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INDICES OF HOLOMORPHIC VECTOR
FIELDS RELATIVE TO INVARIANT CURVES

TATSUO SUWA

In [2], C. Camacho and P. Sad defined the index of a holomorphic vector field
relative to an invariant non-singular curve and proved an index formula, which was
used in showing the existence of a local integral curve for arbitrary holomorphic
vector fleld with an isolated singularity at the origin in C2. Then A. Lins Neto
generalized, in [6], the definition of indices to the case where invariant curves may
have singularities and proved an index formula for curves in P2C, the complex
projective plane. The formula was used in the study of the existence problem
of algebraic solutions of dimension one singular foliations on P2C. As one of the
problems, he proposed to generalize his index formula to the case of dimension one
singular foliations on an arbitrary complex surface. The purpose of this note is to
remark that in fact his ideas apply to deal with the general case.

In section 1, we define the local index of the module E = (v) generated by
a holomorphic vector field v on C? relative to an invariant curve C. As in [6], we’
make use of a meromorphic 1-form coming from a decomposition of a holomorphic
1-form w which annihilates v. In our case, we take a decomposition of w with respect
to a defining function of C' and restrict the meromorphic form to each irreducible
component C; of C, while in [6], the decomposition is taken from the beginning
with respect to a defining function of each C;. In either of these two definitions, the
index is an analytic invariant and the difference is a topological invariant, which
is given in terms of intersection numbers in (1.4) Proposition. It is also expressed
in terms of some other invariants of curve singularities. An index formula for the
indices defined in section 1 is proved in section 2 ((2.1) Theorem). The result is
that, if C' is a compact curve in a complex surface X invariant by a 1-dimensional -
singular foliation F on X, then the sum of the indices of F relative to C is equal to
the self-intersection number C? of C. Thus in the presence of a foliation leaving C
invariant, C? is localized to the singular points of the foliation. The proof is done
by taking an embedded resolution 7 : X — X of C, comparing the indices of E
relative to C and the indices of the foliation F induced on X from E relative to the
proper transform C of C and applying the Camacho-Sad index formula for £ and
C. Thus the ingredients are essentially in [2] and [6]. Using the adjunction formula,
the index formula is restated in (2.5) Theorem, which generalizes the index formula
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in [6]. In section 3, we give an interpretation of the index in terms of holonomy,
which may be known to experts.

Elsewhere [11] a generalization in the higher dimensional case is studied
along the line of [5] and that will include an alternative proof of the above index
formula.

1. Indices of logarithmic vector fields

We denote by O the ring of germs of holomorphic functions in C? = {(z,y)}
at the origin 0. The O-modules of germs of holomorphic vector fields and of holo-
morphic 1-forms are denoted, respectively, by © and Q. Let C be the germ of a
reduced curve in C? = {(z,y)} at 0 with defining function f in ©. We say that a
germ v in © is logarithmic for C if v(f) is in (f), the ideal generated by f in O ([1],
[8]). Let C = UI_,C; be the irreducible decomposition. It is not difficult to see that
a germ v in O is logarithmic for C if and only if it is logarithmic for each C; and
that this is the case if and only if (a representative) of v is tangential to each C;
at each of its non-singular points sufficiently close to 0. Thus, if v is a logarithmic
vector field for C, we also say that C is invariant by v. Sometimes C is called a
separatrix of v. For a germ v in ©, we let S(v) dénote (the germ at 0 of) the set
{(z,9) | v(z,y) = 0} and call it the singular set of v. If we write v.= a2 + b—
with @ and b in O, S(v) is the set of common zeros of @ and b. In what follows
we consider germs v with codim S(v) > 2, i.e., S(v) C {0}, which is equivalent to
saying that a and b are relatively prime in O. A germ v in O defines a dimension
one (non-singular) foliation near 0 outside of S(v) The foliation is equally defined
by a 1-form w which annihilates v. If v = a =+ b2 3> We may write w = bdz — ady.

(1.1) Lemma. Let v be a germ in © with codim S(v) > 2 and C a germ of reduced
curve with defining function f. Then v is logarithmic for C if and only if there exist
germs g and h in O and 1 in Q) such that h and f are relatively prime and that

*) - | gw = hdf + fn.

Proof. The lemma is proved in [6] when f is irreducible. We may use the same
argument if we note that, if f is reduced, after a suitable change of coordinates
(z,y) of C2, we may assume that —5 and f are relatively prime. Thus suppose v is

logarithmic for C. Then we have a—£ + b—-ﬁ = kf for some k in O. We see that a

and f are relatively prime, since by assumptlon a and b are relatively prime and
—-t and f are relatively prime. Hence, by setting g = —L h = —a and n = kdzr, we

ha.ve the identity (*). Conversely, the identity (*) 1mp11es that hdf Aw+ fpAw = 0.
This shows that v(f) € (f), since df Aw = —v(f)dz Ady and h and f are relatively

prime. O

Let v be a logarithmic vector field for a reduced curve C with defining
function f. Also, let C' = UI_,C; be the irreducible decomposition of C and f
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= f1--- fr the corresponding irreducible decomposition of f in O. If we denote by

= (v) the submodule of © generated by v, we may think of E as (the tangent
sheaf of) a 1-dimensional singular foliation near 0 in C2. Note that every germ in
" E is logarithmic for C. Thus for each i, C; — {0} is a leaf of the foliation. Now
we define the index Indo(E; C, C;) of E relative to the pair (C,C;) at 0 as follows.
First let ¢; : A — C; be a local uniformization of C;, where A is a disk about the
origin in C. Consider a decomposition (*) of w with respect to f. Since h and f are
relatively prime, ¥4 h is a merornorphzc 1-form on A. We denote by Resg ] 1 its
residue at 0; Resq ] = e \/_— f ¢f+, where v is a closed path in A going around

0 once conterclockwise, and we set
(1.2) Indo(E; C, C;) = — Reso 99;%.

As in [6], it is shown that the right hand side in (1.2) depends only on E, C and
C;. We set

Indo(E;C) = ) Indo(E;C,Cy).
=1
Thus Indo(E; C;) = Indo(E; C;, C;), which is computed using a decomposition of w
with respect to f;.
(1.3) Remarks. 1°. Indo(E;C;) is the index defined by Lins Neto in [6]. When C;
is non-singular, it also coincides with the index of Camacho and Sad [2].

2°. We denote by L the link of C at 0; L = C N S2, where S? is a 3-sphere in C?
with center at 0 and small radius ¢, and by B — L the restriction of the closed disk
bundle over C' = C — {0} (closed tublar neighborhood of C' in C?). Note that L
and B are naturally oriented. We have, by definition and the projection formula,

a0 -2 [ 2= (=)' [40(-D).

where I' denotes the boundary of B with the reversed orientation. Later in section
2, we see that Indg(E; C) represents a "localized self-intersection number” of C at

0. Noting that —¢ = -‘!f along the integral curves, the above formula should be
compared with the one for the intersection number at 0 of two curves C and D
defined by functions f and ¢ without common factors :

1 dg 1 df dg
C-D = by a4
( o = 2r/=1JL ¢ ("wv ) / g’
where L is the link of C and this time I is also taken as
T'={(z,9) | |f(z,y)| = |9(z,y)| = €}

with the oriention such that d(arg f) A d(arg g) is positive ([3] Ch. 5). In [11], the
above formula for the index is generalized to the higher dimensional case.

3



(1.4) Proposition. In the above situation, we have

Indo(E; C, Cs) = Indo(E; Ci) + Y _(Ci - Cj)o, -
i

where (C; - Cj)o denotes the intersection number of C; and Cj at 0.

Proof. Let gjw = hdfj + fjnj be a decomposition of w with respect to f;. Note
that we may choose h independent of j (see the proof of (1.1)Lemma). If we set
Fij=fi-- -fj -+« fr (omit f;), we have Fjg;w = hF;df; + fn;. Hence we get

gw = hdf + fn with g=ZFjgj and 77=Z77j'

j=1 j=1
Therefore, we have

Indo(E; C,C;) = — Resg cp, = —Resotp ZRes go*n] .
J#i

Since ¢fw = 0, we have

af;

f]] = _(C' - C])O

Resg ¢} Zl = — Resg ¢}

a

(1.5) Example. Let C be a reduced curve with defining function f. The vector
field v = —-t-z% - -55-3‘2- is logarithmic for C and its annihilator is given by w = df.
We may thxnk of thls as a decomposition of w with respect to f. Thus if we set

E =(v), we have Indo(E; C, C;) = 0 for each irreducible component C;. Hence we
get Indo(E; Ci) = — 37;.44(C;i - Cj)o (CE. [6] p.201).

(1.6) Example. Let E = (v) be generated by v = AzZ + /Ly-;—y with A and g
non-zero complex numbers and set C; = {y =0} and C; = {x = 0}. The vector
field v is logarithmic for C = C1UCj. Since w = py dx — Az dy is a 1-form which an-
nihilates v, we have Indo(E;C1) = & and Indo(E; C) = -;\: Hence Indo(E; C, C})
= £ 41, Indg(E; C,C;) = % + 1 and Indo(E;C) = (A‘L‘ti We may also com-
pute these invariants directly using the decomposition (y — z)w = (Az + py)d(zy)
— (A + p)zy(dz + dy) of w with respect to zy.

(1.7) Example. Let E = (v) be generated by v = 2z + By% and set Cj

={fi=0}with f; =y, f2 = z and f3 = 23 —y2. We see easily that v is logarithmic
for C = Cy UCy U C3. We have Indo(E; Cy) = % and Indo(E; C3) = %— To compute
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Indo(E; C3), note that yw = z dfs — 3f3 dr, w = 3y dz — 2z dy. Since a uniformiza-
tion for Cj is given by (z,y) = (¢%,1%), We have Indo(E; C3) = — Resg _—3‘1,1- = 6.
Usmg (C1,C3)0 = 1, (C2,C3)o = 2 and (03,01)0 = 3, we have Indo(E C,Ch)
= 2 +34+1 = 121, Indo(ECC2) +1+2 = 131, Indo(ECC;;)
=6+4+2+3 =11 and Indo( E;C) = =-. We may also compute these invariants di-
rectly using the decomposition (—z* +4:c y—y>+3zy?)w = (2z+3y)df —11 f(dz+dy)
of w with respect to f = f1f2f3.

Let C be a germ of reduced curve in C? at 0 with defining function f,
C = Ui, C; the irreducible decomposition of C and f = f; - - f, the corresponding
irreducible decomposition of f. For the pair (C, C;), we define a non-negative integer
co(C,C;) as in [4] 1. Thus let ¢; : A — C; be a uniformization of C; as before. We
have ¢¥df = 0. Hence go*(-%r) . —gp}‘(?ﬁ-) and since either %5 or %y[ is not divisible

by fi, it represents a meromorphic 1-form on A. We let ¢o(C, C;) be the order of
the pole at 0 of this meromorphic 1-form. Note that 1t is zero if and only ifO0isa

non singular point of C. Since ¢} f; = 0, we have ¢} ax = i (f1- -+ fr) and
ay =i (f1- %gi -+« fr). Hence we see that
(1.8) co(C, Ci) = ¢o(Ci, Ci) + Y (Ci - Cj)o.
J#i
We set

r

co(C) = Z co(C, Ci).

i=1
This number is related to the Milnor number of C as follows. Suppose 3 -Qi and f

are relatively prime. Then denoting by D and Cy, respectively, the d1v1sor of _.ﬁ
and the y-axis, we have

Co(C, C,) = (D . Ci)o - (Cy . Ci)o -+ 1.
By & similar computation of intersection numbers as in [6] p.218, it is shown that
(1.9) | co(C) = po(C) +r -1,

where po(C') denotes the Milnor number of C at 0. Especially we have ¢o(C;, C;)
= po(C;), the Milnor number of C; at 0. We remark that the invariant co(C)
coincides with 26 ({4] Appendix I), where § is the invariant defined in [9] Ch. IV,
§1, and that the identity (1.9) coincides with the one proved in [7] Theorem 10.5.
From (1.4) Proposition and the identities (1.8) and (1.9), we may write

(1.10) Indo(E; C, C;) — co(C, C;) = Indo(E; C;) — po(C5).
and
(111)  Tndg(B;C) — uo(C) +1= Z(Indo E;Cy) = po(Ci) + 1).

i=1



2. The index formula

Let X be a complex analytic surface, i.e., a complex manifold of complex
dimension two. The sheaf of germs of holomorphic functions on X is denoted
by Ox. A dimension one singular foliation is defined by a rank one locally free
subsheaf E of the tangent sheaf ©x of X. The singular set S(E) of E is defined
to be the set of points in X where the quotient sheaf ©x/FE fails to be O x-free.
Thus a dimension one singular foliation is represented by the following data: (1)
an open covering {Uq}aeca of X, (2) (not identically zero) holomorphic vector field
vq on each U, and (3) non-vanishing holomorphic function eyg on U, N Us with
Vo = €qgvp on U, NUjg for each pair (a, B). The sheaf E above is the sheaf of germs
of holomorphic sections of the line bundle dual to the one associated to the cocycle
{eap}. If we set S(vy) = {z € Uy | va(z) = 0}, these sets patch together to obtain
the analytic set S(E). From now on we assume that codim S(F) > 2. Thus S(E)
consists of isolated points in X. Also, the integral curves of vy in Uy — S(v4) patch
together to obtain a decomposition of X — S(E) into disjoint union of 1-dimensional
submanifolds (integral curves of E). Note that a dimension one singular foliation is
also defined as a rank one locally free subsheaf of the cotangent sheaf Qx of X (the
annihilator of F). For more details about singular foliations, we refer to {10]. Let .
C be a reduced and (globally) irreducible curve in X. We say that C is invariant
by E, if a generator of E, (and hence every germ in E,) is logarithmic for C at
each point p of C. Suppose C is invariant by E and set S(E;C) = S(E)N C. Note
that S(E;C) contains the set Sing(C) of singular points of C. At each point p in
S(E; C), we have the index Ind,(E; C) defined in section 1.

(2.1) Theorem. Let E be a dimension one singular foliation on a complex surface
X and C a reduced and irreducible curve in X invariant by E. If C is compact, we
have
Y~ Ind,(E;C)=C".
PES(E;C)

First we consider the following situation. Let C be a germ of reduced curve
in C? at 0 with defining function f and C' = U7_,C; its irreducible decomposition.
Also, let v be a vector field logarithmic for C' and set E = (v). Denoting by X a
small neighborhood of 0 in C2, we take an embedded resolution 7 : X — X of the
singularity of C. Thus X is a complex surface and 7 a proper holomorphic map
onto X. The divisor of n*f can be written as

Z C’,‘ + Z m;Dj,
i=1 J=1

where (1) the C;’s are mutually disjoint non-singular curves and for each 4,
7|, + Ci — Cj is a resolution of the singularity of C;, (2) each D; is a projective
line and m; a positive integer, (3) if we set D = U;_,Dj, 7|3 _p is biholomorphic
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onto X — {0} and (4) each C; intersects with D at one point ¢; which is a non-
singular point of D and the intersection is transverse. The foliation E canonically
induces a singular foliation F on X ([2], [6]).

(2.2) Lemma. In the above situation, we have

Indo(E; C, Ci) = Indg,(E; Ci) + (> m;D; - Ci),.

j=1

Proof. A similar assertion for Indo(E; C;) is proved in [6] p.210. We may prove the
lemma along the same line. Thus let

gw =hdf + fn

be a decomposition for w with respect to to f. We have
(2.3) trg-mrw=n"h-d(x*f)+ 7" f -7*n.

If we denote (3.7, m;D; - C:)q: by m, we may choose local coordinates (s,t) on X
about g; so that C; is defined by s = 0 and ZJ’-=1 m;D; by t™ = 0 in a neighborhood
of ¢; and that # is a local coordinate on C; about g;. Note that the left hand side

of (2.3) is a multiple of a 1-form defining the foliation E in a neighborhood of g;.
The right hand side of (2.3) can be written as

hds + si
with A = 7*h - ut™ and 7 = wt™r*p + 7*h - d(ut™). Since h and f are relatively

prime, A and s are also relatively prime. Hence, denoting the embedding Ci— X
by ¢ and setting ¢ = m 0 ¢, we have

'Indq..(E’; Ci) = — Resy L*';.—I = — Resy (90*2 + é(Lu—t—l>= Indo(E; C,C;) — m,

) h t*u - tm

since ¢*u 1s a unit. O

Now, to prove (2.1) Theorem, we take a (global) embedded resolution
m: X — X of the singularities of C. Thus X is a complex surface and 7 a proper
holomorphic map onto X. The total transform of C can be written as

3
C’-{-ijDj,
Jj=1
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where this time (1) C is a compact connected non-singular curve and
7|g : € — C is a resolution of the singularities of C, (2) each D; is a projective
line and m; a positive integer, (3) if we set D = U3_,D;, 7|z _p is biholomorphic
onto X — Sing(C) and (4) C intersects with D at a finite number of points which
are non-singular points of D and each intersection is transverse. The foliation E
canonically induces a singular foliation £ on X. Then by (2.2) Lemma, the sum
3" Ind(E; C) of the indices of E relative to C is equal to the sum ¥ Ind(E; C) of the
indices of E relative to C plus 3 m;D;-C, the total intersection number of 3" m;D
and €. By the Camacho-Sad index theorem in [2], we have 3" Ind( E; C’) c2. The
theorem follows if we apply the projection formula C2 = €2 + >.m;D .C.

(2.4) Remark. Thus in the presence of a foliation E leaving C invariant, the self-
intersection number is localized to the set S(E; C), which includes the singular set

Sing(C) of C.
(2.1) Theorem is restated as

(2.5) Theorem. Let X, E and C be as in (2.1) Theorem. For each p in S(E;C),
let U2 ,C, ; be the irreducible decomposition of C at p. Then we have

Y DY dp(BiCri) =-Ex-C—x(O)+ D> D up(Cpy)

pES(E;C) i=1 pES(E;C) i=1

and

Y Indy(E;C)=-KEx-C-x(C)+ Y ¢(C),
PES(E;C) ' PES(E;C)

where K x denotes the canonical bundle of X and x(C) the Euler-Poincaré charac-
teristic of a non-singular model C of C.

Proof. These follow from (2.1) Theorem, (1.10) and the adjunction formula ([4] 2.)

—x(C)=C*+Kx-C— Y ¢(C)
p€Sing(C)

O

(2.6) Remarks. 1°. In the right hand side of each of the above identities, the set
S(E; C) may be replaced by Sing(C).

2°. The first formula above is proved in [6] Theorem A when X = P2C

3°. In the theorems (2.1) and (2.5), X need not be compact.
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3. A remark on the indices

As is known the Camacho-Sad index can be interpreted in terms of holo-
nomy. In this section, we remark that a similar interpretation is possible for the
singular invariant curve case as well.

For simplicity, we consider only (locally) irreducible curves. Thus let C be
the germ of a reduced and irreducible curve in C? = {(z,y)} at 0 with defining
function f. By changing the coordinate system if necessary, we may assume that
f is a Weierstrass polynomial in y. Thus C has a uniformization ¢ : A — C of
the form ¢(t) = (t™,y(t)) and f and %-5 are relatively prime. On C' = C — {0},
g—’;— does not vanish and in a neighborhood of C’, (z, f) form a coordinate system
and z is a coordinate on C'. Let v be a logarithmic vector field for C and E the
foliation generated by v. In the (z, f) coordinate system, take a point (z9,0) on C
for sufficiently small |x¢| and consider the complex line C,, given by z = z,. Also
for small |fy], let P = (zo, fo) be a point on C;, and let the integral curve through
P be Cp, which is a non-singular (complex) curve in C2 — {0}. Let ¢¢ be a point
in A such that zg = tJ*. A closed path in A based at ty, and going around the
origin once counterclockwise corresponds, by ¢, to a closed path ¢ in C based at
(z0,0) and and going around 0 once along the link L of C. We denote by 7 the lift
of 7o in Cp with the initial ponit at P. Its end point is in C,, and can be written
as (zo, H(fo)), where H(fo) is a holomorphic function of fy (the holonomy of the
foliation at P along 7). Since H(0) # 0 we may write H(fo) = Y_;5; ci(fo)'. Note
that ¢, is non-zero and its argument is determined by the path v.

(3.1) Proposition. In the above situation, we have

Indy(E;C) = log ¢;.

1
27/ —1

Proof. Consider the decomposition gw = hdf + fn for an annihilator w of v as
in (1,1) Lemma. Since g and f are also relatively prime, ¢ is non-vanishing in a
neighborhood of C'. Thus the integral curves of v near C' are obtained by solving
the differential equation Adf + fn =0 or

n _ df
3.2 - -
(32) 1-9
Suppose the integral curve Cp is given, in a neighborhoodof P, by
f=1v(z, fo).

Thus it satisfies (3.2) and we have ¥(zy, fo) = fo. Now outside of 0, we may write
—+ = a(z, f)dz + b(z, f)df with a(z, f) and b(z, f) holomorphic in (z, f). From
(3.2), we have :
dip
(l((l:,?,[)((b',fo)) + b(l,¢(l’f0))d_T.($’f0) dz = C”.Og’(/)(l‘,fo),
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for z near zq. If we denote by A¢(z) a primitive function of the left hand side above,
fixing the argument of ¢(z, fo) suitably, we have Ao(z) = log¥(z, fo). We consider
the analytic continuation of Ay(z) along 7 to get a holomorphi function A;(z) in
a neighborhood of zy. The analytic continuation of ¥(z, fo) along v is ¢ (z, H(fy))
in a neighborhood of z¢ and its argument is determined from that of ¥(z, fo). We

have
¥(z, H(fo))
¢($sf0) .

If we set £ = x¢, the left hand side becomes — f,y + and the right hand side log %

Finally if we make f, approach 0, we get — f,m 1 = logc;. Thus we obtain the
formula. O

Ai(z) — Ao(z) = log
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