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A polyhedral complex [ in RN is a finite set of conves
polytopes in RN such that (1.1) if Pe " and 7 is a face of P
then T el ,and(1.2)if P, Qe then P N Q is a face of P
and of Q. We are concerned with a polyhedral complex I in
RN which satisfies the following conditions: (2.1) every vertes
~« of P el hasinteger coordinates,i.e., o e ZN, and (2.2) the
underlying space X:=U pcr ® (¢ RN) of T is homeomorphic
to the d-ball. Let 0X denote the bounddrg of X, thus oX is
homeomorphic to the (d-1)-sphere. Given an integer n»> 0,
write nX for {no; «eX} and define i(X,n) to be #(nXnzN),
the'cardinalitg of nXNZN . In other words, i(X,n) is equal to
the number of rational points (otq,009,...,0N) € X with each
noje Z. Itis known that (3.1) i(X,n) is a polynomialin n of
degree d, called the Ehrhart polynomial of X, (3.2) i(X,0) =1,
and (3.3) (-1)di(X,-n) = #[n(X-aX)NZN] forevery 1¢ne Z.
Define the sequence &gy, 81, 69,... of integers by the formula

*) This paper was presented in the meeting "Combinatorial
Convesxity and Algebraic Geometry" held at Mathematisches
Forschungsinstitut Oberwolfach, March 28 - April 3, 1993,



(1-2)d*1[1+ = i(X,;n) An] = T §;al.
| n=1 i=0

Then (4.1) 8g =1 and 81 = #(XnzN) - (d+1), (4.2) 8;=0 for
each i>d, and (4.3) 84 = #[(X-3aX)nzZN]. We say that &(X) =
(80y81y+ - .,8q) is the s-vector of X . We refer the reader to,
e.g., [4, Chap. IH] for geometric proofs of the above fundamental
results due to Ehrhart. Note that, even though X is not
necessarily conves, the proofs in [4] valid without modification
since X is homeomorphic to the d-ball.

Some algebraic techniquel) is indispensable for the study of
combinatorics on §-vectors. Fix a field k andlet &4 ,£82,...,
EN,t be (commutative) indeterminates over k. If o = (xq,x9,

.,aN) € nXNZN | then we set gotn = g1 xleyx2 | gyalNin,
We write [AL(I)],, for the vector space spanned by all
monomials &t with o e nXNzZN . Thus, in particular,
dimp[Ap(DM)]y = i(X,n) . Let AR(T") denote & 0 [A(I)], with
[Ar(I]p = k and define multiplication (EXtN)(gPtmM) of
monomials Xt and gPtM in Ap(I") as follows: (g&tN)(gPtMm)
= gX*ptnN+m jf there erists P e I’ with cxce n® and pe MmP;
(gxtn)(gPtMm) = 0 otherwise. Then Ay (") is a noetherian (i.e.,
finitely generated graded) algebra over k and the Hilbert series
F(AR(T),A) 1= 2 = =g dimp[AR(D)ln AN is (8g+81A+8A2+ . ..
#8gAD)/(1-0)d*1 | Let Q(AR(T)) = B py1 [QAR(T)], be the
graded ideal of Ay(I") which is generated by those monomials
N such that O<ne Z and o e n(X-3X)NZN . Since X is
homeomorphic to the d-ball, AL (") is Cohen-Macaulay
[8, Lemma 4.6]. Thus, a well-known technique of commutative
algebra enables us to obtain §(X) >0, i.e., each 8§20
(cf. Stanley [6]). On the other hand, Q(A (")) is the canonical
module of Ay ("), see [?7, p.81].

1) We refer to, e.g., [4, Chap. IUV] for "Commutative Algebra
for Combinatorialists."”



We say that X is "star-shaped” with respect to a point « ¢
X =-9X If tax + (1-t)pe X - X for every point p e X and for
each real number 0<t< 1.

THEOREM. We employ the same notation as above. Suppose
that the set (X-3X)nzN is non-empty and that the underlying
space X is star-shaped with respect to some vq e (X-3X)nzZN,
Then the &-vector &(X) = (8¢g,81,...,8q) of X satisfies the
linear inequalities as follows: '

(5.1) 89+ 81 +...+8¢8q+8g-1+...%84-i, 0¢ic[d/2];
(5.2) 81 ¢8;, 2¢i<d.

Sketch of proof. First, recall that a simplicial complexr in RN
is a polyhedral complex A in RN such that every convexr
polytope belonging to A is a simplex in RN . Fix an arbitrary
simplicial complexr A(0) in RN with the vertex set 9xXnzN
whose underlying space is the boundary 90X of X . Since X is
star-shaped with respect to vq € (X-3X)NnzZN , we can define
the cone A(1) over A(0) with aper vq,i.e.,, A(1) is the
simplicial complexr in RN which consists of those simplices o
such that either o e A(0) or o is the convexr hullof T U {vq)
in RN for some © e A(0). The vertex set of A(1) is
(0XNzN)u{v41) and the underlying space of A(1) is X. Let
(X-3X)NZN = {v{,vy,...,vy} and, for each 2¢< j< 2, constructa
simplicial compler A(j) with the vertex set (3XNZN)U{vq,vo, ..
. ,VJ'} and with the underlying space X by the same way as in
[5]. We write A for A(2). Then the element o = gV1lt+ gv2¢+

.+ eVt of [Q(AL(A))]4 is a non-zero divisor on Ap(A). Hence,
it follows from a standard technique of commutative algebra [9]
(see also [2]) that 3 g¢j¢i 8¢ Z gcj¢j 84— forevery O <i<[d/2].
0n the other hand, let h(A) = (hg,hq,..., hg,0) be the h-vector
(e.g., [?]) of the simplicial compler A . Then h4 ¢ h; for each
2¢i<d (cf.[S]). Also, hq1 =81 . Since h;¢§;, O<i<d, byll],
we have &1 ¢ §; foreach 2<¢i<d as desired. Q. E.D.



In the above Sketch of proof, let Ap(A)* denote the graded
subalgebra of Ay(A) generated by [Ay(A)]l4 over k. Then
Ax(A)* coincides with the Stanley-Reisner ring [?] of the
simplicial complex A. Thus Ap(a)* is Cohen-Macaulay with the
Hilbert series F(AR(A)*,\) = (hg+hqa+hoA2+. .. +hgad)/(1-2)d*1
Moreover, Ap(A) is finitely generated as a module over Ap(a)*.,

EHAMPLE. Let N=d=3 and X=® U Q, where ® c R3
(resp. @ c R3) is the tetrahedron with the vertices (1,0,0),
(0,1,0), (0,0,1), (-1,-1,-1) (resp. (1,0,0), (0,1,0), (0,0,1),

(1,1,0) ). Then (X-3X)nZ3 ={(0,0,0)} and X is not star-shaped
with respect to (0,0,0) . However, X is star-shaped with
respect to, e.g., (1/3,1/3,1/3) . We have &§(X) = (1,2,1,1) which
fails to satisfy (5.1) for i=1 and (5.2) for i=2.

CORGCLLARY ([5], [9]). Let ® c RN be an integral conveH
polytope of dimension d and suppose that (P-9P)nzN is
non-empty. Then the §-vector &(P) = (80,81, ...,8q) of ®
satisfies the following linear inequalities:

(6.1) 80+ 81 +...+8{¢84+83-1+...+8g-i, 0¢ic[d/2];
(6.2) 61 ¢8;, 2¢i<d.

We conclude the paper with a remark about the question
when Ap(T") is Gorenstein. For a while, we assume that N =d
and the origin of Rd is contained in the interior of X . We say
that &(X) = (80,81, ...,84) is symmetricif §; = 84-; for every
O¢<i¢d. It follows from, e.g., [3] that X is star-shaped with
respect to the origin if §(X) is symmetric. On the other hand,
8(X) is symmetric if and only if there exists a polyhedral }
complex [ in R4 with the underlying space X such that Ay (D)
is Gorenstein, i.e., the canonical module Q(Ap(I)) of AR(T) is
generated by a single element of ApL(T). '
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