa(?)]

Sao(t)(wi(t) — wa(t))? + aa(?),
w]_(to) - wg(io) =UJ(t0).

Thus the usual comparison theorem leads
wy(t) — wa(t) £ w(t). (3.3)
By solving the ordinary differential equation (3.1), (3.2), wy(¢) is represented by

’UJ(to) - K
1 (w(to) — K) f;, ewo(r)dr’

wl(t) =K +
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Substituting this equality into (3.3), we find

W(to) -K
w(t) 2 K+ 1~ (w(te) — K) f:o ()" — wy(t)
> 'w(‘to) - K

~ 1~ (w(to) - K) f;, cro(r)dr
On the other hand, if we let ws(¢) be a solution of
wy(t) = ao(t)(ws(t) + K)?,

w3(to) = w(to),

then we find
(ws() + w2(t))' =co(t)(ws(t) + K)* + |az(?)]

2ao(t)(ws(t) +wa(t))® + e2(2),
'w_';('to) + Wo (‘to) =’w(to).

Thus we obtain
ws(t) + wa(t) 2 w(t).

Since w3(t) is represented by

w — ‘w(to) + K
3(t) K+ 1— (w(to) + K) ftto Olo(T)dT’
we obtain (o) + K
— Y\to wsg
w(t) S— K+ I (o) + K) [ et + ws(2)
< ‘w(to) + K

“1- (w(to) + K) J} cno(r)dr

For the general case, setting

W(t) = w(t) exp(—-/ ay(7)dr)

to
and applying the result we have just proved to W(t), we obtain the inequalities we

wanted.

Now we want to apply Lemma to (2.3), (2.4) as {p = i1 and T = t1_s By
(2.5), we have

exp( /t ey (7)dr) = exp(O /t 1+ 7))
= exp(O(e* log(1 +¢)) + O(e* log(1 + t1)))
=exp(0(e?)) =1+ O(e?) for ty <t
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t1 _ t

K= t bl alag(t)|exp(— t a;(7)dr)dt
=0((1+ez)e/t’5"6(1+t)-2dt) (3.4)
‘%

=0(e(1+14)7") +O(e(1+1 1 _5)7")
=0(&?),

/ co(T) exp( ' a1 (£)dE)dr
t* t%

=(1+ O(e?))(—aeF"(po) + O(c 1)) /t (1+7)"1dr

=(~acF"(po) + O(e%))(log(1 +t) — log(1 +14))
for ¢y StSty .

Since H > 0, —aF'(po) and F"(po) have the same sign. Without loss of generality,
we can assume that both are positive and then it follows from (2.4) and (3.4) that
there exists an €3 > 0 such that

w(té-) > K
and
ao(t) 20
hold for € < €3. Thus we can apply Lemma and obtain
(1 + CeHw(t)
> w(té)l— Ced 5
1= (w(ty) — Ce3)(—aeF (po)U,,(5) — Ce)(log(1l +1¢) —log(1 + ¢ 1))
. Up(5) = Cet 1
L= (=aF"(p0)Upe(3) — OF)(s — ) i

IA
A

~ 8,

for

- s
B

where U,,(%) = U,,(p(%),5) and C is a constant depending only on B, f, g, po,
a and M and it varies from line to line. By (2.4), we get

1
w(t) 2(1 _ CEZ) UPP(%) — Ce1
e = L= (aF (p0)Upp(3) — CeN)(s — 3)
1
U, (5) — Ces
- 1
1— 3B +Cei
-5
LF(p)—Cet 1
=5 ; for B
g — 8+ Cei _

— 6.

8

HA
A

1
H
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Ifwesets=-£1?-—5, we have

w(t) 5 =S
— - 2 ]l'” Cety—H _°
(g 9% g7 o) - o
Céet
ey -
F(po )5+c T §+Ced
1 Cet Céei

=—F"(p0) — - )
e wen SR

There exists an €4(8,1) > 0 such that if € < &4, then

Cet + Céet <
5+Cel  s+Cel o7
i.e., ‘
w(t) 1 1

holds. Similarly, using the other mequahty in Lemma we find that there exists an
es(6,m) > 0 such that if € < €5, then

(— - S)M - %ff'”(po) <7

holds. Thus if we take €9 = min(ey, €2, €3,€4,¢5), we find that

(2= 928 _ ()] <

holds for € < ¢ and this completes the proof of Theorem.
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