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Abstract

We present three curious phenomena in coupled chaotic systems with different time scales:
a copy, an itinerant motion, and ‘firework’. The phenomena obtained may provide possible
implication of interacting two macroscopic systems, namely ‘observing’ and ‘observed’

systems.

# A part of this work was done in Kyushu Institute of Technology.
t Leaving Kyushu Institute of Technology, Dept. of Artificial Intelligence.



§ 1 Introduction

In this paper, we deal with a coupled chaotic system with different time-scales,
motivated chaos-based observation. The system is constituted by two chaotic dynamical
systems. To introduce a distinct time-scale in each system explicitly, we couple a two-
dimensional map with the discretized equations by Runge-Kutta algorithm of differential
equations with three variables, where the evolution time corresponding to one step of
Runge-Kutta algorithm is viewed as one discrete time-step of the map. In this coupled
system, we found various kinds of behaviors.

A coupled chaotic system has been well studied, motivated the better under-
standing of turbulence(for instance, K.Kaneko, 1992; R. J. Deissler, 1987), complex elec-
tric circuits like nerves(V. Perez-Munuzuri, V. Perez-Villar and L. O. Chua, 1992), spatial
nonlinear dynamics(J. P. Crutchfield and K. Kaneko, 1987), and even motivated various
interesting features of itself as complex systems(for instance, K. Kaneko, 1990; I. Waller
and R. Kapral, 1984). If one is concerned with complex dynamics like one in brain, how-
ever, the studies in this area so far may not be sufficient. One point lacked is a description
of coupled systems with distinct time-scales.

The introduction of distinct time-scales in this paper is unusual. Since we
use Runge-Kutta discretization, the reader might be concerned with spurious solutions
that could be obtained by discretizing ODEs. Actually, spurious solutions were found in
Euler’s discretization(M. Yamaguchi and H. Matano, 1979; H. -O. Peitgen, M. Prufer and
K. Schmitt, 1988). This situation can occur also in Runge-Kutta discretization. However,
it was also proved that Runge-Kutta discretization is robust for getting real solutions if
evolution time is sufficiently small. We here chose an appropriate evolution time to avoid
spurious solutions that are qualitatively far from real solutions.

In section 2 , we report an itinerant motion and a copy found in uni-directionally
coupled system. In section 3, we characterize these behaviors by means of the Lyapunov
spectrum and the information flow. We also atempt to show the mechanism. In section
4, we report another type of behavior found in bi-directionally coupled system, which is
called ‘firework’ that appears as a quite different attractor in size from the ones in the
isolated systems. Section 5 is devoted to concluding remarks.

§ 2 Dynamics of uni-directionally coupled system
In this section, we show a dynamic behavior in uni-directionally coupled system.
The model is expressed as follows:

z(n+1) = F(z(n)) + Cf(v), (1)
dv/dt = G(v),

where z € R*,v € R™,n a discrete time, ¢ a continuous time, and f is, in general, a
nonlinear function of components of v, but here we study the case of a linear coupling.
Furthermore, F and G are nonlinear.

In the simulation of eq.(1), we used the Runge-Kutta algorithm, whereby the
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equation (1) is reformulated by eq.(2) in computation.

z(n + 1) = F(z(n)) + Cf(v(n)), (2)
v(n + 1) = v(n) + AG(v(n)),

where AG is an increment of G in the Runge-Kutta algorithm, which is assumed small.

In case of the inverse coupling from map to continuous system, the overall
behavior could be a Brownian motion, triggerd by a ‘random’ force if F is a fully chaotic
map. Whereas, we now consider the forced system by a slowly varing variables, since we
are concerned with how and to what extent the semi-macroscopic (dissipative but close to
conservative system with fast variables) ‘observer’ receives the information of the dissipated
macroscopic world. In the present paper, we investigate mainly a sine-map forced by the
Lorenz system.

z1(n + 1) = sin(az1(n) + bzz(n)) + Cvi(n),

z2(n + 1) = sin(cz1(n) + dzz(n)) + Cvs(n),

n(n+1) = va(n) + AK (v1(n), a5(n), vs(n), 3
va(n + 1) = va(n) + AL(v1(n), v2(n), v3(n)),

v3(n + 1) = v3(n) + AM(v1(n), v2(n),vs(n)),

where AK, AL, AM are increments in the Runge-Kutta discretization of the Lorenz sys-
tem. The Lorenz system is given as follows(Lorenz, 1963):

dv, /dt = —ovy + ovs,
dvy/dt = —vy + rv1 — V103, (4)
dvs/dt = ~Pvs + vy 3,

We choose the parameters of the sine-map a, b, ¢ and d such that the isolated
sine-map has only periodic points as an atiractor, and we also choose a small value of
the coupling constant. Then we found copies of the Lorenz attractor around the periodic
points in ; — #, plane of the sine-map(Fig.1(a),(b)). One can easily control the number of
the copy, selecting the period in the isolated sine-map: n-periodic points for n copies. One
may also control the size of copied attractor, tuning the value of the coupling constant in-
its appropriate range.

-Fig.1(a)-
-Fig.1(b)-

This kind of copy can also be obtained, using an intermittent chaos. We set
up the parameter values of the sine-map to exhibit intermittent chaos after coupling.
The overall trajectory is shown in Fig.2. A magnification in the neighborhood of each
destabilized periodic point through the saddle-node bifurcation shows a slightly distorted
Lorenz attractor and fine unstable manifold connecting the Lorenz attractor with the other
chaotic region(see Fig.3).

-Fig.2-
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-Fig.3(a)-
-Fig.3(b)-
In such a case a long stay, in the neighborhood of the unstable periodic points, due to the
appearance of intermittency is essential for the copy. In this period, the slow variables affect
the fast variable almost linearly. The orbit stays for a long time on the distorted quasi-
attractor (with the form of the Lorenz attractor without Cantor set) and begins to escape
from such an attractor when orbit reaches to the edge of the chaotic region. A time series
of the variable z, depicted in the lower part of Fig.2 clearly shows the intermittency. When
the size of the copied attractor is allowed to become large with the increase of distortion,
we obtain itinerant motion between two chaotic regions. One example is shown in Fig.4(a).
A coupling constant C is larger than the one in the copy process. An itinerant motion
beween two chaotic clusters is seen. These clusters are considered ‘quasi-attiractors’. A
fine manifold connecting the clusters is a ruin of the Lorenz attractor(a partial copy of the
Lorenz attractor excepting Cantor set). The time series of variable 2, is shown in Fig.4(b).
The schematic drawing of the feature is shown in Fig.5, where two quasi-attractors denoted
by @ and @ are connected by the fine channels of manifold, @, ®),®),and @ in order of
(®—-0@) — (6 —®)™, where (k — £)" means n-fold of the sequence (k — £).
-Fig.4(a.),(b)-
-Fig.5-

It is still questionable whether or not the itinerant motion obtained here is equiv-
alent to chaotic itinerancy(K. Ikeda, K. Otsuka and K. Matsumoto, 1989; K. Kaneko, 1990;
P. Davis, 1990; I. Tsuda, 1992). The notion of chaotic itinerancy has been proposed by the
above authors with unanimous cooperation in order to elucidate a dynamic behavior with
a long history. Chaotic itinerancy has been observed in high dimensional dynamical sys-
tems. In the present case, in place of high dimension, a distinct time-scale was introduced,
whereby a similar behavior to chaotic itinerancy was observed.

§ 3 Characterization and mechanism of the dynamics
In this section, we investigate a dynamic feature of the behaviors in terms of
several quantities, whereby the mechanism can be elucidated.

3-1 The Lyapunov spectrum

The Lyapunov spectrum are calculated by the conventional method of Shimada
and Nagashima(1978). Figure 6 shows the Lyapunov spectrum of the attractor shown in
Fig.4. The spectrum is (+,+,—, —, —), hence practically the system exhibits chaos. The
computed result is the following: (9.94x107%£3.75x107%,1.38 x 10~ *£4.1x 1078, —1.61 x
1072 £2.15 x 107%,—0.17 + 9.42 x 10~%, ~0.24 + 1.84 x 10~*). The Lyapunov dimension
(J. L. Kaplan and J. A. Yorke, 1979) in this case can be estimated as dim A=2.062. The
largest exponent apparently stems from the positive exponent of the Lorenz system. The
positiveness, though small, of the second exponent is questionable. It may be a numerical
problem in a system with distinct time scale. The attractor in Fig.4(a) in 2; — z, plane is
constructed by just one orbit. Indeed, different initial conditions converge to one trajectory
after transient motion. A seemingly chaotic motion depends on the long past history, so
that we call it an itinerant motion.

-Fig.6-
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3-2 Time-dependent mutual information

It would be valuable to study what kind of informational structure is con-
structed in the process of the dynamics. To see this, we calculated time-dependent mutual
information between the sine-map and the Lorenz system. In determination of a state, we
chose only one variable in each system, say z; and v;. Since the coupling is uni-directional
from the Lorenz system to the sine-map, the mutual information betweem the two systems
indicates the information content flowed from the Lorenz system to the sine-map. Defining
a time-dependent mutual information as follows(K. Matsumoto and I. Tsuda 1985, 1987,
1988), one can know the information structure of the chaotic itinerant motion.

Low(t) = —X;p(25)log p(2;) + TiZ;p(vi)p(2; /vi; t) log p(2; [vist), (5)

where p(z;) is a stationary probability of a variable z; taking a state j, and p(z;/vi;t)
a time-dependent conditional probability that z; takes a state 7 at ¢ time-steps after v,
having taken a state ¢. This quantity expresses the information content conveyed by the
variable v; among the information of the variable #; possessing.

Figure 7 shows the time-dependent mutual information in the case of inter-
mittent chaos of Fig.2, where 100 states are taken in both variables z; and v, i.e.,
t,7=0,---99.

-Fig.7- A

The calculated mutual information is oscillatory, and its envelop shows a power decay in
time:

I o(t) = Ipt™® (6)

where Iy is an initial information (at ¢t=1). Taking the logarithm of both 51des of eq.(6),
and replacing the variable log ¢ by s, eq.(7) follows.

log I, ,(8) = log Iy — as, (7)
Taking a derivative of both sides with respect to s, we obtain eq.(8).

Lo (8)/Ien(s) = —a, (8)

where I, (s) = dI, ,(s)/ds.
This means that the same ratio of information decays at each tlme-step in a logarithmic
time-scale.

One can also use an algorithm for calculating a bit-wise mutual information(K.
Matsumoto and I. Tsuda, 1987), namely, one can calculate information flow between any
two binary digits, adopting a binary expansion of a variable. The same ratio of the in-
formation decay means that an information mixing takes place in binary space. Thus,
each binary digit may contain information of almost every digit. In the present case, the
information mixing takes place in binary space with an elongated time scale: the mixing
speed becomes slower and slower, accompanied with the dynamics. The advantage of this
type of decay of information lies in the system’s cability of dynamic storage of information
conveyed from another system.



3-3 Dynamical mechanism of copy and itinerancy
In this subsection, we inquire a mechanism of the copy and the itinerant motion
of the coupled system. Our system can be rewritten as follows.

2(n +1) = F(z(n)) + Cf(v(n)) (2’2)
v(n+ 1) = v(n) + AtG(v(n)), At <1, (2’b)

where f has components constituted by the components of v. Since v is a slowly varying
variable compared with 2, the second term of the right hand side of eq.(2’a) is considered
as a constant during a period of, roughly, the order of At~!. Thus, eq.(2’a) can be replaced
during this period by the following equation (9):

z(n+1) = F(z(n)) + k, | (9)

where k is a constant vector.
Depending on the value of components of k, this dynamics can have three stages
of dynamics, each described by one of the following equations.

zn+1)==z(n)+k ' (10)
z(n+1)= Az(n) + k (11)
o(n+1) = Pla(n)) + 5, (12

where A is a non-identical constant matrix.

When the system follows eq.(10), its orbit in space z is described as a trace of a drifting
point influenced by the differential system(eg., the Lorenz system), whose point is a fixed
point of the isolated map(eg., sine-map). When the coupling constsnt C is relatively small,
the copy of the attractor (excepting Cantor set) is achieved in the neighborhood of the
fixed point. Whereas, when C is relatively large, only the part of the attractor can be
copied. When the system follows eq.(11), the orbit is described as a trace of a drifting
spiral motion if a matrix A has at least one pair of complex eigen values. Finally, when the
system follows eq.(12), the orbit could be chaotic due to nonlinearity of the map. Taking
into account the all stages of dynamics, one may conclude that actual orbits behave as if
it is intermittent with a long past history.

In order to check the plausibility of the above scheme, we introduced a ‘distance
plot’(Tsuda & Okuda, 1994). We define a distsnce plot as to indicate a distribution in a
phase space of temporal(or transient) characteristic quantity of dynamical orbits. Several
kinds of indications can be taken into account. We will report them in a separate paper in
detail(Tsuda and Okuda 1994). Among others, here we present the definition of one kind
of distance plot. The distance plot L7(z¢) is defined as a distribution in phase space of
the Euclidean distance between corresponding positions of orbit at time £ and ¢ + 7, where
29 is an initial position.

L7(z0) = ||[F*(z0) — F**7(20)l, (13)

where F*(zg) is an orbital point at time ¢ of the dynamical system F with initial condition
zg, and || ¢ || an Euclidean norm of e.



The distribution is plotted in phase space, for instance, in #; — 2, plane. Every
position in a plane can be classified by colors according to the distance. Here, we plot the
distribution of the distance in k; — k2 plane in the following system:

z1(n + 1) = sin(az1(n) + bzz(n)) + K - (14)
z2(n + 1) = sin(cz1(n) + dza(n)) + ks

where k; and k; are components of constsant vector k, and 7 is fixed to some value. The
result is shown in Fig.8. Some orbits of the Lorenz chaos projected on v; — vz plane are
superimposed in the distance plot. An overall dynamics is executed synchronously with
the Lorenz dynamics(Fig.8(b)). The computed orbit is classified by color corresponding
to the position of the Lorenz orbit(Fig.8(a)). The value of 7 was determined as the time
when the orbit falls into attractor, so that here r = 10.

Fig.8(a),(b)-

The overall dynamics copies the Lorenz orbits when the Lorenz orbits locate in
the places where the distance keeps small values. When the Lorenz orbits pass through the
places of the intermediate value of the distance, the overall dynamics exhibits periodically
modulated behaviors. Once the Lorenz orbits arrive at the places of higher values in the
distance plot, the orbit starts to behave chaotically. Thus, the orbit identification by
distance plot assures the above decomposition, eq.(10)-(12).

§4 Dynamics of bi-directionally coupled system
In this section, we consider the mutually coupled system with explicitly different
time scales. The system used is as follows:

z1(n + 1) = sin(az(n) + bz2(n)) + Crv1(n)
23(n + 1) = sin(cz1(n) + dza(n)) + Crvs(n)

vi(n + 1) = v1(n) + AK(v1(n), v2(n), v3(n)) + Ca21(n) (15)
2+ 1) = v3(m) + AL(wn(n), v3(n), o(n)

vg(n + 1) = vz(n) + AM(vi(n), va(n), va(n)) + Caz2(n),

where C; and C; is a coupling constant. The typical dynamics are shown in Fig.9.
-Fig.9(a)-
-Fig.9(b)-

When the values of both coupling constants are large, the orbit tends to converge
to a fixed point or to diverge. However, a curious phenomenon appears in some combination
of C1 and C;. The orbit stays in the neighborhood of the initial position (~ (0, 0)) untill
the first around 40,000 steps (¢ = 0 ~ 4). At the next stage, the orbit draws a horseshoe
and spirals out rather regularly, but after a while it spirals in rather chaotically and shrinks.
After that, the orbit begins to move straightly in the positive or the negative direction along
the v; axis depending on the initial conditions(Fig.10(a)). As soon as the orbit reaches to
the place at vy ~ 25,000 or v; ~ —25,000, the orbit explodes and then constructs a huge
chaotic attractor as shown in Fig.10(b). This critical region of explosion is very thin that
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is almost orthogonal to the v; direction. The size of the attractor is about 10® times of
the one in the isolated system.
-Fig.10(a),(b)-

Figure 11 shows the distance plot on v; = —25,000, i.e., (v2, v3) — plane, which
may indicate an existence of the stable manifold of the huge attractor. This manifold is
also unstable manifold of the saddle that is generated close to v; = —25,000 — plane via
the bilateral coupling.

-Fig.11-

Figure 12(a) is a schematic drawing of this feature in five-dimensional phase
space. We call this dynamical behavior ‘firework’. The firework is due to the generation of
the heteroclinic orbit connecting saddles. The connection of the two saddles, So(v; = 0)
and S;(v1 = —25,000) does not generate intersection of stable and unstable manifold of
the saddle S;, but the other connections among the other saddles locating far from S,
and S; possesses heteroclinic intersection, which gives rise to strange attractor(see also
Fig.12(b)). A variable v3 of the Lorenz system has a value of zero for a long time while v,
only across a value of zero. Then the positive feedback becomes dominant by the mutual

coupling of #; and v, which drives a variable v;, but not vs.

The firework may be in the same class as crisis (C. Grebogi, E. Otto, and J. A.
Yorke, 1983) in its geometric features, but it has some new characteristics: the unusual
size change of attractor, and a dynamic manifestation of a chain of unstable manifold of
different type of attractors.

-Fig.12(a),(b)-

The firework itself is stable for noise, but since the system has many basins
of attraction, even infinity, the complex transition among basins by noise can be seen.
Actually, when we add the noise to the orbits staying at the huge attractor, the orbit can
leave the attractor, then diverges or returns to the neighborhood of the v3 axis and again
moves to another huge attractor (Fig.13).

-Fig.13-

We numerically found a simple relation of C; and C; which generates fire-
work(Fig.14), that is, C;Cy = b, where a = —1.2 and b=0.04. A further investigation is
necessary to elucidate this relation.

-Fig.14-

§ 5 Concluding remarks

We presented a new type of coupled chaotic systems, where we found curious
behaviors: the copy, itinerant motion, and firework. A characteristics of the dynamics is
two distinct time scales which were introduced explicitly. This study is motivated in the
exploration of the explicit model system that may simulate the interacting process between
the ‘observer’ and the ‘observed system’. The proposed system is simply a combination
of simple dynamical syatems, thus it should not be regarded the ‘same’ system as neural
assemblies. Nevertheless, there seems room to expect that the dynamics reported here
could be the implication of observation process of cortical neuro-assemblies, since the
cortical activities at the level of neuro-assemblies has, probably, much different time-scales
from the ones in the outer world.
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Figure Captions

Fig.1

Fig.2

Fig.3

Fig.4

Fig.b

Fig.6

Fig.7

A copy of the Lorenz attractor.

The parameter values:c = 10,» = 35,8 = 4,a = 0,b = —2.41,c = 1,d =
1.1,C = 0.001, A¢ = 0.0001.

(a) The whole attractor projected in phase space z; — #;. Six clusters are seen.
(b) A magnification of one of the clusters. The Lorenz attractor(without Cantor
set) is seen.

The whole attractor projected in phase space z; — 2, in intermittent chaos. A
time serise of trajectory of 2, indicating the intermittent motion is shown in
the lower part of the figure.

The parameter values:o = 10;7 = 35,8 = 4,a = 0,b = -2.677,c = 1,d =
1,C = —0.0001, At = 0.0001.

(a) The 44 magnifications of the upper central part of Fig.2. A copy of distorted

shape of the Lorenz attractor is seen. All parameter values are the same as in

Fig.2.

(b) The 44 magnifications in the z; direction and 10 magnifications in the 2,
direction of the upper central part of Fig.2. A copy of the projected Lorenz
attractor and the fine unstable manifold connecting the projected Lorenz at-
tractor with the other chaotic region are seen. All parameter values are the
same as in Fig.2,

(a) An itinerant motion in z; — z, space.

Parameter values:c = 10,» = 33,8 = 4,a = 0,b = —1.5,c = 1,d = 1, At =
0.0001.

(b) A time series of the variable z;. An increment of time evolution is At =

0.0001.

A schematic drawing of an itinerant motion. Numbers in the figure indicate a
sequence of trajectory.

An evolution of Lyapunov spectrum of the attractor shown in Fig.4(a).
Black line is a time series of the largest exponent and green, blue, red and violet
are the 2nd, 3rd, 4th and 5th exponent respectively.

A time course of mutual information I, ,(t) (log-log plot) between two systems
in the case that At = 0.005,¢t = 0 ~ 5,0 = 10, = 35,8 = 10,a = 0,b =
-2.677,c = 1,d = 1, and C = —0.0001(see also Fig.2). The range of phase
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Fig.8

Fig.9

Fig.10

Fig.11

Fig.12

Fig.13

space £; = —1.1 ~ 1.1,v; = —25 ~ 25 are divided into 100 partitions for the
calculations.

(a) A distance plot in k; —k; plane (7 = 10). A part of the Lorenz chaos(v; —vs
plane) are superimposed with white curve(up to ¢ = 0.8 with an increment
At = 0.00001).

(b) A trajectory in z; — @ is drawn synchronously in color with Lorenz dy-
namics. A correspondence between values of distance and colors is as follows :
Code = (Value of distance) x 4(modulo 7)+1.

Code = 1 — dark blue, Code = 2 — green, Code = 3 — blue, Code = 4 —
red, Code = 5 — violet, Code = 6 — yellow, and Code = 7 — black.
Parameter values : o = 10,7 = 33,8 = 4,6 = 0,b = -1.5,¢ = 1,d = 1, and
C = 0.04.

Typical dynamics of bi-directionally coupled system with small value of coupling
constant.

(a) A trajectory in v; — v3 space. (b) A trajectory in z; — z2 space.
Parameter values : ¢ = 10,» = 33,8 =4,a = 0,b = -15,c=1,d =1,C; =
0.001,C; = 0.3, and A¢ = 0.0001.

(a) A curious behavior of bi-directionally coupled system (the first 5 x 10* steps

are shown). Coupling constants : C; = 0.0008, C; = 4.6. The other parameter
values are the same as in Fig.9. '

(b) A huge attractor of ‘firework’ (shown up to ¢ = 20). Dots in the neighbor-
hood of the center are the trajectories of the first, around 5 x 10% steps. The
other parameter values are the same as in Fig.10(a).

The distance plot in v; — v3 plane.

A color coding is as follows : Code = (Value of distance)/100,000 (modulo 7)+1.
Code = 1 — dark blue, Code = 2 — green, Code = 3 — blue, Code = 4 — red,
Code = 5 — violet, Code = 6 — yellow, Code = 7 — black, and if (Value of
distance)/100,000 is greater than 300, then take white. At = 0.0001,¢ = 0.01.
The other parameter values are the same as in Fig.10.

(a) A schematic drawing of stable and unstable manifold of ‘“firework’ in five-
dimensional phase space.
(b) A schematic drawing of heteroclinic intersection.

Orbits of ‘firework’ after adding the random noise to the variables v and vs.
Numbers in the figure indicate the sequence of the orbit.

The amplitude of the random noise is 50.

Cy = 0.028,C, = 0.05. The other parameter values are the same as in Fig.9.
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Fig.14
The relation of Cy and C, that generates ‘firework’ (log — log plot).
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