Star-shaped complexes and Ehrhart polynomials

CORE

<u>Provided by E</u>Pri

Takayuki Hibi

Series #210. July 1993

HOKKAIDO UNIVERSITY

PREPRINT SERIES IN MATHEMATICS

- # 183: G. Ishikawa, T. Ozawa, The genus of a connected compact real algebraic surface in the affine three space, 11 pages. 1993.
- # 184: T. Hibi, Canonical modules and Cohen-Macaulay types of partially ordered sets, 6 pages. 1993.
- # 185: Y. Giga, K. Yama-uchi, On a lower bound for the extinction time of surfaces moved by mean curvature, 16 pages. 1993.
- # 186: Y. Kurokawa, On functional moduli for first order ordinary differential equations, 9 pages. 1993.
- # 187: O. Ogurisu, Unitary equivalence between a spin 1/2 charged particle in a two-dimensional magnetic field and a spin 1/2 neutral particle with an anomalous magnetic moment in a two-dimensional electric field, 4 pages. 1993.
- # 188: A. Jensen, T. Ozawa, Existence and non-existence results for wave operators for perturbations of the laplacian, 30 pages. 1993.
- # 189: T. Nakazi, Multipliers of invariant subspaces in the bidisc, 12 pages. 1993.
- \$\product\$ 190: S. Izumiya, G.T. Kossioris, Semi-local classification of geometric singularities for Hamilton-Jacobi equations, 24 pages. 1993.
- # 191: N. Hayashi, T. Ozawa, Finite energy solutions of nonlinear Schrödinger equations of derivative type, 21 pages. 1993.
- # 192: J. Seade, T. Suwa, A residue formula for the index of a holomorphic flow, 22 pages. 1993.
- # 193: H. Kubo, Blow-up of solutions to semilinear wave equations with initial data of slow decay in low space dimensions, 8 pages. 1993.
- # 194: F. Hiroshima, Scaling limit of a model of quantum electrodynamics, 52 pages. 1993.
- # 195: T. Ozawa, Y. Tsutsumi, Global existence and asymptotic behavior of solutions for the Zakharov equations in three space dimensions, 34 pages. 1993.
- # 196: H. Kubo, Asymptotic behaviors of solutions to semilinear wave equations with initial data of slow decay, 25 pages. 1993.
- # 197: Y. Giga, Motion of a graph by convexified energy, 32 pages. 1993.
- # 198: T. Ozawa, Local decay estimates for Schrödinger operators with long range potentials, 17 pages. 1993.
- # 199: A. Arai, N. Tominaga, Quantization of angle-variables, 31 pages. 1993.
- # 200: S. Izumiya, Y. Kurokawa, Holonomic systems of Clairaut type, 17 pages. 1993.
- # 201: K.-S. Saito, Y. Watatani, Subdiagonal algebras for subfactors, 7 pages. 1993.
- # 202: K. Iwata, On Markov properties of Gaussian generalized random fields, 7 pages. 1993.
- # 203: A. Arai, Characterization of anticommutativity of self-adjoint operators in connection with Clifford algebra and applications, 13 pages. 1993.
- # 204: J. Wierzbicki, An estimation of the depth from an intermediate subfactor, 7 pages. 1993.
- # 205: N. Honda, Vanishing theorem for the tempered distributions, 11 pages. 1993.
- # 206: T. Hibi, Betti number sequences of simplicial complexes, Cohen-Macaulay types and Möbius functions of partially ordered sets, and related topics, 25 pages. 1993.
- # 207: A. Inoue, Regularly varying correlations, 23 pages. 1993.
- \$\product\$ 208: S. Izumiya, B. Li, Overdetermined systems of first order partial differential equations with singular solution,
 9 pages. 1993.
- # 209: T. Hibi, Hochster's formula on Betti numbers and Buchsbaum complexes, 7 pages. 1993.

Star-shaped complexes and Ehrhart polynomials*)

Takayuki Hibi

Department of Mathematics Faculty of Science Hokkaido University Kita-ku, Sapporo 060, Japan

A polyhedral complex Γ in \mathbb{R}^N is a finite set of convex polytopes in \mathbb{R}^N such that (1.1) if $\mathbb{P}\in\Gamma$ and $\mathbb F$ is a face of $\mathbb P$ then $\mathcal{F} \in \Gamma$, and (1.2) if $\mathcal{P}, \mathcal{Q} \in \Gamma$ then $\mathcal{P} \cap \mathcal{Q}$ is a face of \mathcal{P} and of \mathbb{Q} . We are concerned with a polyhedral complex Γ in \mathbb{R}^N which satisfies the following conditions: (2.1) every vertex α of $\mathcal{P}\in \Gamma$ has integer coordinates, i.e., $\alpha\in\mathbb{Z}^N$, and (2.2) the underlying space $X := \bigcup_{\mathcal{P} \in \Gamma} \mathcal{P}$ ($\subset \mathbb{R}^N$) of Γ is homeomorphic to the d-ball. Let ∂X denote the boundary of X, thus ∂X is homeomorphic to the (d-1)-sphere. Given an integer n > 0, write nX for {n α ; $\alpha \in X$ } and define i(X,n) to be $\#(nX \cap \mathbb{Z}^N)$, the cardinality of $nX \cap \mathbb{Z}^N$. In other words, i(X,n) is equal to the number of rational points $(\alpha_1, \alpha_2, \ldots, \alpha_N) \in X$ with each $n\alpha_i \in \mathbb{Z}$. It is known that (3.1) i(X,n) is a polynomial in n of degree d, called the Ehrhart polynomial of X, (3.2) i(X,0) = 1, and (3.3) $(-1)^{d_i}(X,-n) = #[n(X-\partial X) \cap \mathbb{Z}^N]$ for every $1 \le n \in \mathbb{Z}$. Define the sequence δ_0 , δ_1 , δ_2 ,... of integers by the formula

*) This paper was presented in the meeting "Combinatorial Convexity and Algebraic Geometry" held at Mathematisches Forschungsinstitut Oberwolfach, March 28 – April 3, 1993.

- 1 -

$$(1 - \lambda)d^{+1}[1 + \sum i(X,n)\lambda^n] = \sum \delta_i \lambda^i$$
.
n=1 i=0

Then (4.1) $\delta_0 = 1$ and $\delta_1 = #(X \cap \mathbb{Z}^N) - (d+1)$, (4.2) $\delta_i = 0$ for each i > d, and (4.3) $\delta_d = #[(X - \partial X) \cap \mathbb{Z}^N]$. We say that $\delta(X) = (\delta_0, \delta_1, \ldots, \delta_d)$ is the δ -vector of X. We refer the reader to, e.g., [4, Chap. IX] for geometric proofs of the above fundamental results due to Ehrhart. Note that, even though X is not necessarily convex, the proofs in [4] valid without modification since X is homeomorphic to the d-ball.

 ∞

Some algebraic technique¹⁾ is indispensable for the study of combinatorics on δ -vectors. Fix a field k and let ξ_1, ξ_2, \ldots , ..., α_N) $\in nX \cap \mathbb{Z}^N$, then we set $\xi^{\alpha_t n} = \xi_1^{\alpha_1} \xi_2^{\alpha_2} \cdots \xi_N^{\alpha_N t n}$. We write $[A_k(\Gamma)]_n$ for the vector space spanned by all monomials $\xi^{\alpha}t^{n}$ with $\alpha \in nX \cap \mathbb{Z}^{N}$. Thus, in particular, $\dim_k[A_k(\Gamma)]_n = i(X,n)$. Let $A_k(\Gamma)$ denote $\bigoplus_{n\geq 0} [A_k(\Gamma)]_n$ with $[A_k(\Gamma)]_0 = k$ and define multiplication $(\xi^{\alpha} t^n)(\xi^{\beta} t^m)$ of monomials $\xi^{\alpha}t^{n}$ and $\xi^{\beta}t^{m}$ in $A_{k}(\Gamma)$ as follows: $(\xi^{\alpha}t^{n})(\xi^{\beta}t^{m})$ = $\xi^{\alpha+\beta}t^{n+m}$ if there exists $\mathcal{P} \in \Gamma$ with $\alpha \in n\mathcal{P}$ and $\beta \in m\mathcal{P}$; $(\xi \alpha t^n)(\xi \beta t^m) = 0$ otherwise. Then $A_k(\Gamma)$ is a noetherian (i.e., finitely generated graded) algebra over \mathbf{k} and the Hilbert series $F(A_k(\Gamma),\lambda) := \Sigma^{\infty} n=0 \dim_k [A_k(\Gamma)]_n \lambda^n \text{ is } (\delta_0 + \delta_1 \lambda + \delta_2 \lambda^2 + \dots$ $+\delta_d \lambda^d)/(1-\lambda)^{d+1}$. Let $\Omega(A_k(\Gamma)) = \bigoplus_{n>1} [\Omega(A_k(\Gamma))]_n$ be the graded ideal of $A_k(\Gamma)$ which is generated by those monomials $\xi^{\alpha}t^{n}$ such that $0 \le n \in \mathbb{Z}$ and $\alpha \in n(X-\partial X) \cap \mathbb{Z}^{N}$. Since X is homeomorphic to the d-ball, $A_k(\Gamma)$ is Cohen-Macaulay [8, Lemma 4.6]. Thus, a well-known technique of commutative algebra enables us to obtain $\delta(X) \ge 0$, i.e., each $\delta_i \ge 0$ (cf. Stanley [6]). On the other hand, $\Omega(A_k(\Gamma))$ is the canonical module of $\operatorname{A}_k(\Gamma)$, see [7, p.81].

1) We refer to, e.g., [4, Chap. IV] for "Commutative Algebra for Combinatorialists."

- 2 -

We say that X is "star-shaped" with respect to a point $\alpha \in X - \partial X$ if $t\alpha + (1-t)\beta \in X - \partial X$ for every point $\beta \in X$ and for each real number 0 < t < 1.

THEOREM. We employ the same notation as above. Suppose that the set $(X - \partial X) \cap \mathbb{Z}^N$ is non-empty and that the underlying space X is star-shaped with respect to some $v_1 \in (X - \partial X) \cap \mathbb{Z}^N$. Then the δ -vector $\delta(X) = (\delta_0, \delta_1, \dots, \delta_d)$ of X satisfies the linear inequalities as follows:

(5.1) $\delta_0 + \delta_1 + \ldots + \delta_i \leq \delta_d + \delta_{d-1} + \ldots + \delta_{d-i}$, $0 \leq i \leq \lfloor d/2 \rfloor$; (5.2) $\delta_1 \leq \delta_i$, $2 \leq i \leq d$.

Sketch of proof. First, recall that a simplicial complex in \mathbb{R}^N is a polyhedral complex Δ in \mathbb{R}^N such that every convex polytope belonging to Δ is a simplex in \mathbb{R}^N . Fix an arbitrary simplicial complex $\Delta(0)$ in \mathbb{R}^N with the vertex set $\partial X \cap \mathbb{Z}^N$ whose underlying space is the boundary ∂X of X. Since X is star-shaped with respect to $\ensuremath{\mathbf{v}}_1 \in (X\text{-}\partial X) \cap \mathbb{Z}^N$, we can define the cone $\Delta(1)$ over $\Delta(0)$ with apex v_1 , i.e., $\Delta(1)$ is the simplicial complex in \mathbb{R}^N which consists of those simplices σ such that either $\sigma \in \Delta(0)$ or σ is the convex hull of $\tau \cup \{v_1\}$ in \mathbb{R}^N for some $\tau \in \Delta(0)$. The vertex set of $\Delta(1)$ is $(\partial X \cap \mathbb{Z}^N) \cup \{v_1\}$ and the underlying space of $\Delta(1)$ is X. Let $(X-\partial X) \cap \mathbb{Z}^N = \{v_1, v_2, \dots, v_\ell\}$ and, for each $2 \le j \le \ell$, construct a simplicial complex $\Delta(j)$ with the vertex set $(\partial X \cap \mathbb{Z}^N) \cup \{v_1, v_2, \dots\}$.,v_j) and with the underlying space X by the same way as in [5]. We write Δ for $\Delta(\ell)$. Then the element $\vartheta = \xi \nabla^1 t + \xi \nabla^2 t + .$... + $\xi^{\nabla \ell} t$ of $[\Omega(A_k(\Delta))]_1$ is a non-zero divisor on $A_k(\Delta)$. Hence, it follows from a standard technique of commutative algebra [9] (see also [2]) that $\sum_{0 \le j \le i} \delta_j \le \sum_{0 \le j \le i} \delta_{d-j}$ for every $0 \le i \le \lfloor d/2 \rfloor$. On the other hand, let $h(\Delta) = (h_0, h_1, \dots, h_d, 0)$ be the h-vector (e.g., [7]) of the simplicial complex \triangle . Then $h_1 \leq h_i$ for each $2 \le i \le d$ (cf. [5]). Also, $h_1 = \delta_1$. Since $h_i \le \delta_i$, $0 \le i \le d$, by [1], we have $\delta_1 \leq \delta_i$ for each $2 \leq i \leq d$ as desired. Q. E. D. In the above Sketch of proof, let $A_k(\Delta)^*$ denote the graded subalgebra of $A_k(\Delta)$ generated by $[A_k(\Delta)]_1$ over k. Then $A_k(\Delta)^*$ coincides with the Stanley-Reisner ring [7] of the simplicial complex Δ . Thus $A_k(\Delta)^*$ is Cohen-Macaulay with the Hilbert series $F(A_k(\Delta)^*,\lambda) = (h_0+h_1\lambda+h_2\lambda^2+\ldots+h_d\lambda^d)/(1-\lambda)d^{+1}$. Moreover, $A_k(\Delta)$ is finitely generated as a module over $A_k(\Delta)^*$.

EXAMPLE. Let N = d = 3 and $X = \mathcal{P} \cup \mathbb{Q}$, where $\mathcal{P} \subset \mathbb{R}^3$ (resp. $\mathbb{Q} \subset \mathbb{R}^3$) is the tetrahedron with the vertices (1,0,0), (0,1,0), (0,0,1), (-1,-1,-1) (resp. (1,0,0), (0,1,0), (0,0,1), (1,1,0)). Then $(X-\partial X) \cap \mathbb{Z}^3 = \{ (0,0,0) \}$ and X is not star-shaped with respect to (0,0,0). However, X is star-shaped with respect to, e.g., (1/3,1/3,1/3). We have $\delta(X) = (1,2,1,1)$ which fails to satisfy (5.1) for i = 1 and (5.2) for i = 2.

COROLLARY ([5], [9]). Let $\mathcal{P} \subset \mathbb{R}^N$ be an integral convex polytope of dimension d and suppose that $(\mathcal{P}-\partial\mathcal{P})\cap\mathbb{Z}^N$ is non-empty. Then the δ -vector $\delta(\mathcal{P}) = (\delta_0, \delta_1, \dots, \delta_d)$ of \mathcal{P} satisfies the following linear inequalities:

(6.1) $\delta_0 + \delta_1 + \ldots + \delta_i \le \delta_d + \delta_{d-1} + \ldots + \delta_{d-i}$, $0 \le i \le [d/2]$; (6.2) $\delta_1 \le \delta_i$, $2 \le i \le d$.

We conclude the paper with a remark about the question when $A_k(\Gamma)$ is Gorenstein. For a while, we assume that N = dand the origin of \mathbb{R}^d is contained in the interior of X. We say that $\delta(X) = (\delta_0, \delta_1, \ldots, \delta_d)$ is symmetric if $\delta_i = \delta_{d-i}$ for every $0 \le i \le d$. It follows from, e.g., [3] that X is star-shaped with respect to the origin if $\delta(X)$ is symmetric. On the other hand, $\delta(X)$ is symmetric if and only if there exists a polyhedral complex Γ in \mathbb{R}^d with the underlying space X such that $A_k(\Gamma)$ is Gorenstein, i.e., the canonical module $\Omega(A_k(\Gamma))$ of $A_k(\Gamma)$ is generated by a single element of $A_k(\Gamma)$.

- 4 -

REFERENCES

- [1] U. Betke and P. McMullen, Lattice points in lattice polytopes, Monatshefte für Math. 99 (1985), 253–265.
- [2] T. Hibi, Face number inequalities for matroid complexes and Cohen-Macaulay types of Stanley-Reisner rings of distributive lattices, Pacific J. Math. 154 (1992), 253–264.
- [3] _____, Dual polytopes of rational convex polytopes, Combinatorica 12 (1992), 237-240.
- [4] _____, "Algebraic Combinatorics on Convex Polytopes," Carslaw, Sydney, 1992.
- [5] _____, A lower bound theorem for Ehrhart polynomials of convex polytopes, Advances in Math., to appear.
- [6] R. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Math. 6 (1980), 333-342.
- [7] _____, "Combinatorics and Commutative Algebra," Birkhäuser, Boston/Basel/Stuttgart, 1983.
- [8] _____, Generalized h-vectors, intersection cohomology of toric varieties, and related results, in "Commutative Algebra and Combinatorics" (M. Nagata and H. Matsumura, eds.), Advanced Studies in Pure Math., Vol. 11, North-Holland, Amsterdam, 1987, pp.187-213.
- [9] _____, On the Hilbert function of a graded Cohen-Macaulay domain, Journal of Pure and Appl. Algebra 73 (1991), 307-314.